On quasi pseudo-GP-injective rings and modules

Truong Cong Quynh^{*} and Nguyen Van Sanh[†]

*Dept. of Mathematics, Danang University 459 Ton Duc Thang, DaNang city, Vietnam tcquynh@dce.udn.vn

[†] Dept. of Math., Faculty of Science, Mahidol University Center of Excellence in Mathematics, Bangkok 10400, Thailand nguyen.san@mahidol.ac.th

Abstract

In 2010, Sanh et al. introduced a class of pseudo-*M*-gp-injective modules, following this, a right *R*-module *N* is called pseudo-*M*-gp-injective if for any homomorphism $0 \neq \alpha \in End(M)$, there exists $n \in \mathbb{N}$ such that $\alpha^n \neq 0$ and every monomorphism from $\alpha^n(M)$ to *N* can be extended to a homomorphism from *M* to *N*. In this paper, we give more properties of pseudo-gp-injective modules.

Mathematics Subject Classification (2010): 16D40, 16D50, 16L60. Keywords: pseudo-*M*-p-injective, quasi-pseudo-p-injective, pseudo-*M*-gp-injective, quasi-pseudo-gp-injective.

1 Introduction

Throughout the paper, R is an associative ring with identity $1 \neq 0$ and all modules are unitary R-modules. We write M_R (resp., $_RM$) to indicate that M is a right (resp., left) R-module. Let J (resp., Z_r , S_r) be the Jacobson radical (resp. the right singular ideal, the right socle) of R and $E(M_R)$ the injective hull of M_R . If X is a subset of R, the right (resp. left) annihilator of X in R is denoted by $r_R(X)$ (resp., $l_R(X)$) or simply r(X) (resp. l(X)). If N is a submodule of M(resp., proper submodule) we write $N \leq M$ (resp. N < M). Moreover, we write $N \leq^e M$, $N \ll M$, $N \leq^{\oplus} M$ and $N \leq^{max} M$ to indicate that N is an essential submodule, a small submodule, a direct summand and a maximal submodule of M, respectively. A module M is called uniform if $M \neq 0$ and every non-zero submodule of M is essential in M. A module M is *finite dimensional* (or has *finite rank*) if E(M) is a finite direct sum of indecomposable submodules. A right R-module N is called M-generated if there exists an epimorphism $M^{(I)} \to N$ for some index set I. If the set I is finite, then N is called finitely M-generated. In particular, N is called M-cyclic if it is isomorphic to M/L for some submodule L of M. Hence, any M-cyclic submodule X of M can be considered as the image of an endomorphism of M.

Following Nicholson, Yousif (see [15]), a ring R is called right P-injective if every R-homomorphism from a principal right ideal of R to R is a left multiplication. They studied some properties of these rings and their applications. In [18], Sanh et al. transferred this notion to modules. A right R-module N is called M-principally injective (briefly, M-p-injective) if every homomorphism from an M-cyclic submodule of M to N can be extended to one from M to N. A right R-module M is called quasi-principally injective (briefly, quasi p-injective) if M is M-principally injective. Quasi-p-injective modules were defined first by Wisbauer in [24] under the terminology of semi-injective modules, but there are no details. Following [13], a module M is called principally quasi-injective if every homomorphism from a cyclic submodule of M to M can be extended to an endomorphism of M. Since an M-cyclic submodule of M needs not to be cyclic, the notion of quasi-p-injective modules is different from that was defined in [13].

As a generalization of injective modules, the class of pseudo injective modules have been studied by Singh and Jain in 1967 [11], Teply (1975)[22], Jain and Singh (1975)[11], Wakamatsu (1979)[23]. Recently, Hai Quang Dinh ([6]) introduced the notion of pseudo M-injective modules (the original terminology is M-pseudoinjective). A right R-module N is called *pseudo* M-injective if for every submodule A of M, any monomorphism $\alpha: A \to N$ can be extended to a homomorphism $M \to N$. A right *R*-module N is called *pseudo-injective* if N is pseudo-N-injective. In 2009, Sanh et al., introduced the notion of pseudo-M-p-injective modules and studied the endomorphism rings of quasi-pseudo-p-injective modules. A right Rmodule N is called *pseudo-M-p-injective* if every monomorphism from an M-cyclic submodule of M to N can be extended to a homomorphism from M to N, or equivalently, for any homomorphism $\alpha \in \operatorname{End}(M)$, every monomorphism from $\alpha(M)$ to N can be extended to a homomorphism from M to N (see [16]). A module M is called quasi-pseudo-p-injective if M is pseudo-M-p-injective. A ring R is called right *pseudo P*-injective if R_R is quasi-pseudo-p-injective. Following [8], a right *R*-module *M* is said to be *generalized principally injective* (briefy gpinjective), if for any $0 \in x \in R$, there exists an $n \in \mathbb{N}$ such that $x^n \neq 0$ and any R-homomorphism from $x^n R$ into M can be extended to one from R_R to M. A ring R is called right GP-injective if R_R is GP-injective. The concept of GP-injective modules was introduced in [12] to study the class of von Neumann regular rings, V-rings, self-injective rings and their generalizations. In [2], Chen et al. studied some properties of GP-injective rings. In particular, they gave some characterizations of GP-injective ring with special chain conditions. In 2009, Sanh et al. introduced the notion of pseudo-*M*-gp-injective modules. A right *R*-module *N* is called for *pseudo-M-gp-injective* if for each homomorphism $0 \neq \alpha \in \text{End}(M)$, there exists $n \in \mathbb{N}$ such that $\alpha^n \neq 0$ and every monomorphism from $\alpha^n(M)$ to *N* can be extended to a homomorphism from *M* to *N* ([17]). A module *M* is called *quasi-pseudo-gp-injective* if *M* is pseudo-*M*-gp-injective. A ring *R* is called right pseudo GP-injective if R_R is quasi-pseudo-gp-injective. In this paper, we continue studying more properties of pseudo-p-injective modules, pseudo-gpinjective modules and the endomorphism rings of pseudo-p-injective modules.

2 On pseudo-M-gp-injective

Firstly, we give a new characterization of pseudo-M-gp-injective modules.

Theorem 2.1 Let M, N be right R-modules. Then following conditions are equivalent:

- (1) N is pseudo-M-gp-injective.
- (2) For each $0 \neq s \in \text{End}(M)$, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and

$$\{f \in \operatorname{Hom}(M, N) | \operatorname{Ker} f = \operatorname{Ker} s^n\} \subseteq \operatorname{Hom}(M, N) s^n.$$

(3) For each $0 \neq s \in \text{End}(M)$, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and

$$\{f \in \operatorname{Hom}(M, N) | \operatorname{Ker} f = \operatorname{Ker} s^n\} = \{f \in \operatorname{Hom}(M, N) | \operatorname{Ker} f \cap \operatorname{Im} s^n = 0\} s^n.$$

Proof. (1) \Rightarrow (2). Suppose that $0 \neq s \in \text{End}(M)$. Since N is pseudo-M-gp-injective, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and every monomorphism from $s^n(M)$ to N can be extended to a homomorphism from M to N. Let $f \in \text{Hom}(M, N)$ such that $\text{Ker} f = \text{Ker} s^n$. We consider homomorphism

$$\varphi: s^n(M) \to N$$
 via $\varphi(s^n(m)) = f(m), \ \forall m \in M.$

It is easy to see that φ is a monomorphism. By our assumption, there exists a homomorphism $h: M \to N$ such that $h\iota = \varphi$, where ι is the inclusion map from $s^n(M) \to M$, which implies that $f = hs^n \in \operatorname{Hom}(M, N)s^n$.

 $(2) \Rightarrow (3)$. It is clear that

$$\{f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f \cap \operatorname{Im} s^n = 0\} s^n \subseteq \{f \in \operatorname{Hom}(M,N) | \operatorname{Ker} f = \operatorname{Ker} s^n\}.$$

Let $g \in \operatorname{Hom}(M, N)$ such that $\operatorname{Ker} g = \operatorname{Ker} s^n$. Then by (2), there exists a homomorphism $h: M \to N$ such that $g = hs^n$. It follows that $\operatorname{Ker} h \cap \operatorname{Im} s^n = 0$. Hence, $g \in \{f \in \operatorname{Hom}(M, N) | \operatorname{Ker} f \cap \operatorname{Im} s = 0\}s^n$.

(3) \Rightarrow (1). For each $0 \neq s \in \text{End}(M)$, by (3), there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and

$$\{f \in \operatorname{Hom}(M, N) | \operatorname{Ker} f = \operatorname{Ker} s^n\} = \{f \in \operatorname{Hom}(M, N) | \operatorname{Ker} f \cap \operatorname{Im} s^n = 0\} s^n.$$

Assume that $\phi : s^n(M) \to N$ is a monomorphism. Then $\operatorname{Ker}(\phi s^n) = \operatorname{Ker} s^n$. Hence there is $h \in \operatorname{Hom}(M, N)$ such that $\phi s^n = hs^n$. It gives $h\iota = \phi$, where ι is the inclusion map, proving that N is pseudo-M-gp-injective.

From the above theorem, we get some characterizations of quasi-pseudo-gpinjective modules.

Corollary 2.2 Let M be right R-module and S = End(M). The following conditions are equivalent:

- (1) M is quasi-pseudo-gp-injective;
- (2) For each $0 \neq s \in S$, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and

$$\{f \in S | \operatorname{Ker} f = \operatorname{Ker} s^n\} \subseteq Ss^n;$$

(3) For each $0 \neq s \in S$, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and

 $\{f \in S | \operatorname{Ker} f = \operatorname{Ker} s^n\} = \{f \in S | \operatorname{Ker} f \cap \operatorname{Im} s^n = 0\} s^n.$

Corollary 2.3 Let M, N be right R-modules. The following conditions are equivalent:

- (1) N is pseudo-M-p-injective;
- (2) For each $s \in \text{End}(M)$,

 $\{f \in \operatorname{Hom}(M, N) | \operatorname{Ker} f = \operatorname{Ker} s\} \subseteq \operatorname{Hom}(M, N)s;$

(3) For each $s \in \text{End}(M)$,

 $\{f \in \operatorname{Hom}(M, N) | \operatorname{Ker} f = \operatorname{Ker} s\} = \{f \in \operatorname{Hom}(M, N) | \operatorname{Ker} f \cap \operatorname{Im} s = 0\}s.$

Proposition 2.4 Let N be pseudo-M-p-injective. Then for any elements $s, \alpha \in$ End(M), we have:

 $\{\beta \in \operatorname{Hom}(M, N) | \operatorname{Ker}\beta \cap \operatorname{Im}s = \operatorname{Ker}\alpha \cap \operatorname{Im}s \} =$

 $\{\gamma \in \operatorname{Hom}(M, N) | \operatorname{Ker}\gamma \cap \operatorname{Im}(\alpha s) = 0\}\alpha + \{\delta \in \operatorname{Hom}(M, N) | \delta s = 0\}.$

Proof. Let

$$\mathcal{A} = \{\beta \in \operatorname{Hom}(M, N) | \operatorname{Ker}\beta \cap \operatorname{Im}s = \operatorname{Ker}\alpha \cap \operatorname{Im}s \}$$
$$\mathcal{B} = \{\gamma \in \operatorname{Hom}(M, N) | \operatorname{Ker}\gamma \cap \operatorname{Im}(\alpha s) = 0 \}$$
$$\mathcal{C} = \{\delta \in \operatorname{Hom}(M, N) | \delta s = 0 \}$$

It is easy to see that $\mathcal{B}\alpha + \mathcal{C} \subseteq \mathcal{A}$. Conversely, let $\beta \in \text{Hom}(M, N)$ such that $\text{Ker}\beta \cap \text{Im}s = \text{Ker}\alpha \cap \text{Im}s \ (\beta \in \mathcal{A})$. It follows that $\text{Ker}(\alpha s) = \text{Ker}(\beta s)$. By Corollary 2.3, there exists $\gamma \in \mathcal{B}$ such that $\beta s = \gamma \alpha s$ or $(\beta - \gamma \alpha)s = 0$. It means $\beta - \gamma \alpha \in \mathcal{C}$, which implies that $\beta \in \mathcal{B}\alpha + \mathcal{C}$.

Proposition 2.5 If $M = M_1 \oplus M_2$ is quasi-pseudo-p-injective, then M_1 is M_2 -p-injective.

Proof. Let $M = M_1 \oplus M_2$ be quasi-pseudo-p-injective and $s \in \text{End}(M_2)$. Let $f: s(M_2) \to M_1$ be a homomorphism. Consider homomorphism $g: s(M_2) \to M$ defined by g(a) = f(a) + a for all $a \in s(M_2)$. Then g is a monomorphism. By [16, Proposition 1.3], M is pseudo- M_2 -p-injective, whence g extends to a homomorphism $\bar{g}: M_2 \to M$. Let $\pi: M \to M_1$ be the canonical projection. Then $\pi \bar{g}: M_2 \to M$ extends f. Thus M_1 is M_2 -p-injective, as required.

Corollary 2.6 For any integer $n \ge 2$, if M^n is quasi-pseudo-p-injective, then M is quasi-p-injective.

Proposition 2.7 Let M and N be modules and $X = M \oplus N$. The following conditions are equivalent:

- (1) N is pseudo-M-p-injective.
- (2) For each M-cyclic submodule K of X with $K \cap M = K \cap N = 0$, there exists $C \leq X$ such that $K \leq C$ and $N \oplus C = X$.

Proof.(1) \Rightarrow (2). Let K be a submodule of X which is M-cyclic with $K \cap M = K \cap N = 0$, and $\pi_M : M \oplus N \to M$ and $\pi_N : M \oplus N \to N$ be the canonical projections. We can check that $N \oplus K = N \oplus \pi_M(K)$ and hence $\pi_M(K) \simeq K$, proving that $\pi_M(K)$ is a M-cyclic submodule of M. Let $\varphi : \pi_M(K) \to \pi_N(K)$ be a homomorphism defined as follows: for $k = m + n \in K$ (with $m \in M, n \in N$), $\varphi(m) = n$. It is easy to see that φ is a monomorphism. Since N is pseudo M-p-injective, there is a homomorphism $\overline{\varphi} : M \to N$ extending φ . Let $C = \{m + \overline{\varphi}(m) \mid m \in M\}$. Then $X = N \oplus C$ and $K \leq C$.

 $(2) \Rightarrow (1)$. Let $s \in End(M)$ and $\varphi : s(M) \to N$ be a monomorphism. Put $K = \{s(m) - \varphi(s(m)) | m \in M\}$. Then $K \cap M = 0$ and $N \oplus K = N \oplus \pi_M(K) = N \oplus s(M)$. It is easy to see that K is M-cyclic. By assumption, there exists a submodule C of X containing K with $N \oplus C = X$. Let $\pi : N \oplus C \to N$ be the natural projection. Then the restriction $\pi|_M$ extends φ , proving (1).

3 On quasi-pseudo-gp-injective rings and modules

From Corollary 2.3, we have some characterizations of quasi-pseudo-p-injective modules.

Theorem 3.1 The following conditions are equivalent for module M with S = End(M):

- (1) M is quasi-pseudo-p-injective;
- (2) If Ker f = Ker g with $f, g \in S$ = End(M), then Sf = Sg;
- (3) If $f \in S = \text{End}(M)$ and $\alpha, \beta : f(M) \to M$ is monomorphisms, then $\alpha = s\beta$ for some $s \in S$.

Proof. (1) \Rightarrow (2). By Corollary 2.3.

(2) \Rightarrow (3). Assume that $0 \neq f \in S$ satisfies (2). Let $\alpha, \beta : f(M) \to M$ be monomorphisms. Then $\operatorname{Ker}(\alpha f) = \operatorname{Ker}(\beta f)$. By our assumption, there exists $s \in S$ such that $\alpha f = s\beta f$, which implies that $\alpha = s\beta$.

 $(3) \Rightarrow (1)$. Let $s \in S$ and $\varphi : s(M) \to M$ be a monomorphism. Let $\iota : s(M) \to M$ be the inclusion. By (3), there exists $\bar{\varphi} \in S$ such that $\varphi = \bar{\varphi}\iota$ showing that $\bar{\varphi}$ extends φ . Thus M is quasi-pseudo p-injective.

Corollary 3.2 The following conditions are equivalent for ring R:

- (1) R is right pseudo P-injective;
- (2) If r(x) = r(y) with $x, y \in R$, then Rx = Ry.

We have the following relations:

quasi-p-injective \Rightarrow quasi-pseudo-p-injective \Rightarrow quasi-pseudo-gp-injective.

Example 3.3 *i*) Let *F* be an algebraically closed field and x, y be indeterminates. Let R = F(y)[x] such that xf - fx = df/dy, $f \in F(y)$ (see [20, Example]). Then the *R*-module M = R/(x(x + y)(x + y - 1/y))R is quasi-pseudo-p-injective but not quasi-p-injective by [20, Example].

ii) Let $K = F(y_1, y_2, ...)$ and $L = F(y_2, y_3, ...)$ with F a field, and $\rho : K \to L$ be an isomorphism via $\rho(y_i) = y_{i+1}$ and $\rho(c) = c$ for all $c \in F$ (see [4, Exmaple 1]. Let $K[x_1, x_2; \rho]$ be the ring of twisted left polynomials over K where $x_i k = \rho(k) x_i$ for all $k \in K$ and for i = 1, 2. Set $R = K[x_1, x_2; \rho]/(x_1^2, x_2^2)$. Then R_R is quasipseudo-gp-injective which is not quasi-pseudo-p-injective.

Next we study some properties of quasi-pseudo-gp-injective, self-generator modules and their endomorphism rings. **Theorem 3.4** Let M be a right R-module with S = End(M). Then

- (1) If S is a right pseudo GP-injective ring, then M is quasi-pseudo-gp-injective.
- (2) If M is quasi-pseudo-gp-injective and self-generator, then S is a right pseudo GP-injective ring.

Proof. (1). Let $f \in S$. Since S is right pseudo GP-injective, there exists $n \in \mathbb{N}$ such that $f^n \neq 0$ and if $r_S(f^n) = r_S(g)$ for some $g \in S$, then $g \in Sf^n$ by Corollary 2.2. Assume that $Kerf^n = Kerg$ with $g \in S$. Then $r_S(f^n) = r_S(g)$ and hence $g \in Sf^n$. Thus M is quasi-pseudo-gp-injective by Corollary 2.2.

(2). Let $0 \neq f \in S$. Since M is quasi-pseudo-gp-injective, there exists $n \in \mathbb{N}$ such that $f^n \neq 0$ and if $\operatorname{Ker}(f^n) = \operatorname{Ker}(g)$ with $g \in S$, then $g \in Sf^n$. Let $g \in S$ with $r_S(f^n) = r_S(g)$. Since M is a self-generator, we get $\operatorname{Ker} f^n = \operatorname{Ker} g$. By our assumption, $g \in Sf^n$ and so S is right pseudo GP-injective.

Corollary 3.5 Let M be a right R-module with S = End(M). Then

- (1) If S is a right pseudo P-injective ring, then M is quasi-pseudo-p-injective.
- (2) If M is a quasi-pseudo-p-injective module which is a self-generator, then S is a right pseudo P-injective ring.

For a right *R*-module M, S = End(M) we denote:

 $W(S) = \{ s \in S | \operatorname{Ker}(s) \text{ is essential in } M \}.$

Lemma 3.6 Let M_R be a quasi-pseudo-gp-injective module which is a self-generator, S = End(M). If $a \notin W(S)$, then Ker(a) < Ker(a - ata) for some $t \in S$.

Proof. If $a \notin W(S)$, then Ker(a) is not an essential submodule of M. Hence there exists $0 \neq m \in M$ such that $mR \cap \text{Ker}(a) = 0$. Since M is a self-generator, there exists $\lambda \in S$ such that $0 \neq \lambda(M) \leq mR$. Hence $\text{Ker}(a) \cap \lambda(M) = 0$. It follows that $a\lambda \neq 0$. Since M is quasi-pseudo-gp-injective, there exists $n \in \mathbb{N}$ such that $(a\lambda)^n \neq 0$ and if $\text{Ker}(a\lambda)^n = \text{Ker}g$ with $g \in S = \text{End}(M)$, then $g \in S(a\lambda)^n$. From $\text{Ker}(a) \cap \lambda(M) = 0$ we also have $\text{Ker}((a\lambda)^n) = \text{Ker}(\lambda(a\lambda)^{n-1})$. Hence $\lambda(a\lambda)^{n-1} \in S(a\lambda)^n$. Therefore $\lambda(a\lambda)^{n-1} = s(a\lambda)^n$ for some $s \in S$, which implies that $Im(\lambda(a\lambda)^{n-1}) \leq Ker(a - asa)$. It follows that Ker(a) < Ker(a - asa), since $\text{Im}(\lambda(a\lambda)^{n-1}) \notin \text{Ker}(a)$ and $(a\lambda)^n \neq 0$.

Lemma 3.7 Assume that M is quasi-pseudo-gp-injective module which is a selfgenerator. Then J(S) = W(S). **Proof.** Let $a \in J(S)$. If $a \notin W(S)$, then by the proof of Lemma 3.6, there exist a positive integer n and λ , $t \in S$ such that $(a\lambda)^n \neq 0$ and $(1 - at)(a\lambda)^n = 0$. Note that 1 - at is left invertible, so $(a\lambda)^n = 0$, a contradiction. Conversely, let $a \in W(S)$. Then, for each $t \in S$, $ta \in W(S)$ and hence $1 - ta \neq 0$. Since Mis a quasi-pseudo-p-injective module, there exists $n \in \mathbb{N}$ such that $(1 - ta)^n \neq 0$ and if $\operatorname{Ker}(1 - ta)^n = \operatorname{Ker} g$ for some $g \in S = \operatorname{End}(M)$, then $g \in S(1 - ta)^n$. Put $u = (1 - ta)^n$, 1 - u = v for some $v \in W(S)$. Since $\operatorname{Ker}(v) \cap \operatorname{Ker}(1 - v) = 0$, we have $\operatorname{Ker}(1 - v) = 0$. Then $\operatorname{Ker}(u) = \operatorname{Ker}(1_S)$. It follows that Su = S and hence $(1 - ta)^n$ is left invertible, proving our lemma. \Box

Corollary 3.8 If R is right pseudo GP-injective, then $J(R) = Z(R_R)$.

Recall that a module M is said to satisfy the generalized C2-condition (or GC2) (see [25]) if for any $N \simeq M$ with $N \leq M$, N is a direct summand of M.

Theorem 3.9 If M is quasi-pseudo-gp-injective, then M satisfies GC2.

Proof. Let $S = \operatorname{End}(M)$. Assume that $\operatorname{Ker} s = 0$ with $s \in S$. We need to prove that S = Ss. Since M is quasi-pseudo-gp-injective, there exists $n \in \mathbb{N}$ such that $s^n \neq 0$ and $\operatorname{Ker} s^n = \operatorname{Ker} g$ with $g \in S$, which would imply that $g \in Ss^n$. Note that $\operatorname{Ker} s = 0 = \operatorname{Ker} 1_S$. It follows that $1_S \in Ss^n \leq Ss$, whence S = Ss. Thus M is GC2 by [25, Theorem 3].

Corollary 3.10 If R is right pseudo GP-injective, then R is right GC2.

Proposition 3.11 Let M be a quasi-pseudo-p-injective module which is a selfgenerator and S = End(M). If every complement submodule of M is M-cycilc, then S/J(S) is von Neumann regular.

Proof. We have J(S) = W(S) by Lemma 3.7. For all $\lambda \in S$, let L be a complement of Ker λ . We consider the map $\phi : \lambda(L) \to M$ defined by $\phi(\lambda(x)) = x$ for all $x \in L$. Then ϕ is a monomorphism and $\lambda(L) \simeq L$ which implies $\lambda(L)$ is a M-cyclic submodule of M. Since M is quasi-pseudo-p-injective, there exists $\theta \in S$, which is an extension of ϕ . Then Ker $\lambda + L \leq \text{Ker}(\lambda\theta\lambda - \lambda)$, and we see that Ker $\lambda \oplus L \leq^e M$. Consequently $\lambda\theta\lambda - \lambda \in W(S) = J(S)$.

Theorem 3.12 Let M be a quasi-pseudo-gp-injective module which is a self-generator and S = End(M). Then the following conditions are equivalent:

- (1) S is right perfect;
- (2) For any infinite sequence $s_1, s_2, \dots \in S$, the chain

 $\operatorname{Ker}(s_1) \leq \operatorname{Ker}(s_2 s_1) \leq \cdots$

is stationary.

Proof.(1) \Rightarrow (2). Let $s_i \in S$, i = 1, 2... Since S is right perfect, S satisfies DCC on finitely generated left ideals. So the chain $Ss_1 \geq Ss_2s_1 \geq ...$ terminates. Thus there exists n > 0 such that $Ss_ns_{n-1}...s_1 = Ss_ks_{k-1}...s_1$ for all k > n. It follows that $Ker(s_ns_{n-1}...s_1) = Ker(s_ks_{k-1}...s_1)$ for all k > n.

 $(2) \Rightarrow (1)$. We first prove that S/W(S) is a von Neumann regular ring. Let $a_1 \notin W(S)$. Then by Lemma 3.6, there is $c_1 \in S$ such that $\operatorname{Ker}(a_1) < \operatorname{Ker}(a_1 - a_1c_1a_1)$. Put $a_2 = a_1 - a_1c_1a_1$. If $a_2 \in W(S)$, then we have $\bar{a}_1 = \bar{a}_1\bar{c}_1\bar{a}_1$, i.e., \bar{a}_1 is a regular element of S/W(S). If $a_2 \notin W(S)$, there exists $a_3 \in S$ such that $\operatorname{Ker}(a_2) < \operatorname{Ker}(a_3)$ with $a_3 = a_2 - a_2c_2a_2$ for some $c_2 \in S$ by the preceding proof. Repeating the above-mentioned process, we get a strictly ascending chain

$$\operatorname{Ker}(a_1) < \operatorname{Ker}(a_2) < \dots,$$

where $a_{i+1} = a_i - a_i c_i a_i$ for some $c_i \in S$, i = 1, 2... Let

$$b_1 = a_1, b_2 = 1 - a_1c_1, \dots, b_{i+1} = 1 - a_ic_i, \dots,$$

then

$$a_1 = b_1, a_2 = b_2 b_1, \dots, a_{i+1} = b_{i+1} b_i \dots b_2 b_1, \dots$$

and we have the following strictly ascending chain

$$\operatorname{Ker}(b_1) < \operatorname{Ker}(b_2b_1) < \dots$$

which contradicts the hypothesis. Hence there exists a positive integer m such that $a_{m+1} \in W(S)$, i.e., $a_m - a_m c_m a_m \in W(S)$. This shows that \bar{a}_m is a regular element of S/W(S), and hence $\bar{a}_{m-1}, \bar{a}_{m-2}, ..., \bar{a}_1$ are regular elements of S/W(S), i.e., S/W(S) is von Neumann regular. We have J(S) = W(S) by Lemma 3.7, proving that S/J(S) is von Neumann regular. Thus S is right perfect by [5, Lemma 1.9]. \Box

Lemma 3.13 Let M be a right R-module and S = End(M). Then

(1)
$$l_S(A(M)) = l_S(A)$$
 for all $A \subseteq S$ with $A(M) = \sum_{s \in A} s(M)$.
(2) $l_S(r_M(l_S(A))) = l_S(A)$ for all $A \subseteq S$.

Proof.(1). Let $a \in l_S(A)$, $a \cdot A = 0$. Therefore $a \cdot s = 0$ or a(s(M)) = 0 for all $s \in A$. This implies that $a \in l_S(A(M))$. Hence $l_S(A) \leq l_S(A(M))$. Conversely, for every $a \in l_S(A(M))$, we have a.s(M) = 0 for all $s \in A$. This implies that $a \in l_S(A)$.

(2). It is clear that $l_S(r_M(l_S(A))) \ge l_S(A)$. Conversely, for all $s \in l_S(A)$, s.A(M) = 0. This implies that $A(M) \le r_M(l_S(A))$. Thus

$$l_S(A(M)) \ge l_S(r_M(l_S(A))).$$

By (1) we get the result.

Let $\emptyset \neq A \subset S = \text{End}(M)$. Put

$$\operatorname{Ker} A = \bigcap_{f \in A} \operatorname{Ker} f = \{ m \in M | f(m) = 0 \,\,\forall f \in A \}.$$

If $X \leq M$ and X = KerA for some $\emptyset \neq A \subset S$, X is called an M-annihilator.

Proposition 3.14 Let M_R be a quasi-pseudo-gp-injective, self-generator module and $S = End(M_R)$. If M_R satisfies ACC on M-annihilators, then S is semiprimary.

Proof. Now we will claim that S satisfies ACC on right annihilators or DCC on left annihilators. Indeed, we consider the descending chain

$$l_S(A_1) \ge l_S(A_2) \ge \dots$$
 where $A_i \subseteq S$,

then

$$r_M(l_S(A_1)) \le r_M(l_S(A_2)) \le \dots$$

By our assumption, there exists $n \in \mathbb{N}$ such that $r_M(l_S(A_n)) = r_M(l_S(A_k))$ for all k > n, and so $l_S r_M(l_S(A_n)) = l_S r_M(l_S(A_k))$. By Lemma 3.13, $l_S(A_n) = l_S(A_k)$ for all k > n. This shows that S satisfies DCC on left annihilators or ACC on right annihilators. Therefore J(S) is nilpotent by [14, Lemma 3.29] and Lemma 3.7. It follows that S is semiprimary by Theorem 3.12.

Corollary 3.15 If R is right pseudo GP-injective and satisfies ACC on right annihilators, then R is semiprimary.

For quasi-pseudo-p-injective modules, we have

Theorem 3.16 Let M_R be a quasi-pseudo-p-injective module and $S = End(M_R)$. If M satisfies ACC on M-annihilators, then S is semiprimary.

Proof. Consider the chain $Sf_1 \geq Sf_2 \geq \cdots$ of cyclic left ideals of S. Then we have $\operatorname{Ker} f_1 \leq \operatorname{Ker} f_2 \leq \cdots$. By hypothesis, there exists $n \in \mathbb{N}$ such that $\operatorname{Ker} f_n = \operatorname{Ker} f_{n+k}, \ \forall k \in \mathbb{N}$. It follows that $Sf_n = Sf_{n+k} \ \forall k \in \mathbb{N}$. Thus R is right perfect.

Consider the ascending chain $r_M(J(S)) \leq r_M(J(S)^2) \leq \cdots$. By assumption, there is $n \in \mathbb{N}$ such that $r_M(J(S)^n) = r_M(J(S)^{n+k})$ for all $k \in \mathbb{N}$. Let $B = J(S)^n$.

10

Then we get $r_M(B) = r_M(B^2)$. Assume J(S) is not nilpotent. Then $B^2 \neq 0$ and the non-empty set

$$\{\text{Ker} g \mid g \in B \text{ and } Bg \neq 0\}$$

has a maximal element Ker_{g_0} , $g_0 \in B$. The relation $BBg_0 = 0$ would imply that $\operatorname{Im}_{g_0} \leq r_M(B^2) = r_M(B)$ and hence $Bg_0 = 0$, contradicting to the choice of g_0 . Therefore we can find an $h \in B$ with $Bhg_0 \neq 0$. However, since $\operatorname{Ker}_{g_0} \leq \operatorname{Ker}(hg_0)$, the maximality of Ker_{g_0} implies that $\operatorname{Ker}_{g_0} = \operatorname{Ker}hg_0$. Since M is quasi-pseudop-injective, this implies that $Sg_0 = Shg_0$, i.e. $g_0 = shg_0$ for some $s \in S$ or $g_0(1 - sh) = 0$. Since $sh \in B \leq J(S)$, this gives $g_0 = 0$, a contradiction. Thus J(S) must be nilpotent.

Following [14], a ring R is called *directly finite* if ab = 1 in R implies that ba = 1.

Proposition 3.17 A right pseudo P-injective ring R is directly finite if and only if all monomorphisms $R_R \to R_R$ are isomorphisms.

Proof. Assume that $\varphi : R_R \to R_R$ is a monomorphism. Let $a = \varphi(1)$. Then r(a) = 0 = r(1) and so Ra = R by Corollary 2.2. Hence ba = 1 for some $b \in R$, so ab = 1 by hypothesis, and so φ is onto. Conversely, let ab = 1 in R. Therefore the homomorphism $\alpha : R \to R$, $\alpha(r) = br$, $\forall r \in R$ is monomorphism. By hypothesis α is an epimorphism. There exists $c \in R$ such that $1 = \alpha(c) = bc$. It follows that a = c and ba = 1.

The series of higher left socles $\{S_{\alpha}^{l}\}$ of the ring R are defined inductively as follows: $S_{1}^{l} = Soc(_{R}R)$, and $S_{\alpha+1}^{l}/S_{\alpha}^{l} = Soc(_{R}/S_{\alpha}^{l})$ for each ordinal $\alpha \geq 1$.

Motivated by [3, Lemma 9 (ii)], we have the following proposition.

Proposition 3.18 If R is a right pseudo GP-injective ring and satisfies ACC on essential left ideals, then

- (1) $r(J) \leq^{e} R_R$,
- (2) J is nilpotent,
- (3) J = lr(J).

Proof. (1) Since R has ACC on essential left ideals, R/S_l is a left Noetherian ring. Then, there exists k > 0 such that $S_k^l = S_{k+1}^l = \cdots$ and R/S_k^l is a right Noetherian ring. Now we will claime that $S_k^l \leq^e R_R$. In fact, assume that $xR \cap S_k^l = 0$ for some $0 \neq x \in R$. Let $\overline{R} = R/S_k^l$ and $l_{\overline{R}}(\overline{a})$ be maximal in the set $\{l_{\overline{R}}(\overline{y}) \mid 0 \neq y \in xR\}$. Since $S_k^l = S_{k+1}^l$, we get $Soc(_{\overline{R}}\overline{R}) = 0$, and so $\overline{R}\overline{a}$ is not simple as left \overline{R} -module. Thus there exists $t \in R$ such that $0 \neq \overline{R}\overline{t}\overline{a} < \overline{R}\overline{a}$. If $\bar{a}t\bar{a} = \bar{0}$, then $ata \in aR \cap S_k^l = 0$, and so ata = 0. From this fact and pseudo GP-injectivity of R, we see that if r(ta) = r(b), $b \in R$ then Rta = Rb by Corollary 2.2. If r(a) = r(ta), then Ra = Rta, a contradiction. Thus r(a) < r(ta). Then there exists $b \in R$ such that $ab \neq 0$ and tab = 0. That means $0 \neq ab \in xR$ and $l_{\bar{R}}(\bar{a}) < l_{\bar{R}}(\bar{a}b)$. This contradicts to the maximality of $l_{\bar{R}}(\bar{a}_0)$.

If $\bar{a}t\bar{a} \neq \bar{0}$, then $0 \neq \bar{R}a\bar{t}\bar{a} < \bar{R}a$. Since R is right pseudo GP-injective, there exists $m \in \mathbb{N}$ such that $(ata)^m \neq 0$ and if $r((ata)^m) = r(b), b \in R$ then $b \in R(ata)^m$. It follows that $r(a) < r((ata)^m)$. Let $c \in r((ata)^m) \setminus r(a)$. Then $0 \neq ac \in xR, (\bar{a}t\bar{a})^{m-1}\bar{a}t \in l_{\bar{R}}(\bar{a}c) \setminus l_{\bar{R}}(\bar{a})$, a contradiction.

- Thus $S_k^l \leq e R_R$ and hence $r(J) \leq e R_R$ (since $S_k^l \leq r(J)$).
- (2). By [3, Lemma 9 (ii)].
- (3). Since $r(J) \leq^e R_R$, $lr(J) \leq Z_r = J$.

A module M_R is called *extending (or CS)* if every submodule of M is essential in a direct summand of M. A ring R is called right CS if R_R is CS (see [7]). Following [10], a module M is called *NCS* if there are no nonzero complement submodules which is small in M. A ring R is *right NCS* if R_R is NCS. Clearly every CS module is NCS, but the converse is not true, as we can see that the \mathbb{Z} -module $\mathbb{Z}_2 \oplus \mathbb{Z}_8$ is NCS but not CS. On the other hand, let K be a division ring and V be a left K-vector space of infinite dimension. Let $S = End_K(V)$. Take $R = \begin{pmatrix} S & S \\ S & S \end{pmatrix}$, then R is right NCS but not right CS.

Proposition 3.19 If R is a left Noetherian, right pseudo P-injective and right NCS ring, then R is left Artinian.

Proof. First, we prove that $\bar{R} = R/J$ is a regular ring. Assume that $a \notin J$. Since $J = lr(J) = Z_r$, there exists a nonzero complement right ideal I of R such that $r(a) \cap I = 0$ by Lemma 3.18. We claim that there exists $b \in I$ such that $ab \notin J$. Suppose on the contrarily that $aI \leq J$. Then aIr(J) = 0. Since $r(a) \cap I = 0, Ir(J) \leq I \cap r(a) = 0$. Thus $I \leq lr(J) = J$. It follows that I is small in R_R , a contradiction. Hence we have $b \in I$ such that $r(a) \cap bR = 0$ and $ab \notin J$. It follows that r(b) = r(ab). Hence Rb = Rab and so b = cab for some $c \in R$. This implies that $\bar{b} \in r_{\bar{R}}(\bar{a} - \bar{a}c\bar{a})$, where $\bar{r} = r + J \in R/J$ for any $r \in R$. Since $\bar{ab} \neq \bar{0}$, we see that $r_{\bar{R}}(\bar{a}) < r_{\bar{R}}(\bar{a} - \bar{a}c\bar{a})$. If $a - aca \in J$, then a is a regular element of R. If $a - aca \notin J$, let $a_1 = a - aca$. Then $r(a_1)$ is not essential in R_R . By the same way, we get $a_2 = a_1 - a_1c_1a_1$ for some $c_1 \in R$ and $r_{\bar{R}}(\bar{a}_1) < r_{\bar{R}}(\bar{a}_2)$. If $a_2 \notin J$, then a_1 is a regular element of R. It follows that a is a regular element of R. If $a_2 \notin J$, we have $a_3 = a_2 - a_2c_2a_2$ for some $c_2 \in R$ and $r_{\bar{R}}(\bar{a}_2) < r_{\bar{R}}(\bar{a}_3)$. Continuing this process, we get $a_k \in R$, k = 1, 2, ... Since R is left noetherian and $Jac(\bar{R}) = 0$, \bar{R} is a semiprime and left Goldie ring. By [9, Lemma 5.8], \bar{R} satisfies ACC on right annihilators. Hence there exists some positive integer m such that $a_m \in J$, and thus a is also a regular element of R. Since \bar{a} is an arbitrary nonzero element of \bar{R} , we see that \bar{R} is a regular ring. Then \bar{R} is semisimple because R is left noetherian. Moreover, by Lemma 3.18, J is nilpotent and so R is semiprimary. Thus R is left artinian.

4 On maximal ideals

In this section, we study the endomorphism ring of quasi-pseudo-gp-injective modules.

Let $S = \operatorname{End}_R(M)$ be the endomorphism ring of a right *R*-module *M*. Following [19], an element $u \in S$ is called a *right uniform element* of *S* if $u \neq 0$ and u(M) is a uniform submodule of *M*. An element $u \in R$ is called right uniform if uR is a uniform right ideal (see [14]). In this section, we generalize some results of Sanh and Shum for quasi-p-injective modules; Nicholson and Yousif for p-injective rings to quasi-pseudo-gp-injective modules.

First, we need the following lemma:

Lemma 4.1 Let M be a quasi-pseudo-gp-injective module and S = End(M). Then for any right uniform element u of S, the set

$$A_u = \{ s \in S | \operatorname{Ker} s \cap \operatorname{Im} u \neq 0 \}$$

is the unique maximal left ideal of S containing $l_S(\text{Im}u)$.

Proof. Clearly, A_u is a left ideal of S. It is easy to see that $l_S(\operatorname{Im} u) \leq A_u$ and $A_u \neq S$ (because $1 \notin A_u$). We now claim that A_u is maximal. In fact, for any $s \in S \setminus A_u$, we have $\operatorname{Im} u \cap \operatorname{Ker} s = 0$, whence $su \neq 0$. There exists $m \in \mathbb{N}$ such that $(su)^m \neq 0$ and if $\operatorname{Ker}(su)^m = \operatorname{Ker}(g), g \in S$ then $g \in S(su)^m$. Since $\operatorname{Ker}((su)^m) = \operatorname{Ker} u$, we get $S(su)^m = Su$. Then there exists $t \in S$ such that $(1 - t(su)^{m-1}s)u = 0$. It follows from $S = l_S(u) + Ss$, that A_u is maximal in S. It remains to show that A_u is unique. In fact, assume that there is another maximal left ideal L of S containing $l_S(\operatorname{Im} u)$ and $L \neq A_u$. Repeating above process we also have S = L, a contradiction.

Corollary 4.2 ([19, Lemma 1]) Let M be a quasi-p-injective module and S = End(M). Then for any right uniform element u of S, the set

$$A_u = \{ s \in S | \text{Ker} s \cap \text{Im} u \neq 0 \}$$

is the unique maximal left ideal of S containing $l_S(\text{Im}u)$.

Corollary 4.3 Let R be right pseudo GP-injective. If $u \in R$ is a right uniform element, define

$$M_u = \{ x \in R | r(x) \cap uR \neq 0 \}.$$

Then M_u is the unique maximal left ideal which contains l(u).

The following lemma is a generalization of Lemma 3 in [19].

Lemma 4.4 Let M be a quasi-pseudo-p-injective module, $S = \text{End}(M_R)$ and $W = \bigoplus_{i=1}^{n} u_i(M)$ a direct sum of uniform submodule $u_i(M)$ of M. If $A \leq S$ is a maximal left ideal which is not of the form A_u for some right uniform element u of S, then there is $\psi \in A$ such that $\text{Ker}(1 - \psi) \cap W$ is essential in W.

Proof. Since $A \neq A_{u_1}$, we can take $k \in A \setminus A_{u_1}$. Then $\operatorname{Im} u_1 \cap \operatorname{Ker} k = 0$, whence $ku_1 \neq 0$. There exists $m \in \mathbb{N}$ such that $(ku_1)^m \neq 0$ and if $\operatorname{Ker}(ku_1)^m = \operatorname{Ker}(g)$, $g \in S$ then $g \in S(ku_1)^m$. It is easy to see that $\operatorname{Ker}(ku_1)^m = \operatorname{Ker}(u_1)$ and hence $S(ku_1)^m = Su_1$. Consequently we have $u_1 = \alpha_1(ku_1)^m$ for some $\alpha_1 \in S$. Let $\varphi_1 = \alpha_1(ku_1)^{m-1}k \in SA \subset A$. Then $(1 - \varphi_1)u_1 = 0$. This shows that $\operatorname{Ker}(1 - \varphi_1) \cap u_1(M) = u_1(M) \neq 0$. If $\operatorname{Ker}(1 - \varphi_1) \cap u_i(M) \neq 0$ for all $i \geq 2$, then we are done and in this case $\bigoplus_{i=1}^n (\operatorname{Ker}(1 - \varphi_1) \cap u_i(M)) \leq^e W$. Without loss of generality, we now assume that $\operatorname{Ker}(1 - \varphi_1) \cap u_2(M) = 0$. It follows that $(1 - \varphi_1)(u_2(M)) \simeq u_2(M)$ is uniform. Since $A \neq A_{(1 - \varphi_1)u_2}$, we can take any $h \in A \setminus A_{(1 - \varphi_1)u_2}$. By using the above argument, there exists $\alpha_2 \in S$ such that $(1 - \varphi_1)u_2 = \alpha_2h(1 - \varphi_1)u_2$. It follows that

$$(1 - (\alpha_2 h + \varphi_1 - \alpha_2 h \varphi_1))u_2 = 0.$$

Let $\varphi_2 = \alpha_2 h + \varphi_1 - \alpha_2 h \varphi_1$. Then $(1 - \varphi_2)u_i = 0$ for i = 1, 2. Continuing this way, we eventually obtain a $\psi \in A$ such that $Ker(1 - \psi) \cap u_i(M) \neq 0$ for all $i = 1, \ldots, n$. In other words, we have shown that $Ker(1 - \psi) \cap W$ is essential in W as required.

The following theorem describes the properties of the endomorphism ring $S = \text{End}(M_R)$ of a quasi pseudo p-injective module M_R .

Theorem 4.5 Let M be a quasi-pseudo-gp-injective, self-generator module with finite Goldie dimension and $S = \text{End}(M_R)$.

- (1) If $I \subset S$ is a maximal left ideal, then $I = A_u$ for some right uniform element $u \in S$.
- (2) S is semilocal.

Proof. Since M is a self-generator which has finite Goldie dimension, there exist elements $u_1, u_2, ..., u_n$ of S such that $W = u_1(M) \oplus u_2(M) \oplus \cdots \oplus u_n(M)$ is essential in M, where each $u_i(M)$ is uniform. Moreover, M is a quasi-p-injective module, we have $J(S) = W(S) = \{s \in S | \text{Ker}(s) \text{ is essential in } M\}$ by Lemma 3.7.

(1). Suppose on the contrary that I is not of the form A_u for some right uniform element of $u \in S$. Then by Lemma 4.4, there exists a $\varphi \in I$ such that $\operatorname{Ker}(1-\varphi) \cap W$ is essential in W. It follows that $1-\varphi \in J(S) \subset I$, a contradiction. Hence $I = A_u$ for some right uniform element $u \in S$.

(2). If $\varphi \in A_{u_1} \cap A_{u_2} \cap \cdots \cap A_{u_n}$, then $\operatorname{Ker}(\varphi) \cap u_i(M) \neq 0$ for each *i*. Hence $\operatorname{Ker}(\varphi)$ is essential in *M*. Therefore $\varphi \in J(S)$, i.e., $A_{u_1} \cap \cdots \cap A_{u_n} = J(S)$. This shows that S/J(S) is semisimple.

As a consequence, we immediately get the following result for the right pseudo GP-injective rings.

Corollary 4.6 Let R be a right pseudo GP-injective ring which has right finite Goldie dimension. Then

- (1) If $I \subset R$ is a maximal left ideal, then $I = A_u$ for some right uniform element $u \in R$.
- (2) R is semilocal.

Acknowledgment

The author Nguyen van Sanh is grateful to the Center of Excellence in Mathematics, The Commission on Higher Education, Thailand, Grant No. RG-1-53-13-1. The authors would like to thank the referees for giving useful suggestions for the improvement of this paper.

References

- F.W. Anderson, K.R. Fuller, "Rings and Categories of Modules", Springer-Verlag. New York 1974.
- [2] J. Chen, N. Ding, On general principally injective rings, Comm. Algebra 25 (5)(1999), 2097 - 2116.
- [3] J. Chen, L. Shen and Y. Zhou, *Characterization of QF rings*, Comm. Algebra 33(2007), 281-288.
- [4] J. Chen, Y.Q. Zhou and Z. Zhu, GP-injective rings need not be P-injective rings, Comm. Algebra 33(2005), 2395-2402.

- [5] N. Ding, M. F. Yousif, and Y. Zhou, Modules with annihilator conditions, Comm. Algebra 30(5)(2002), 2309-2320.
- [6] H. Q. Dinh, A note on pseudo injective modules, Comm. Algebra, 33(2005), 361-369.
- [7] N.V. Dung, D. V. Huynh, P. F. Smith, R. Wisbauer, "Extending Modules", Pitman 1996.
- [8] K. Kim, S. B. Nam and J. Y. Kim, On simple singular GP-injective modules, Comm. Algebra 27(5)(1999), 2087-2096.
- [9] K. R. Goodearl and R. B. Warfield, "An Introduction to Noncommutative Noetherian Rings", London Math. Soc., Student Texts 16, Cambridge Uni. Press, 1989.
- [10] D. V. Huynh, Rings in which no nonzero complement is small, Preprint.
- [11] S. K. Jain, S. Singh, Quasi-injective and pseudo injective modules, Canad. Math. Bull., 18(3)(1975), 134-141.
- [12] R. Yue Chi Ming, On regular rings and artinian rings II, Riv. Mat. Univ. Parma 11(4)(1985), 101-109.
- [13] W.K. Nicholson, J. K. Park and M. F. Yousif, *Principally quasi-injective modules*, Comm. Algebra 27 (1)(1999), 1683-1693.
- [14] W.K. Nicholson, M. F. Yousif, "Quasi-Frobenius Rings", Cambridge Univ.Press. 2003.
- [15] W. K. Nicholson and M. F. Yousif, *Principally injective rings*, Journal of Algebra, **174** (1995), 77-93.
- [16] B. Samruam, H. D. Hai, N. V. Sanh, On pseudo-P-injectivity, Southeast Asian Bull. of Math., 35(1)(2011), 21-27.
- [17] B. Samruam, H. D. Hai, N. V. Sanh, A General form of pseudo p-Injectivity, Southeast Asian Bull. of Math., 35(6)(2011), 927-993.
- [18] N.V. Sanh, K.P. Shum, S. Dhompongsa and S. Wongwai, On quasi-principally injective modules and rings, Algebra Colloquium 6:3 (1999), 269-276.
- [19] N. V. Sanh and K. P. Shum, Endomorphism rings of quasi-principally injective modules, Comm. Algebra 29 (1)(2001), 1437-1443.
- [20] S. Singh, S. K. Jain, On pseudo injective modules and self pseudo injective rings, The J. of Math. Sciences, 2(1)(1967), 125-133.

- [21] L. V. Thuyet and T. C. Quynh, Some results on a GP-injective ring, a Noetherian ring and a QF-ring, Submitted.
- [22] M. L. Teply, Pseudo-injective modules which are not quasi-injective, Proc. Amer. Math. Soc., 49(2)(1975), 305-310.
- [23] T. Wakamatsu, Pseudo-projectives and pseudo-injectives in abelian categories, Math. Rep. Toyama Univ., 2(1979), 133-142.
- [24] Wisbauer, R., "Foundations of Module and Ring Theory", Gordon and Breach. Reading 1991.
- [25] Z. Zhu, Y. Jinxiang, On GC₂ modules and their endomorphism rings, Linear Multilinear Algebra 56(5) (2008), 511-515.