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Abstract
In 2010, Sanh et al. introduced a class of pseudo-M-gp-injective modules,
following this, a right R-module N is called pseudo-M-gp-injective if for any
homomorphism 0 # a € End(M), there exists n € N such that o™ # 0 and
every monomorphism from o™ (M) to N can be extended to a homomorphism
from M to N. In this paper, we give more properties of pseudo-gp-injective
modules.
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1 Introduction

Throughout the paper, R is an associative ring with identity 1 # 0 and all modules
are unitary R-modules. We write Mg (resp., rM) to indicate that M is a right
(vesp., left) R-module. Let J (resp., Z,, S,) be the Jacobson radical (resp. the
right singular ideal, the right socle) of R and E(Mg) the injective hull of Mpg.
If X is a subset of R, the right (resp. left) annihilator of X in R is denoted by
rr(X) (resp., Ir(X)) or simply r(X) (resp. I(X)). If N is a submodule of M
(resp., proper submodule) we write N < M (resp. N < M). Moreover, we write
N<*M, N M, N <% M and N <™ M to indicate that N is an essential



submodule, a small submodule, a direct summand and a maximal submodule of
M, respectively. A module M is called uniform if M # 0 and every non-zero
submodule of M is essential in M. A module M is finite dimensional (or has
finite rank) if E(M) is a finite direct sum of indecomposable submodules. A right
R-module N is called M-generated if there exists an epimorphism M) — N for
some index set I. If the set I is finite, then N is called finitely M-generated. In
particular, N is called M-cyclic if it is isomorphic to M/L for some submodule L
of M. Hence, any M-cyclic submodule X of M can be considered as the image of
an endomorphism of M.

Following Nicholson, Yousif (see [15]), a ring R is called right P-injective if
every R-homomorphism from a principal right ideal of R to R is a left multipli-
cation. They studied some properties of these rings and their applications. In
[18], Sanh et al. transferred this notion to modules. A right R-module N is called
M -principally injective (briefly, M-p-injective) if every homomorphism from an
M-cyclic submodule of M to N can be extended to one from M to N. A right
R-module M is called quasi-principally injective (briefly, quasi p-injective) if M is
M-principally injective. Quasi-p-injective modules were defined first by Wisbauer
in [24] under the terminology of semi-injective modules, but there are no details.
Following [13], a module M is called principally quasi-injective if every homomor-
phism from a cyclic submodule of M to M can be extended to an endomorphism
of M. Since an M-cyclic submodule of M needs not to be cyclic, the notion of
quasi-p-injective modules is different from that was defined in [13].

As a generalization of injective modules, the class of pseudo injective modules
have been studied by Singh and Jain in 1967 [11], Teply (1975)[22], Jain and Singh
(1975)[11], Wakamatsu (1979)[23]. Recently, Hai Quang Dinh ([6]) introduced
the notion of pseudo M-injective modules (the original terminology is M-pseudo-
injective). A right R-module N is called pseudo M -injective if for every submodule
A of M, any monomorphism « : A — N can be extended to a homomorphism
M — N. A right R-module N is called pseudo-injective if N is pseudo-N-injective.
In 2009, Sanh et al., introduced the notion of pseudo-M-p-injective modules and
studied the endomorphism rings of quasi-pseudo-p-injective modules. A right R-
module N is called pseudo-M -p-injective if every monomorphism from an M-cyclic
submodule of M to N can be extended to a homomorphism from M to N, or
equivalently, for any homomorphism « € End(M), every monomorphism from
a(M) to N can be extended to a homomorphism from M to N (see [16]). A
module M is called quasi-pseudo-p-injective if M is pseudo-M-p-injective. A ring
R is called right pseudo P-injective if Rp is quasi-pseudo-p-injective. Following
[8], a right R-module M is said to be generalized principally injective (briefy gp-
injective), if for any 0 € x € R, there exists an n € N such that ™ # 0 and
any R-homomorphism from z"R into M can be extended to one from Rp to
M. A ring R is called right GP-injective if R is GP-injective. The concept of



GP-injective modules was introduced in [12] to study the class of von Neumann
regular rings, V-rings, self-injective rings and their generalizations. In [2], Chen
et al. studied some properties of GP-injective rings. In particular, they gave some
characterizations of GP-injective ring with special chain conditions. In 2009, Sanh
et al. introduced the notion of pseudo-M-gp-injective modules. A right R-module
N is called for pseudo-M -gp-injective if for each homomorphism 0 # « € End(M),
there exists n € N such that o™ # 0 and every monomorphism from o (M)
to N can be extended to a homomorphism from M to N ([17]). A module M
is called quasi-pseudo-gp-injective if M is pseudo-M-gp-injective. A ring R is
called right pseudo GP-injective if Rg is quasi-pseudo-gp-injective. In this paper,
we continue studying more properties of pseudo-p-injective modules, pseudo-gp-
injective modules and the endomorphism rings of pseudo-p-injective modules.

2  On pseudo-M-gp-injective
Firstly, we give a new characterization of pseudo-M-gp-injective modules.

Theorem 2.1 Let M, N be right R-modules. Then following conditions are equiv-
alent:

(1) N is pseudo-M -gp-injective.
(2) For each 0 # s € End(M), there exists n € N such that s™ # 0 and

{f € Hom(M, N)| Kerf = Kers"} C Hom(M, N)s".

(3) For each 0 # s € End(M), there exists n € N such that s™ # 0 and

{f € Hom(M, N)| Kerf = Kers"} = {f € Hom(M, N)| Ker fNIms" = 0}s".

Proof. (1) = (2). Suppose that 0 # s € End(M). Since N is pseudo-M-
gp-injective, there exists n € N such that s™ # 0 and every monomorphism
from s"(M) to N can be extended to a homomorphism from M to N. Let
f € Hom(M, N) such that Ker f = Kers™. We consider homomorphism

p:8" (M) — N via ¢(s"(m)) = f(m), Ym € M.

It is easy to see that ¢ is a monomorphism. By our assumption, there exists a
homomorphism A : M — N such that he = ¢, where ¢ is the inclusion map from
s"(M) — M, which implies that f = hs™ € Hom(M, N)s™.

(2) = (3). It is clear that

{f € Hom(M, N)| Kerf NIms" = 0}s™ C {f € Hom(M, N)| Kerf = Kers"}.



Let g € Hom(M, N) such that Kerg = Kers™. Then by (2), there exists a homo-
morphism i : M — N such that g = hs™. It follows that Kerh N Ims™ = 0. Hence,
g € {f € Hom(M, N)| Kerf NIms = 0}s™.

(3) = (1). For each 0 # s € End(M), by (3), there exists n € N such that
s™ # 0 and

{f € Hom(M, N)| Kerf = Kers"} = {f € Hom(M, N)| Kerf N Ims™ = 0}s".

Assume that ¢ : s"(M) — N is a monomorphism. Then Ker(¢s™) = Kers™.
Hence there is h € Hom(M, N) such that ¢s™ = hs™. It gives ht = ¢, where ¢ is
the inclusion map, proving that N is pseudo-M-gp-injective. O

From the above theorem, we get some characterizations of quasi-pseudo-gp-
injective modules.

Corollary 2.2 Let M be right R-module and S = End(M). The following condi-
tions are equivalent:

(1) M is quasi-pseudo-gp-injective;
(2) For each 0 # s € S, there exists n € N such that s™ # 0 and

{f € S| Kerf =Kers"} C Ss™;

(3) For each 0 # s € S, there exists n € N such that s™ # 0 and

{f €S| Kerf =Kers"} = {f € S| Kerf NIms" = 0}s".

Corollary 2.3 Let M, N be right R-modules. The following conditions are equiv-
alent:

(1) N is pseudo-M -p-injective;
(2) For each s € End(M),

{f € Hom(M, N)| Kerf = Kers} C Hom(M, N)s;

(8) For each s € End(M),

{f € Hom(M, N)| Kerf = Kers} = {f € Hom(M, N)| Kerf N Ims = 0}s.

Proposition 2.4 Let N be pseudo-M -p-injective. Then for any elements s, €
End(M), we have:
{B € Hom(M, N)|Kerf NIms = Kera N Ims} =

{7 € Hom(M, N)|Kery NIm(as) = 0}a + {0 € Hom(M, N)|ds = 0}.



Proof. Let
A= {f € Hom(M, N)|Ker NIms = Kera N Ims}
B = {y € Hom(M, N)|Kery N Im(as) = 0}
C = {6 € Hom(M, N)|és = 0}
It is easy to see that Ba 4+ C C A. Conversely, let 8 € Hom(M, N) such that
Kerf NIms = Kera NIms (8 € A). It follows that Ker(as) = Ker(fs). By

Corollary 2.3, there exists v € B such that 8s = yas or (8 — ya)s = 0. It means
0 — ya € C, which implies that g € Ba + C. |

Proposition 2.5 If M = My, & Ms is quasi-pseudo-p-injective, then My is My-p-
imjective.

Proof. Let M = M; & M, be quasi-pseudo-p-injective and s € End(Ms3). Let
f:s(Mz) — M be a homomorphism. Consider homomorphism g : s(Mz) — M
defined by g(a) = f(a) + a for all @ € s(Mz). Then ¢ is a monomorphism. By
[16, Proposition 1.3], M is pseudo-Ms-p-injective, whence g extends to a homo-
morphism g : My — M. Let m : M — M; be the canonical projection. Then
wg : My — M extends f. Thus M; is Ma-p-injective, as required. O

Corollary 2.6 For any integer n > 2, if M™ is quasi-pseudo-p-injective, then M
18 quasi-p-injective.

Proposition 2.7 Let M and N be modules and X = M & N. The following
conditions are equivalent:

(1) N is pseudo-M -p-injective.

(2) For each M -cyclic submodule K of X with KNM = KNN =0, there exists
C <X suchthat K <C and No(C = X.

Proof.(1) = (2). Let K be a submodule of X which is M-cyclic with K " M =
KNN=0,andmyy, : M®&N — M and 7y : M & N — N be the canonical
projections. We can check that N @ K = N @ mp(K) and hence 7y (K) ~ K,
proving that 7as(K) is a M-cyclic submodule of M. Let ¢ : mp(K) — wn(K) be
a homomorphism defined as follows: for k = m +n € K (with m € M,n € N),
p(m) = n. It is easy to see that ¢ is a monomorphism. Since N is pseudo
M-p-injective, there is a homomorphism ¢ : M — N extending ¢. Let C' =
{m+@(m) meM}. Then X =N@C and K <C.

(2) = (1). Let s € End(M) and ¢ : s(M) — N be a monomorphism. Put
K = {s(m) —p(s(m)) me M}. Then KNM=0and NO K =Ny (K)=
N @ s(M). Tt is easy to see that K is M-cyclic. By assumption, there exists a
submodule C of X containing K with N@& C = X. Let 71 : N@& C — N be the
natural projection. Then the restriction 7|p; extends ¢, proving (1). O



3 On quasi-pseudo-gp-injective rings and modules

From Corollary 2.3, we have some characterizations of quasi-pseudo-p-injective
modules.

Theorem 3.1 The following conditions are equivalent for module M with S =
End(M):

(1) M is quasi-pseudo-p-injective;
(2) If Kerf = Kerg with f,g € S =End(M), then Sf = Sg;

(3) If f € S=End(M) and o, 3 : f(M) — M 1is monomorphisms, then o = sf3
for some s € S.

Proof. (1) = (2). By Corollary 2.3.

(2) = (3). Assume that 0 # f € S satisfies (2). Let o, 58 : f(M) — M be
monomorphisms. Then Ker(af) = Ker(Gf). By our assumption, there exists
s € S such that af = sgf, which implies that a = s/3.

(3) = (1). Let s € S and ¢ : s(M) — M be a monomorphism. Let ¢ : s(M) —
M be the inclusion. By (3), there exists ¢ € S such that ¢ = @ showing that @
extends . Thus M is quasi-pseudo p-injective. (|

Corollary 3.2 The following conditions are equivalent for ring R:
(1) R is right pseudo P-injective;
(2) If r(x) = r(y) with x,y € R, then Rx = Ry.

We have the following relations:
quasi-p-injective = quasi-pseudo-p-injective = quasi-pseudo-gp-injective.

Example 3.3 i) Let F be an algebraically closed field and z, y be indeterminates.
Let R = F(y)[z] such that zf — fo =df/dy, f € F(y) (see [20, Example]). Then
the R-module M = R/(z(x + y)(z + y — 1/y))R is quasi-pseudo-p-injective but
not quasi-p-injective by [20, Example].

ii) Let K = F(y1,y2,...) and L = F(y2,ys,...) with F a field, and p: K — L
be an isomorphism via p(y;) = yi+1 and p(c) = ¢ for all ¢ € F (see [4, Exmaple 1].
Let K[z1, z2; p] be the ring of twisted left polynomials over K where z;k = p(k)z;
for all k € K and for i = 1,2. Set R = K|[z1,z2; p]/(2%,23). Then Rpg is quasi-
pseudo-gp-injective which is not quasi-pseudo-p-injective.

Next we study some properties of quasi-pseudo-gp-injective, self-generator mod-
ules and their endomorphism rings.



Theorem 3.4 Let M be a right R-module with S = End(M). Then
(1) If S is a right pseudo GP-injective ring, then M is quasi-pseudo-gp-injective.

(2) If M is quasi-pseudo-gp-injective and self-generator, then S is a right pseudo
GP-injective Ting.

Proof. (1). Let f € S. Since S is right pseudo GP-injective, there exists n € N
such that ™ # 0 and if rg(f™) = rs(g) for some g € S, then g € Sf™ by Corollary
2.2. Assume that Kerf™ = Kerg with g € S. Then rg(f™) = rs(g) and hence
g € Sf". Thus M is quasi-pseudo-gp-injective by Corollary 2.2.

(2). Let 0 # f € S. Since M is quasi-pseudo-gp-injective, there exists n € N
such that f™ # 0 and if Ker(f") = Ker(g) with g € S, then g € Sf™. Let g € S
with rg(f™) = rg(g). Since M is a self-generator, we get Ker f* = Kerg. By our
assumption, g € Sf™ and so S is right pseudo GP-injective. O

Corollary 3.5 Let M be a right R-module with S = End(M). Then
(1) If S is a right pseudo P-injective ring, then M is quasi-pseudo-p-injective.

(2) If M is a quasi-pseudo-p-injective module which is a self-generator, then S
is a right pseudo P-injective ring.

For a right R-module M, S = End(M) we denote:
W(S) = {s € S| Ker(s) is essential in M }.

Lemma 3.6 Let Mg be a quasi-pseudo-gp-injective module which is a self-generator,
S =End(M). If a € W(S), then Ker(a) < Ker(a — ata) for some t € S.

Proof. If a ¢ W(S), then Ker(a) is not an essential submodule of M. Hence
there exists 0 # m € M such that mR N Ker(a) = 0. Since M is a self-generator,
there exists A € S such that 0 # A(M) < mR. Hence Ker(a) N A(M) = 0. It
follows that aX # 0. Since M is quasi-pseudo-gp-injective, there exists n € N such
that (aA)™ # 0 and if Ker(aA\)™ = Kerg with g € S = End(M), then g € S(a\)™.
From Ker(a) N A(M) = 0 we also have Ker((a\)") = Ker(A(a\)""!). Hence
Aa\)"! € S(aX)™. Therefore A(aX)"~ = s(aX)™ for some s € S, which implies
that Im(\(a\)"™') < Ker(a — asa). It follows that Ker(a) < Ker(a — asa), since
Im(A(a\)" 1) £ Ker(a) and (aX)™ # 0. O

Lemma 3.7 Assume that M is quasi-pseudo-gp-injective module which is a self-
generator. Then J(S) = W (S).



Proof. Let a € J(S). If a ¢ W(S), then by the proof of Lemma 3.6, there exist
a positive integer n and A, t € S such that (aA\)™ # 0 and (1 — at)(aX)™ = 0.
Note that 1 — at is left invertible, so (a\)™ = 0, a contradiction. Conversely, let
a € W(S). Then, for each t € S, ta € W(S) and hence 1 — ta # 0. Since M
is a quasi-pseudo-p-injective module, there exists n € N such that (1 — ta)™ # 0
and if Ker(1 — ta)™ = Kerg for some g € S = End(M), then g € S(1 — ta)™. Put
u=(1—-ta)", 1 —u=w for some v € W(S). Since Ker(v) NKer(l —v) =0, we
have Ker(1 —v) = 0. Then Ker(u) = Ker(1g). It follows that Su = S and hence
(1 —ta)™ is left invertible, proving our lemma. O

Corollary 3.8 If R is right pseudo GP-injective, then J(R) = Z(RRg).

Recall that a module M is said to satisfy the generalized C2-condition (or GC2)
(see [25]) if for any N ~ M with N < M, N is a direct summand of M.

Theorem 3.9 If M is quasi-pseudo-gp-injective, then M satisfies GC2.

Proof. Let S = End(M). Assume that Kers = 0 with s € S. We need to prove
that S = Ss. Since M is quasi-pseudo-gp-injective, there exists n € N such that
s™ #£ 0 and Kers™ = Kerg with g € S, which would imply that g € Ss™. Note that
Kers = 0 = Kerlg. It follows that 1g € Ss™ < Ss, whence S = Ss. Thus M is
GC2 by [25, Theorem 3]. O

Corollary 3.10 If R is right pseudo GP-injective, then R is right GC2.

Proposition 3.11 Let M be a quasi-pseudo-p-injective module which is a self-
generator and S = End(M). If every complement submodule of M is M-cycile,
then S/J(S) is von Neumann regular.

Proof. We have J(S) = W(S) by Lemma 3.7. For all A € S, let L be a comple-
ment of KerA. We consider the map ¢ : A(L) — M defined by ¢(A(z)) = z for all
x € L. Then ¢ is a monomorphism and A(L) ~ L which implies A(L) is a M-cyclic
submodule of M. Since M is quasi-pseudo-p-injective, there exists 6 € S, which is
an extension of ¢. Then KerA+L < Ker(AA— ), and we see that Ker A\@ L <¢ M.
Consequently A0A — A € W(S) = J(9). O

Theorem 3.12 Let M be a quasi-pseudo-gp-injective module which is a self-generator
and S = End(M). Then the following conditions are equivalent:

(1) S is right perfect;
(2) For any infinite sequence $1, 82, -+ € S, the chain
Ker(sy) < Ker(sgs1) < ---

15 stationary.



Proof.(1) = (2). Let s; € S, i = 1,2.... Since S is right perfect, S satisfies DCC
on finitely generated left ideals. So the chain Ss; > Ss2s1 > ... terminates. Thus
there exists n > 0 such that Ss,s,_1...81 = SsgSk_1...51 for all k > n. It follows
that Ker(spsp—1...81) = Ker(sgsg—1...81) for all k > n.

(2) = (1). We first prove that S/W(S) is a von Neumann regular ring. Let a; ¢
W(S). Then by Lemma 3.6, there is ¢; € S such that Ker(aq) < Ker(a; —aiciaq).
Put as = a1 — ajciar. If ag € W(S), then we have a; = a1é1aq, ie., a; is
a regular element of S/W(S). If ap ¢ W(S), there exists ag € S such that
Ker(az2) < Ker(as) with ag = as — asceas for some co € S by the preceding proof.
Repeating the above-mentioned process, we get a strictly ascending chain

Ker(ay) < Ker(az) < ...,
where a;11 = a; — a;c;a; for some ¢; € S, 1 =1,2.... Let
bl = aq, b2 =1- aicCiy ..., bi+1 =1- A;Chy vnny

then
ap = bl, ag = b2b1, ey Qi1 = bfL'JrlbfL'...bel,

and we have the following strictly ascending chain
Ker(bl) < Ker(b2b1> < ...,

which contradicts the hypothesis. Hence there exists a positive integer m such that
amt1 € W(9), i.e., am—amcmam € W(S). This shows that a,, is a regular element
of S/W(S), and hence Gy,—1,Gm—2,...,a1 are regular elements of S/W(S), i.e.,
S/W(S) is von Neumann regular. We have J(S) = W(S) by Lemma 3.7, proving
that S/J(S) is von Neumann regular. Thus S is right perfect by [5, Lemma 1.9].
O

Lemma 3.13 Let M be a right R-module and S = End(M). Then

(1) Is(A(M)) = Is(A) for all AC S with AM) = 3 s(M).

seA

Proof.(1). Let a € ls(A), a- A = 0. Therefore a-s =0 or a(s(M)) = 0 for all
s € A. This implies that a € lg(A(M)). Hence lg(A) < ls(A(M)). Conversely,
for every a € lg(A(M)), we have a.s(M) = 0 for all s € A. This implies that
a € ls(A)

(2). It is clear that ls(ra(ls(A))) > ls(A). Conversely, for all s € lg(A),
s.A(M) = 0. This implies that A(M) < rp(ls(A)). Thus
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Is(A(M)) > ls(rm(ls(A))).

By (1) we get the result. O
Let  # A C S = End(M). Put

KerA = (] Kerf = {m € M|f(m) =0 Vf € A}.
feA

If X < M and X = KerA for some ) # A C S, X is called an M-annihilator.

Proposition 3.14 Let Mpr be a quasi-pseudo-gp-injective, self-generator module
and S = End(MRg). If Mg satisfies ACC on M -annihilators, then S is semipri-
mary.

Proof. Now we will claim that S satisfies ACC on right annihilators or DCC on
left annihilators. Indeed, we consider the descending chain

ls(Al) Z lS(AQ) Z ... where Al g S,

then
ru(ls(Ar)) <ru(ls(Az)) < ...

By our assumption, there exists n € N such that rps(ls(Ay)) = rar(ls(Ax)) for all
k > n, and so lsTM(lg(An)) = lsTM(lg(Ak)). By Lemma 3.13, ls(An) = ls(Ak)
for all & > n. This shows that S satisfies DCC on left annihilators or ACC on
right annihilators. Therefore J(.S) is nilpotent by [14, Lemma 3.29] and Lemma
3.7. It follows that S is semiprimary by Theorem 3.12. O

Corollary 3.15 If R is right pseudo GP-injective and satisfies ACC on right
annihilators, then R is semiprimary.

For quasi-pseudo-p-injective modules, we have

Theorem 3.16 Let My be a quasi-pseudo-p-injective module and S = End(MRg).
If M satisfies ACC on M -annihilators, then S is semiprimary.

Proof. Consider the chain Sf; > Sfy > --- of cyclic left ideals of S. Then
we have Kerf; < Kerfs < ---. By hypothesis, there exists n € N such that
Kerf, = Kerf,+r, Yk € N. It follows that Sf, = Sf,+r Yk € N. Thus R is right
perfect.

Consider the ascending chain 73,(J(S)) < rar(J(S)?) < ---. By assumption,
there is n € N such that 77 (J(S)") = 7 (J(S)"+F) for all k € N. Let B = J(S)".
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Then we get rar(B) = ra(B?). Assume J(S) is not nilpotent. Then B? # 0 and
the non-empty set
{Kerg| g € B and Bg # 0}

has a maximal element Kergg, go € B. The relation BBgy = 0 would imply that
Imgo < rp(B?) = rp(B) and hence Bgog = 0, contradicting to the choice of gq.
Therefore we can find an h € B with Bhgg # 0. However, since Kergy < Ker(hgy),
the maximality of Kergy implies that Kergy = Kerhgg. Since M is quasi-pseudo-
p-injective, this implies that Sgo = Shgo, i.e. go = shgo for some s € S or
go(1 — sh) = 0. Since sh € B < J(S5), this gives go = 0, a contradiction. Thus
J(S) must be nilpotent. O

Following [14], a ring R is called directly finite if ab = 1 in R implies that
ba =1.

Proposition 3.17 A right pseudo P-injective ring R is directly finite if and only
if all monomorphisms Rr — Rpg are isomorphisms.

Proof. Assume that ¢ : Rp — Rp is a monomorphism. Let a = ¢(1). Then
r(a) =0 =r(1) and so Ra = R by Corollary 2.2. Hence ba = 1 for some b € R, so
ab =1 by hypothesis, and so ¢ is onto. Conversely, let ab =1 in R. Therefore the
homomorphism « : R — R, «(r) = br, Vr € R is monomorphism. By hypothesis
« is an epimorphism. There exists ¢ € R such that 1 = a(c) = be. It follows that
a = cand ba = 1. O
The series of higher left socles {S.} of the ring R are defined inductively as
follows: S! = Soc(rR), and S.,, /S, = Soc(R/S.,) for each ordinal a > 1.

Motivated by [3, Lemma 9 (ii)], we have the following proposition.

Proposition 3.18 If R is a right pseudo GP-injective ring and satisfies ACC on
essential left ideals, then

(1) r(J) <° Rg,
(2) J is nilpotent,

(3) J =r(J).

Proof. (1) Since R has ACC on essential left ideals, R/S; is a left Noetherian ring.
Then, there exists k > 0 such that S, = S}, = --- and R/S}, is aright Noetherian
ring. Now we will claime that S! <¢ Rp. In fact, assume that z RNS. = 0 for some
0+#z € R. Let R= R/S. and l3(a) be maximal in the set {Iz(y)| 0 # y € *R}.
Since S}, = S%.,, we get Soc(zR) = 0, and so Ra is not simple as left R-module.
Thus there exists ¢t € R such that 0 # Rta < Ra.



12

If ata = 0, then ata € aRN S, = 0, and so ata = 0. From this fact and pseudo
GP-injectivity of R, we see that if r(ta) = r(b), b € R then Rta = Rb by Corollary
2.2. If r(a) = r(ta), then Ra = Rta, a contradiction. Thus r(a) < r(ta). Then
there exixts b € R such that ab # 0 and tab = 0. That means 0 # ab € xR and
Ig(a) < lz(ab). This contradicts to the maximality of Iz (dp).

If ata # 0, then 0 # Rata < Ra. Since R is right pseudo GP-injective,
there exists m € N such that (ata)™ # 0 and if r((ata)™) = r(b), b € R then
b € R(ata)™. It follows that r(a) < r((ata)™). Let ¢ € r((ata)™) \ r(a). Then
0 # ac € zR, (ata)™ 'at € lz(ac) \ lz(a), a contradiction.

Thus S, <¢ Rp and hence r(J) <¢ Rg (since St < r(J)).

(2). By [3, Lemma 9 (ii)].

(3). Since r(.J) <€ Rg, Ir(J) < Z, = J. O

A module My is called extending (or CS) if every submodule of M is essential
in a direct summand of M. A ring R is called right CS if Rg is CS (see [7]).
Following [10], a module M is called NCS if there are no nonzero complement
submodules which is small in M. A ring R is right NCS if Rr is NCS. Clearly
every CS module is NCS, but the converse is not true, as we can see that the
Z-module Zgy & Zg is NCS but not CS. On the other hand, let K be a division ring
and V be a left K-vector space of infinite dimension. Let S = Endg (V). Take

R = (g g), then R is right NCS but not right CS.

Proposition 3.19 If R is a left Noetherian, right pseudo P-injective and right
NCS ring, then R is left Artinian.

Proof. First, we prove that R = R/J is a regular ring. Assume that a ¢ J.
Since J = Ir(J) = Z,, there exists a nonzero complement right ideal I of R
such that r(a) N I = 0 by Lemma 3.18. We claim that there exists b € I such
that ab ¢ J. Suppose on the contrarily that al < .J. Then alr(J) = 0. Since
r(a)NI=0,Ir(J) <INr(a) =0. Thus I <ir(J)=J. It follows that I is small
in Rp, a contradiction. Hence we have b € I such that r(a) NbR =0 and ab & J.
It follows that r(b) = r(ab). Hence Rb = Rab and so b = cab for some ¢ € R. This
implies that b € rz(a — aca), where ¥ = r +.J € R/.J for any r € R. Since ab # 0,
we see that rz(a) < rg(a —aca). If a —aca € J, then a is a regular element of R.
If a —aca ¢ J, let ay = a — aca. Then r(ay) is not essential in Rp. By the same
way, we get ag = a1 —ajcia; for some ¢; € Rand rg(a1) < rp(az). If az € J, then
a1 is a regular element of R. It follows that a is a regular element of R. If ay & J,
we have az = as — ascaas for some ¢z € R and rg(az) < rz(as). Continuing this
process, we get ap € R, k= 1,2,.... Since R is left noetherian and Jac(R) = 0, R
is a semiprime and left Goldie ring. By [9, Lemma 5.8], R satisfies ACC on right
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annihilators. Hence there exists some positive integer m such that a,, € J, and
thus a is also a regular element of R. Since @ is an arbitrary nonzero element of R,
we see that R is a regular ring. Then R is semisimple because R is left noetherian.
Moreover, by Lemma 3.18, J is nilpotent and so R is semiprimary. Thus R is left
artinian. (|

4 On maximal ideals

In this section, we study the endomorphism ring of quasi-pseudo-gp-injective mod-
ules.

Let S = Endg(M) be the endomorphism ring of a right R-module M. Following
[19], an element u € S is called a right uniform element of S if u # 0 and u(M)
is a uniform submodule of M. An element u € R is called right uniform if uR is a
uniform right ideal (see [14]). In this section, we generalize some results of Sanh
and Shum for quasi-p-injective modules; Nicholson and Yousif for p-injective rings
to quasi-pseudo-gp-injective modules.

First, we need the following lemma:

Lemma 4.1 Let M be a quasi-pseudo-gp-injective module and S = End(M).
Then for any right uniform element u of S, the set

Ay = {s € S|Kers N Imu # 0}

is the unique mazimal left ideal of S containing ls(Imu).

Proof. Clearly, A, is a left ideal of S. It is easy to see that lg(Imu) < A, and
Ay # S (because 1 ¢ A,). We now claim that A, is maximal. In fact, for any
s € S\ Ay, we have Imu N Kers = 0, whence su # 0. There exists m € N
such that (su)™ # 0 and if Ker(su)™ = Ker(g), g € S then g € S(su)™. Since
Ker((su)™) = Keru, we get S(su)™ = Su. Then there exists t € S such that
(1 —t(su)™ Ls)u = 0. It follows from S = Ig(u) + Ss, that A, is maximal in S. It
remains to show that A, is unique. In fact, assume that there is another maximal
left ideal L of S containing lg(Imu) and L # A,,. Repeating above process we also
have S = L, a contradiction. O

Corollary 4.2 ([19, Lemma 1]) Let M be a quasi-p-injective module and S =
End(M). Then for any right uniform element u of S, the set

Ay = {s € S|Kers N Imu # 0}

is the unique mazimal left ideal of S containing ls(Imu).
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Corollary 4.3 Let R be right pseudo GP-injective. If w € R is a right uniform

element, define
M, = {x € R|r(z) NuR # 0}.

Then M, is the unique mazimal left ideal which contains l(u).
The following lemma is a generalization of Lemma 3 in [19] .

Lemma 4.4 Let M be a quasi-pseudo-p-injective module, S = End(Mg) and W =
@ yu; (M) a direct sum of uniform submodule u;(M) of M. If A < S is a mazimal
left ideal which is not of the form A, for some right uniform element u of S, then
there is ¢ € A such that Ker(1 — ) N W is essential in W.

Proof. Since A # A,,, we can take k € A\ A,,. Then Imu; N Kerk = 0,
whence ku; # 0. There exists m € N such that (kuy)™ # 0 and if Ker(kuy)™ =
Ker(g), g € S then g € S(kuy)™. It is easy to see that Ker(kui)™ = Ker(u)
and hence S(ku1)™ = Su;. Consequently we have u; = «aj(kui)™ for some
aj € S. Let 1 = ayg(kup)™ 1k € SA C A. Then (1 — ¢1)u; = 0. This shows that
Ker(l — 1) Nur(M) = ur (M) # 0. If Ker(1 — ¢1) Nu;(M) # 0 for all ¢ > 2,
then we are done and in this case @], (Ker(1 — ¢1) Nwu;(M)) <¢ W. Without
loss of generality, we now assume that Ker(1 — ¢1) Nuz(M) = 0. It follows that
(1 = @1)(u2(M)) ~ ug(M) is uniform. Since A # Ap_y )u,, We can take any
h € A\ A(1_y,)u,- By using the above argument, there exists az € S such that
(1 — p1)us = ash(l — ¢1)ug. It follows that

(1 — (O[Qh + Y1 — O[Qh(ﬂl))’u,Q =0.

Let o = ash + ¢1 — ashpr. Then (1 — o)u; = 0 for ¢ = 1,2. Continuing this
way, we eventually obtain a 1 € A such that Ker(l — ) Nwu;(M) # 0 for all
it =1,...,n. In other words, we have shown that Ker(1 —)NW is essential in W
as required. (I

The following theorem describes the properties of the endomorphism ring S =
End(Mg) of a quasi pseudo p-injective module Mg.

Theorem 4.5 Let M be a quasi-pseudo-gp-injective, self-generator module with
finite Goldie dimension and S = End(Mpg).

(1) If I C S is a mazimal left ideal, then I = A, for some right uniform element
u e S.

(2) S is semilocal.
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Proof. Since M is a self-generator which has finite Goldie dimension, there exist
elements u1, ug, ..., uy, of S such that W = uy (M) @uz(M)®- - -@u, (M) is essential
in M, where each u;(M) is uniform. Moreover, M is a quasi-p-injective module,
we have J(S) = W(S) = {s € S| Ker(s) is essential in M} by Lemma 3.7.

(1). Suppose on the contrary that I is not of the form A, for some right
uniform element of u € S. Then by Lemma 4.4, there exists a ¢ € I such that
Ker(1 —¢)NW is essential in W. It follows that 1 — ¢ € J(S) C I, a contradiction.
Hence I = A, for some right uniform element u € S.

(2). foe Ay, NAy, N---NA,,, then Ker(¢) Nu;(M) # 0 for each i. Hence
Ker(p) is essential in M. Therefore ¢ € J(S5), i.e., Ay, N---NA,, = J(5). This
shows that S/J(S) is semisimple. O

As a consequence, we immediately get the following result for the right pseudo
GP-injective rings.

Corollary 4.6 Let R be a right pseudo GP-injective ring which has right finite
Goldie dimension. Then

(1) If I C R is a mazimal left ideal, then I = A,, for some right uniform element
u € R.

(2) R is semilocal.
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