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Abstract  The expected value of  sample variance based on independently and identically 
distributed normal observations is well known, and is often calculated by deriving its 
sampling distribution.  However, the sampling distribution is difficult for other distributions, 
and more so if the observations are neither independently nor identically distributed. We 
demonstrate that the expected value in such a general situation depends on the second moment 
of the difference of pairs of its constituent random variables. We also prove, for this situation,  
an expression for expected variance that depends on the average of variances of observations, 
variation among true means and the average of covariances of pairs of observations. Many 
special cases are expressed as corollaries to illustrate ideas. Some examples that provide 
insights in mathematical statistics are considered. An application to textile engineering is 
presented. 
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1. Introduction 
  
The expected value of sample variance is often derived by deriving its sampling distribution 
which may be intractable in some situations. The objective of this paper is to derive a general 
formula for the mathematical expectation of sample variance. 
 
 One may wonder if there is any real world situation for which we need a generalization of the 
expected value formula for sample variance. Indeed this kind of situation arises when the 
observations are not necessarily independent, say, time series data or observations from a 
mixture distribution with parameters following some other distribution. See for example, 
Joarder and Ahmed (1998). 
 
It was believed earlier that the rates of return on common stocks were adequately 
characterized by a normal distribution. But recently, it has been observed by several authors 
that the empirical distribution of rates of return of common stocks have somewhat thicker tails 
(larger kurtosis) than that of the normal distribution. The univariate t-distribution has got 
fatter tails and as such it is more appropriate than the normal distribution to characterize stock 
return rates. For example, if for a given υϒ = , observations follow normal distribution, say, 

2~ (0, )iX N υ  , ( 1, 2, , )i n= , where 2 2
νν χ−ϒ ∼ , then the unconditional distribution of the 

sample follows a t-distribution (Example 3.7). Examples 3.3 and 3.7 show the usefulness of 
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the main result proved in Theorem 2.1 for a sample governed by t-distribution. Samples can 
be drawn from distributions where the components are dependent by 3 methods: the 
conditional distribution method, transformation method and the rejection method (Johnson, 
1987, 43-48). 
 
Blattberg and Gonedes (1974) assessed the suitability of the multivariate t-model and Zellner 
(1976) considered a regression model to study stock return data for a single stock. Interested 
readers may go through Sutradhar and Ali (1986) who considered a multivariate t-model for 
the price change data for the stocks of four selected firms: General Electric, Standard Oil, 
IBM and Sears. These are examples where expected sample variance or covariance matrix 
cannot be derived by appealing to independence.  
  

 Let 1 2, , , ( 2)nx x x n ≥  be a sample with variance )( 2s  where 2 2

1
( 1) ( ) ,

n

i
i

n s x x
=

− = −∑  2.n ≥  

A matrix W showing the pair-wise differences among observations can be prepared whose 
entries are  ij i jw x x= −  where i  and j  are integers ( , 1,  2,  ..., )i j n=  so that the set of 
elements of  { : 1 ,  1 }ijW w i n j n= ≤ ≤ ≤ ≤  can be 'decomposed' as 

{ : 1 ,  1 ;  } { : 1 },l ij ijW w i n j n i j w i j n= ≤ ≤ ≤ ≤ > = ≤ > ≤  
{ : 1 ,  1 ;  } { : 1 }u ij ijW w i n j n i j w i j n= ≤ ≤ ≤ ≤ < = ≤ < ≤  and { 0: 1 }d iiW w i n= = ≤ ≤  

which are the elements in the lower triangle, upper triangle and in the diagonal of the matrix 
W .  Also 
 

{ : 2 ,  1 1} { : 1 1,  +1 },

{ : 1 1,  +1 } { : 2 ,  1 1}.
l ij ij

u ij ij

W w i n j i w j n j i n

W w i n i j n w j n i j

= ≤ ≤ ≤ ≤ − = ≤ ≤ − ≤ ≤

= ≤ ≤ − ≤ ≤ = ≤ ≤ ≤ ≤ −
                       (1.1) 

        

Then it is easy to check that 2 2

1
( 1) ( )

n

i
i

n s x x
=

− = −∑  can also be represented by 

1
2 2

2 1 1 1

1 1( ) ( ) .
2

n i n n

i j i j
i j i j

x x x x
n n

−

= = = =

− = −∑∑ ∑∑                                                             (1.2)

       
See for example, Joarder (2003) and (2005).  The following theorem is due to Joarder (2003). 
 
Theorem 1.1 Let 1i i id x x+= − , 1, 2, , 1i n= − be the first-order differences of 

( 2)n ≥ observations. Then the variance 2( )s of n observations is given by 
2( 1)n n s d Cd′− = where 1 2 1( , , , )nd d d d − ′= and ( )ijC c=  is an ( 1) ( 1)n n− × − symmetric 

matrix with ( )ijc n i j= − for , 1, 2, , 1 ( )i j n i j= − ≥ . 
      
Let the mean square successive difference (MSSD) of sample observations be given by  

1
2

1

n

i
i

D d
−

=

= ∑ . The ratio of the MSSD to the sample variance 2/[( 1) ]T D n S= − was suggested 

by von Neumann, Kent, Bellinson and Hart (1941), Young (1941) and von Neumann (1941 
and 1942) as a test statistic to test the independence of the random variables 

1 2, , , ( 2)nX X X n ≥  which are successive observations on a stationary Gaussian time series. 
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In particular, the ratio actually studied by von Neumann was /( 1)nT n − . Bingham and 
Nelson (1981) approximated the distribution of the von Neumann’s  T ratio. 
 
 In case of independently and identically distributed random variables, often the expected 
value of sample variance is calculated by deriving the distribution of the random sample 
variance. If  a sample is drawn from a normal population ),( 2σµN , then, it is well known 
that the sample mean )(X and variance )( 2S  are independent and 2

1
22 ~/)1( −− nSn χσ ,  a chi-

square distribution with )1( −n  degrees of freedom and that  
2 2 2

1( 1) ( ) / ( ) 1nn E S E nσ χ −− = = − , i.e., 2 2( )E S σ=  (see for example Lindgren, 1993, 213). 
 
We demonstrate that the sampling distribution of the sample variance can be avoided to derive 
the expected value of sample variance in many general situations. These situations include 
expectation of variance of observations that are not necessarily independent as mentioned 
earlier.  Suppose that iX ’s ( 1,2,.., )i n=  are uncorrelated  random variables from an unknown 
distribution with finite mean ( )iE X µ=  ( 1,2,..., )i n=  and finite variance  

2 2( ) ( )  i iV X E X µ σ= − = ( 1, 2, , )i n= ,  2( )E S  may not be obtained by utilizing the chi-
square distribution.  A more general approach is thus needed.  In this case, it follows that 

2 2( )E S σ=  by virtue of  2 2 2

1
( 1) ( ) ( ) ( ) ,

n

i
i

n E S E X nE Xµ µ
=

− = − − −∑  or, 

2 2 2( 1) ( ) ( / ).n E S n n nσ σ− = −  
 
In this paper we alternatively demonstrated that the expected value depends on the second 
moment of the difference of pairs of its constituent random variables.  In theorem 2.1, a 
general formula for expected variance is derived in terms of some natural quantities 
depending on mean, variance and correlation. Some special cases are presented in Section 3 
with examples. An application to textile engineering is presented in Section 4.  
 
2. The Main Result 
 
In what follows we will need the following: 
 

1
2 2 2 2 2

1 1 2 1 1

1 ,  ( 1) ( ) ( ) ,   .
n n n i n

i i i j i
i i i j i

n n n
nµµ µ σ µ µ µ µ σ σ

−

= = = = =

= − = − = − =∑ ∑ ∑∑ ∑                       (2.1) 

 
We define the covariance between iX  and jX  by  
 

( , ) ( )( ) ,  ( 1,2,... ; 1, 2,..., ; ).i j ij i i j jCov X X E X X i n j n i jσ µ µ= = − − = = ≠    
                
Theorem 2.1 Let iX ’s ( 1, 2,.., )i n= be random variables with finite mean ( )i iE X µ=  
( 1, 2,..., )i n= and finite variance  2( )  ( 1, 2, , )i iV X i nσ= =  with ,ij ij i jσ ρ σ σ=  
( 1, 2,... ; 1, 2,..., ; )i n j n i j= = ≠ and  
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1 1

..
2 1

 
2

n i

ij i j
i j

n
σ ρ σ σ

− −

= =

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∑∑ .              (2.2) 

 
Then  

a.  
1

2 2 2

2 1 1 1

1( 1) ( ) ( ) ( ) ,
2

n i n n

i j i j
i j i j

n n E S E X X E X X
−

= = = =

− = − = −∑∑ ∑∑         (2.3) 

b. 2 2 2
..( ) ,E S µσ σ σ= + −              (2.4) 

 
where  2

µσ   and 2σ  are defined by (2.1). 
 
Proof . Part (a) is obvious by (1.2).  Since ( ) ( ) ( )i j i i j j i jx x x xµ µ µ µ− = − − − + − , it can 
be checked that  
 

1
2 2 2 2

2 1
( 1) [( ) ( ) ( )  

                 2( )( ) 2( )( ) 2( )( )].

n i

i i j j i j
i j

i i j j i i i j j j i j

n n s x x

x x x x

µ µ µ µ

µ µ µ µ µ µ µ µ

−

= =

− = − + − + −

− − − + − − − − −

∑∑     (2.5)    

 

Clearly  
1

2 2

2 1 2
( ) ( 1)

n i n

i i i
i j i

E X iµ σ
−

= = =

− = −∑∑ ∑ .   

 
Since 2 1j i n≤ + ≤ ≤  (See 1.1), 
 

1 1 1 1
2 2 2 2

2 1 1 1 1 1
( ) ( ) ( ) ( ) ( )

n i n n n n

j j j j j j j
i j j i j j j

E X E X n j E X n jµ µ µ σ
− − − −

= = = = + = =

− = − = − − = −∑∑ ∑ ∑ ∑ ∑ , 

 
1

2 2

2 1
 ( ) ( 1)

n i

i j
i j

n n µµ µ σ
−

= =

− = −∑∑   by (2.1),  and  

 
1 1

2 1 2 1
( )( )  

n i n i

i i j j ij i j
i j i j

E X Xµ µ ρ σ σ
− −

= = = =

− − =∑∑ ∑∑  by (2.2),  

 
 
 it follows from (2.5) that  
 

1 1
2 2 2 2

2 1 2 1
( 1) ( ) ( 1) ( ) ( 1) 2 .

n n n i

i j ij i j
i j i j

n n E S i n j n n µσ σ σ ρ σ σ
− −

= = = =

− = − + − + − −∑ ∑ ∑∑  

 
Then the proof for part (b) follows by virtue of  
 

1 1
2 2 2 2 2

2 1 2 1 1
( 1) ( ) ( 1) ( ) ( 1)

n n n n n

i j i i i
i j i i i

i n j i n i nσ σ σ σ σ
− −

= = = = =

− + − = − + − = −∑ ∑ ∑ ∑ ∑ .     
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Alternatively, readers acquainted with matrix algebra may prefer the following proof of 
Theorem 2.1. 
 
Consider the vector : ( 1)X n ×  of observations, and ( )E Xµ = , the vector of means. Note also 

{ }ijσ∑ = , the ( )n n×  covariance matrix.  Then it is easy to check that 2( 1)n S X MX′− =  
where the  ( )n n×  centering matrix 1 1 /n n nM I n′= −  with nI  the identity matrix of order n  
and 1n is a ( 1)n ×  vector of 1's.  Then 2( 1) ( ) ( )n E S E X MX′− = . But 

( ) ( ( ))E X MX E tr X MX′ ′=  and ( )E XX µµ′ ′= ∑+ so that 
 

( )2( 1) ( )  .n E S tr M Mµ µ′− = ∑ +   
 
That is,  2 2 2

..( ) ,  ( ),E S i jµσ σ σ= − + ≠   since  2
..( ) ( 1) ( 1) ,tr M n nσ σ∑ = − − − ( )i j≠  and 

2 2

1
( ) ( 1) ,

n

i
i

M n µµ µ µ µ σ
=

′ = − = −∑   where 
1 1

..
2 12

n i

ij
i j

n
σ σ

− −

= =

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∑∑ is the mean of the off-diagonal 

elements of ∑ .            
 
3. Some Deductions and Mathematical Application of the Result 
 
In this section, we deduce a number of corollaries from Theorem 2.1. But first we have two 
examples to illustrate part (a) of Theorem 2.1. 
 
Example 3.1 Suppose that 2

3( ) ( 1),  0 1 i i if x x x= + < < ( 1,2,3)i =  and the dependent sample 

1 2 3( , , )X X X is governed by the probability density function 2
1 2 3 1 2 33( , , ) ( ),f x x x x x x= + +    

(cf. Hardle and Simar, 2003, 128).  Then it can be checked that ( ) 5 / 9,iE X =   
2( ) 7 /18,iE X =  ( ) 11/ 36i jE X X = , ( ) 13/162iV X =  and ( , ) 1/ 324i jCov X X = −   

( 1,2,3; 1,2,3; )i j i j= = ≠ .  Let 
3

2 2

1
( ) / 2i

i
S X X

=

= −∑  be the sample variance. Then by 

Theorem 2.1(a),  
 

2 2 2 2
1 2 1 3 2 36 ( ) ( ) ( ) ( ) .E S E X X E X X E X X= − + − + −  

 
Since 2( ) (7 /18) (7 /18) 2(11/ 36),i jE X X− = + − ( 1, 2,3; 1,2,3; ),i j i j= = ≠ we have 

2( ) 1/12E S =  . 
 
Example 3.2 Let iX ’s ( 1,2,.., )i n=  be independently, identically and normally distributed as 

2( , )N µ σ . Since 2~ (0,  2 ),   i jX X N i jσ− ≠ , by Theorem 2.1(a), we have 
1 1

2 2 2 2 2

2 1 2 1

( 1)( 1) ( )  ( ) (0 2 ) (2 )
2

n i n i

i j
i j i j

n nn n E S E X X σ σ
− −

= = = =

−
− = − = + = ×∑∑ ∑∑ . 

That is 2 2( )E S σ= . 
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The following corollary is a special case of Theorem 2.1(b) if 0,ijρ =  ( 1, 2, , ;i n=  
1,2, , )j n= . 

 
Corollary 3.1  Let iX ’s  ( 1,2,.., )i n= be uncorrelated random variables with finite mean 

( )i iE X µ=  ( 1, 2,..., )i n= and finite variance  2( )  ( 1, 2, , )i iV X I nσ= = . Then 
2 2 2( )E S µσ σ= + . 

 
Note that if we form a matrix with the correlation coefficients ( 1, 2, , ; 1,2, )ij i n j nρ = = , 
then by symmetry of the correlation coefficients,  total number of the elements in the lower 
triangle (say *ρ ) would be the same as that of the upper triangle i.e.  
 

1 1
*

2 1 1 1

n i n n

ij ij
i j i j i

ρ ρ ρ
− −

= = = = +

= =∑∑ ∑ ∑ .  

 
 Hence * * 2

..n nρ ρ ρ+ + =  where  
 

2
..

1 1
,

n n

ij
i j

n ρ ρ
= =

=∑∑                          (3.1) 

 
so that *

..( 1) / 2n nρ ρ= − .  
 
If  2( ) ,   ( 1,2,... )iV X i nσ= =  in Theorem 2.1 (b), then 2 2σ σ=  and 

2
.. ..( 1) /( 1)n nσ ρ σ= − − where ..ρ is defined by (3.1) and we have the following corollary.  

 
Corollary 3.2 Let iX ’s  ( 1,2,.., )i n= be random variables with ( ) ,  i iE X µ= 2( ) , iV X σ=  

2( , )    ( 1, 2,... ; 1, 2,..., ; )i j ijCov X X i n j n i jρ σ= = = ≠  whenever they exist. Then  

2 2 2.. 1( ) 1 .
1

nE S
n µ
ρ σ σ−⎛ ⎞= − +⎜ ⎟−⎝ ⎠

   

 
If 2( )  ,    ( 1, 2,... ; 1, 2,..., ; )i ijV X i n j n i jσ ρ ρ= = = = ≠  , in Theorem 2.1 (b),  then 2 2σ σ=  

and 2
.. ,σ ρσ=  we have the following corollary. 

 
Corollary 3.3 Let iX ’s ( 1, 2,.., )i n=  be random variables with ( ) ,  i iE X µ= 2( ) ,iV X σ=  

2( , )  ( 1,2,... ; 1, 2,..., ; )i jCov X X i n j n i jρσ= = = ≠  whenever they exist. Then  
2 2 2 2 2( ) (1 ) 2E S µ µρ σ σ σ σ= − + ≤ + . 

 
If 2( )  ,  0  ( 1, 2,... ; 1, 2,..., ; )i ijV X i n j n i jσ ρ= = = = ≠  , in Theorem 2.1 (b),  then 2 2σ σ=  
and .. 0,σ = then we have the following corollary. 
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Corollary 3.4 Let ),..,2,1( niX i = ’s be random variables with ( ) ,  i iE X µ= 2( ) ,iV X σ=   
( , ) 0,i jCov X X =  ( 1, 2,... ; 1, 2,..., ;  )i n j n i j= = ≠ whenever they exist. Then  
2 2 2( )E S µσ σ= + . 

 
An example is provided below to illustrate the situation. 
 

Example 3.3  Let 
( 1) / 2

2
2

(( 1) / 2) 1( )  1 ( ) ,
( / 2)i i if x x

νν µ
νσνπσ ν

− +Γ + ⎛ ⎞= + −⎜ ⎟Γ ⎝ ⎠
 2,  ( 1,2,3)iν > = and 

the dependent observations 1 2 3( , , )X X X be governed by the probability density function  
 

( 3) / 2
2 2 2

1 2 3 1 1 2 2 3 33/ 2 3 2

(( 3) / 2) 1( , , )  1 ( ) ( ) ( ) ) ,
( ) ( / 2)

f x x x x x x
νν µ µ µ

νπ σ ν νσ

− +Γ + ⎛ ⎞= + − + − + −⎜ ⎟Γ ⎝ ⎠
    (3.2) 

 

 ( 1,2,3)ix i−∞ < < ∞ = , 0σ > ,  2ν >  (cf. Anderson, 2003, 55).  Since  
2

( ) ,
2iV X νσ

ν
=

−
 

2ν > , ( 1,2,3),i =  and ( , ) 0,i jCov X X = ( 1, 2,3;  1, 2,3;  ),i j i j= = ≠  it follows from Corollary 

3.4 that 
2

2 2( ) ,   2
2

E S µ
νσ σ ν
ν

= + >
−

 where 2S is the sample variance and 
2 2 2 2

1 2 3 1 2 32 ( ) ( ) ( ) ,  3 .µσ µ µ µ µ µ µ µ µ µ µ= − + − + − = + +  
 
 
Corollary 3.5 Let iX ’s ( 1, 2,.., )i n= be random variables with ( ) ,   iE X µ= 2( )  ,i iV X σ=  

ij ,  ij i jσ ρ σ σ= ( 1, 2,... ; 1,2,..., ; )i n j n i j= = ≠  whenever they exist. Then  2 2
..( )E S σ σ= −  

where 2σ  is defined by (2.1) and ..σ  is defined in (2.2).  
 
Corollary 3.6  Let iX ’s ( 1, 2,.., )i n= be random variables with ( ) ,   iE X µ=  

2( ) ,i iV X σ= 2( , ) ,i j iCov X X ρσ=  ( 1, 2,... ; 1, 2,..., ; )i n j n i j= = ≠ whenever they exist. Then 
1

2 2 2

2
( ) ( 1) .

2

n

i
i

n
E S iσ ρ σ

−

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑   

 
Corollary 3.7 Let iX ’s ( 1, 2,.., )i n=  be random variables with ( ) ,   iE X µ= 2( )  , i iV X σ=  

( , ) 0 ,  ( 1,2,... ; 1, 2,..., ; )i jCov X X i n j n i j= = = ≠  whenever they exist. Then 2 2( )E S σ= .  
 
Corollary 3.8 Let iX ’s ( 1, 2,.., )i n= be independently distributed random variables with finite 
mean ( )iE X µ=  ( 1,2,..., )i n= and finite variance 2

i( )  iV X σ=  ( 1, 2, , )i n= . Then 
2 2( )E S σ=  . 

 
Corollary 3.9 Let iX ’s ( 1, 2,.., )i n= be random variables with ( ) ,  iE X µ= 2( ) , iV X σ=  

2 ( , ) ,  i j ijCov X X ρ σ= ( 1, 2,... ; 1,2,..., ; )i n j n i j= = ≠  whenever they exist. Then  
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2 2.. 1( ) 1
1

nE S
n
ρ σ−⎛ ⎞= −⎜ ⎟−⎝ ⎠

 where ..ρ  is defined by (3.1). 

 
Corollary 3.10 Let iX ’s ( 1, 2,.., )i n= be identically distributed random variables i.e.  

2( ) ,   ( )   ( 1,2,... )i iE X V X i nµ σ= = =  and 2( , )i jCov X X ρσ=  ( 1, 2,... ;i n=  

1, 2,..., ; )j n i j= ≠  whenever they exist. Then 2 2( ) (1 )E S ρ σ= −  (cf. Rohatgi and Saleh). 
 
Two examples are given below to illustrate the above corollary. 
 
Example 3.4  In Example 3.1, 2 13/162  σ =  and 1/ 26ρ = − . Then by Corollary 3.10, we 

have 2 2( ) (1 ) 1/12E S ρ σ= − =  where 
3

2 2

1
( ) / 2i

i
S X X

=

= −∑ . 

 
Example 3.5 Let ~ (0,1),  ( 1,2)iX N i = and the sample 1 2( , )X X (not necessarily 
independent) have the joint density function 
 

( )2 2 2 21 1
1 2 1 2 1 2 1 22 2

1( , ) exp ( ) 1 exp ( 2) ,
2

f x x x x x x x x
π

⎡ ⎤⎡ ⎤= − + + − + −⎣ ⎦ ⎣ ⎦ 1 2, ,x x−∞ < < ∞          (3.3) 

 
(cf. Hogg and Craig, 1978, 121). Writing out the joint density function (3.3) into two parts, we 
can easily prove that 

1 2 1 2 1 2( ) ( ) ( )  ( ) ( )
2
eE X X E X E X I x I x
π

= +  where 
22( ) / 2xI x x e dx π

∞ −

−∞
= =∫ .  But 

( ) 0 ( 1, 2)iE X i= = , ( ) 1 ( 1, 2)iV X i= = , hence 1 2 1 2 1 2( , ) ( ) ( ) ( )Cov X X E X X E X E X= −  
which simplifies to / 8e is also the correlation coefficient ρ  between 1X  and 2X . Hence by 
virtue of Corollary 3.10, we have 2( ) (1 / 8)E S e= − .  
 
Part (b) of Theorem 2.1 is specialized below for uncorrelated but identically distributed 
random variables.  
 
Corollary 3.11 Let iX ’s ( 1, 2,.., )i n= be uncorrelated but identically distributed random 
variables i.e.  ( ) ,iE X µ=  2( ) ,iV X σ= ( 1, 2,..., )i n= and ( , ) 0,i jCov X X =  ( 1, 2,..., ;i n=  

1, 2,..., ; )j n i j= ≠ whenever they exist. Then 2 2( )E S σ= . 
 
Two examples are given below to illustrate Corollary 3.11. 
 
Example 3.6  Let ~ (0,1),  ( 1,2,3)iX N i = and the sample 1 2 3( , , )X X X be governed by  the 
joint density function 
 

3/2
2 2 2 2 2 2

1 2 3 1 2 3 1 2 3 1 2 3
1 1 1( , , ) exp ( ) 1  exp ( ) ,

2 2 2
f x x x x x x x x x x x x

π
⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎛ ⎞= − + + + − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎣ ⎦

         (3.4) 

 
 ( 1,2,3)ix i−∞ < < ∞ = (cf. Hogg and Craig, 1978, 121). Then it can be proved that the 

sample observations are pair-wise statistically independent with each pair having a standard 
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bivariate normal distribution. We thus have ( ) 0iE X = , ( ) 1iV X =  and ( , ) 0i jCov X X =  

( 1,2,3; 1,2,3; )i j i j= = ≠ . By virtue of Corollary 3.11, we have 2( ) 1E S =  where 
3

2 2

1
( ) / 2.i

i
S X X

=

= −∑  

 
Example 3.7  Let ( 1,2,3)iX i =  have a univariate t-distribution with density function  
 

( 1)/2
2(( 1) / 2) 1( )  1 , 2

( / 2)i if x x
νν ν

ννπ ν

− +Γ + ⎛ ⎞= + >⎜ ⎟Γ ⎝ ⎠
, ( 1,2,3)i =   

 
and the sample 1 2 3( , , )X X X be governed by  the joint density function of a trivariate t-
distribution given by 
 

( 3)/2
2 2 2

1 2 3 1 2 33/2

(( 3) / 2) 1( , , )  1 ( ) ,
( ) ( / 2)

f x x x x x x
νν

νπ ν ν

− +Γ + ⎛ ⎞= + + +⎜ ⎟Γ ⎝ ⎠
        (3.5) 

 
 ( 1,2,3)ix i−∞ < < ∞ =  (Anderson, 2003, 55).   

 
Obviously 1 2,X X and 3X  are independent if and only if ν →∞ .  It can be proved that 

2( | ) ~ (0, ),iX Nυ υϒ =  ( 1, 2,3),i =   where 2 2/ ~ νν χϒ  It can be proved that ( 1,2,3)iX i = ’s  
are pair-wise uncorrelated with each pair having a standard bivariate -distributiont  with 
probability density function 
 

( ) ( 2) / 22 211( , )  1 ( ) ,
2i j i jf x x x x

ν

νπ
− +

= + +       (3.6) 

 
,  ( , 1,2,3; )i jx x i j i j−∞ < < ∞ = ≠ . Since ( ) 0iE X = ,  ( ) /( 2),  2iV X ν ν ν= − > , 

( 1, 2,3)i = , ( , ) 0i jCov X X =  ( 1,2,3; 1,2,3; )i j i j= = ≠ .  Then by virtue of Corollary 3.11, 

we have 2( ) /( 2),  2E S ν ν ν= − >  where 
3

2 2

1

( ) / 2i
i

S X X
=

= −∑  is the sample variance. A 

realistic example based on stock returns is considered in Sutradhar and Ali (1986).   
      

Corollary 3.12 Let ),..,2,1( njX j = ’s be independently and identically distributed random 

variables i.e.  2( ) ,   ( )   ( 1,2,... )i iE X V X i nµ σ= = =  whenever they exist. Then by Theorem 

2.1(b) 2 2( )E S σ=  which can also be written as 2 2 2
1 2

1( ) ( )
2

E S E X X σ= − =   by Theorem 

2.1(a).   
 
Example 3.8 Let ( 1, 2,.., )jX j n= ’s be independently and identically distributed Bernoulli 

random variables (1, )B p . Then by Corollary 3.12, we have 2( ) (1 )E S p p= − .   
 



 10

 Example 3.9 Let ( 1, 2,.., )jX j n= ’s be independently and identically distributed as 
2( , )N µ σ . Then  by Corollary 3.12, we have  2 2( )E S σ=  which is well known (Lindgren, 

1993). 
 
Similarly, the expected sample variance is the population variance in (i) exponential 
population with mean β=)(XE , and also in (ii) gamma population ( , )G α β  with mean 

αβ=)(XE  and variance 2)( αβ=XV  . 

 
4. An Application in Textile Engineering 
 
A textile company weaves fabric on a large number of looms. They would like the looms to 
be homogenous so that they obtain fabric of uniform strength. The process engineer suspects 
that, in addition to the usual variation in strength for samples of fabric from the same loom, 
there may be significant variations in mean strengths between looms. To investigate this, the 
engineer selects four looms at random and makes four strength determinations on the fabric 
manufactured on each loom. This experiment is done in random order, and the data obtained 
are shown below.  
 

Looms Observations Total 
1 98 97 99 96 390 
2 91 90 93 92 366 
3 96 95 97 95 383 
4 95 96 99 98 388 

 
Montgomery (2001, 514). 
 
Consider a random effects linear model given by  
 

,ij i ijy µ τ ε= + +  1, 2, , ;   1, 2, , ii a j n= =  
 
where µ is some constant, iτ  has mean 0 and variance 2 ,τσ the errors ijε have mean 0 and 

variance 2.σ  Also assume that iτ and ijε are uncorrelated.  Then . 1

1 ,in
i ijj

i

Y Y
n =

= ∑  has mean 

.( ) ,iE Y µ=  and variance  
 

2 2
.

1( ) .i
i

V Y
nτσ σ= +                     (4.1) 

                     

If we write 
.

22
. ..1

1 ( ) ,
1i

a
iY i

S Y Y
a =

= −
− ∑  then by Corollary 3.8, 

.

2
.1

1( ) ( ),
i

a
iY i

E S V Y
a =

= ∑  which, by 

virtue of (4.1),  can be written as  
 

.

2 2 2
1

1 1( ) ,
i

a
Y i

i

E S
a nτσ σ

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑   
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so that  
 

.

2
2 2

1

1( ) .
i

a
Y i

i

E S
a nα
σσ

=
= + ∑          (4.2) 

 
The Sum of Squares due to Treatment (looms here) is 2

. ..1 1
( )ia n

ii j
SST y y

= =
= −∑ ∑  which can 

be written as 
.

2
1

( 1) i

i

n
Yj

SST a S
=

= − ∑  so that by (4.2), we have 

 
2

2
1 1

1( ) ( 1) in a

j i
i

E SST a
a nτ
σσ

= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑             (4.3) 

 
which, in the balanced case, simplifies to 2 2( ) ( 1)( ).E SST a n τσ σ= − +  Then the expected 
mean Sum of Squares due to Treatment is given by  
 

2 2( ) .E MST n τσ σ= +               (4.4) 
 

The Sum of Squares due to Errors is given by 2
.1 1

( )ia n
ij ii j

SSE y y
= =

= −∑ ∑  which can be 

written as  2
.1 1

( ) .ia n
ij ii j

SSE ε ε
= =

= −∑ ∑  Since ( ) 0ijE ε =  and 2( ) ,ijV ε σ=  by Corollary 3.12, 

we have 2 2
.1

1 ( ) ,
1

in
ij ij

i

E
n

ε ε σ
=

⎛ ⎞
− =⎜ ⎟−⎝ ⎠

∑  so that  2
1

( ) ( 1)a
ii

E SSE n σ
=

= −∑ which in the 

balanced case, simplifies to 2( ) ( 1)E SSE a n σ= −  so that the mean Sum of Squares due to 
Error is given by  
 

2( ) .E MSE σ=         (4.5) 
 
 
By virtue of (4.4) and (4.5), a test of 2

0 : 0H τσ =  against 2
1 : 0H τσ >  can be based on  

MSTF
MSE

=  where the variance ratio has usual F distribution with ( 1)a −  and ( 1)a n−  degrees 

of freedom if the errors are normally distributed. 
 
It can be easily checked that the Centered Sum of Squares ( ( 1) )CSS a n MST= − × and Sum of 
Squares due to treatments ( ( 1) )SST a MST= − for our experiment above are given by  
 

( )2 2 2 2(98) (97) (98) (1527) / 4(4) 111.94,CSS = + + + − ≈  
 

( ) ( )2 2 2 21 (390) (366) (388) (1527) / 4(4) 89.19,
4

SST = + + + − =  

 

respectively, and 89.19 / 3 15.68
22.75 /12

MSTF
MSE

= = =  
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which is much larger than 0.05 3.52.f =  The -valuep  is smaller than 0.001. This suggests that 
there is a significant variation in the strength of the fabrics between the looms.  
 
5. Conclusion 
 
The general method for the expectation of sample variance that has been developed here is 
important if observations have non-identical distributions be it in means, variances or 
covariances. While part (a) of Theorem 2.1 states that expected variance depends on that of 
the squared difference of pairs of observations, part (b) of the theorem states that expected 
variance depends on the average of variances of observations, variation among true means and 
the average of covariances of pairs of observations. The theorem has potential to be useful in 
time series analysis, design of experiments and psychometrics where the observations are not 
necessarily independently and identically distributed.  Because no distributional form is 
assumed to obtain the main results, the theorem can also be applied even without requiring 
strict adherence to the normality assumption. The results (4.4) and (4.5) are usually derived in 
Design and Analysis or other statistics courses by distribution theory based on strong 
distributional assumptions, mostly normality.  It is worth mentioning that the assumption of 
normality of the errors can be relaxed to broader class of distributions, say, elliptical 
distributions. See for example Joarder (2013). 
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