|
|
|
|
|
Volume 37 • Number 4 • 2014 |
|
•
On a Class of Degenerate Nonlocal Problems with Sign-Changing Nonlinearities
Nguyen Thanh Chung and Hoang Quoc Toan
Abstract.
Using variational techniques, we study the nonexistence and multiplicity
of solutions for the degenerate nonlocal problem
\begin{equation*}
\begin{cases}
\begin{array}{rlll}
- M\left(\int_\Omega |x|^{-ap}|\nabla u|^pdx\right)\operatorname{div}\left(|x
|^{-ap}|\nabla u|^{p-2}\nabla u\right) &= \lambda |x|^{-p(a+1)+c} f(x,u) &
\text{ in } \Omega,\\
u &= 0 & \text{ on } \partial\Omega,
\end{array}
\end{cases}
\end{equation*}
where $\Omega \subset \mathbb{R}^N$ ($N \geq 3$) is a smooth bounded domain,
$0 \in \Omega$, $0 \leq a < \frac{N-p}{p}$, $1 < p < N$, $c > 0$, $M: \mathbb{R}^+\to \mathbb{R}^+$
is a continuous function that may be degenerate at zero,
$f:\Omega \times \mathbb{R}\to \mathbb{R}$ is a sign-changing Carath\'eodory function and
$\lambda$ is a parameter.
2010 Mathematics Subject Classification: 35D35, 35J35, 35J40, 35J62
Full text: PDF
|
|
|
|
|
|
|
|
|