top library bulletin
bar home editorial guideline content
dot
 
Volume 34 • Number 2 • 2011
 
• Volterra Composition Operators from \(F(p,q,s)\) Spaces to Bloch-type Spaces
Weifeng Yang

Abstract.
Let \(H(B)\) denote the space of all holomorphic functions on the unit ball \(B\subset \mathbb{C}^n\). Let \(\varphi\) be a holomorphic self-map of \(B\) and \(g\in H(B)\). In this paper, we investigate the boundedness and compactness of the Volterra composition operator

\[(V^g_{\varphi} f)(z)=\int_0^1f(\varphi(tz))\Re g(tz)\frac{dt}t,\]

which map from general function space \(F(p,q,s)\) to Bloch-type space \(\mathcal{B}^\alpha\) in the unit ball.

2010 Mathematics Subject Classification: Primary: 47B35; Secondary: 30H05.


Full text: PDF
 
dot