Volume 28 • Number 2 • 2006
 
• On Relative 1½-StarLindelöfness
Yan-Kui Song, Guang-Fa Han and Pi-Yu Li
Abstract. A subspace Y of a space X is strongly 1½-starLindelöf in X if for every open cover U of X, there exists a countable subset V of U such that VY≠∅ for each VV and YS t(∪V,U), where St(∪V,U)=∪{UU:U∩∪V≠∅}. A subspace Y of a space X is ½-starLindelöf in X if for every open cover U of X, there exists a countable subset V of U such that YS t(∪V,U). In this paper, we give an example to show the difference between relative strongly 1½-starLindelöfness and relative 1½-starLindelöfness.

2000 Mathematics Subject Classification: 54A25, 54D20.


Full text: PDF