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Abstract

In 2010, Sanh et al. introduced a class of pseudo-M -gp-injective modules,

following this, a right R-module N is called pseudo-M -gp-injective if for any

homomorphism 0 6= α ∈ End(M), there exists n ∈ N such that αn 6= 0 and

every monomorphism from αn(M) to N can be extended to a homomorphism

from M to N. In this paper, we give more properties of pseudo-gp-injective

modules.
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1 Introduction

Throughout the paper, R is an associative ring with identity 1 6= 0 and all modules
are unitary R-modules. We write MR (resp., RM ) to indicate that M is a right
(resp., left) R-module. Let J (resp., Zr, Sr) be the Jacobson radical (resp. the
right singular ideal, the right socle) of R and E(MR) the injective hull of MR.
If X is a subset of R, the right (resp. left) annihilator of X in R is denoted by
rR(X) (resp., lR(X)) or simply r(X) (resp. l(X)). If N is a submodule of M
(resp., proper submodule) we write N ≤ M (resp. N < M ). Moreover, we write
N ≤e M, N � M , N ≤⊕ M and N ≤max M to indicate that N is an essential
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submodule, a small submodule, a direct summand and a maximal submodule of
M , respectively. A module M is called uniform if M 6= 0 and every non-zero
submodule of M is essential in M . A module M is finite dimensional (or has
finite rank) if E(M ) is a finite direct sum of indecomposable submodules. A right
R-module N is called M -generated if there exists an epimorphism M (I) → N for
some index set I. If the set I is finite, then N is called finitely M -generated. In
particular, N is called M -cyclic if it is isomorphic to M/L for some submodule L
of M . Hence, any M -cyclic submodule X of M can be considered as the image of
an endomorphism of M .

Following Nicholson, Yousif (see [15]), a ring R is called right P-injective if
every R-homomorphism from a principal right ideal of R to R is a left multipli-
cation. They studied some properties of these rings and their applications. In
[18], Sanh et al. transferred this notion to modules. A right R-module N is called
M -principally injective (briefly, M -p-injective) if every homomorphism from an
M -cyclic submodule of M to N can be extended to one from M to N. A right
R-module M is called quasi-principally injective (briefly, quasi p-injective) if M is
M -principally injective. Quasi-p-injective modules were defined first by Wisbauer
in [24] under the terminology of semi-injective modules, but there are no details.
Following [13], a module M is called principally quasi-injective if every homomor-
phism from a cyclic submodule of M to M can be extended to an endomorphism
of M. Since an M -cyclic submodule of M needs not to be cyclic, the notion of
quasi-p-injective modules is different from that was defined in [13].

As a generalization of injective modules, the class of pseudo injective modules
have been studied by Singh and Jain in 1967 [11], Teply (1975)[22], Jain and Singh
(1975)[11], Wakamatsu (1979)[23]. Recently, Hai Quang Dinh ([6]) introduced
the notion of pseudo M -injective modules (the original terminology is M -pseudo-
injective). A right R-moduleN is called pseudo M -injective if for every submodule
A of M , any monomorphism α : A → N can be extended to a homomorphism
M → N . A right R-module N is called pseudo-injective if N is pseudo-N -injective.
In 2009, Sanh et al., introduced the notion of pseudo-M -p-injective modules and
studied the endomorphism rings of quasi-pseudo-p-injective modules. A right R-
module N is called pseudo-M -p-injective if every monomorphism from an M -cyclic
submodule of M to N can be extended to a homomorphism from M to N, or
equivalently, for any homomorphism α ∈ End(M ), every monomorphism from
α(M ) to N can be extended to a homomorphism from M to N (see [16]). A
module M is called quasi-pseudo-p-injective if M is pseudo-M -p-injective. A ring
R is called right pseudo P-injective if RR is quasi-pseudo-p-injective. Following
[8], a right R-module M is said to be generalized principally injective (briefy gp-
injective), if for any 0 ∈ x ∈ R, there exists an n ∈ N such that xn 6= 0 and
any R-homomorphism from xnR into M can be extended to one from RR to
M . A ring R is called right GP-injective if RR is GP-injective. The concept of
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GP-injective modules was introduced in [12] to study the class of von Neumann
regular rings, V-rings, self-injective rings and their generalizations. In [2], Chen
et al. studied some properties of GP-injective rings. In particular, they gave some
characterizations of GP-injective ring with special chain conditions. In 2009, Sanh
et al. introduced the notion of pseudo-M -gp-injective modules. A right R-module
N is called for pseudo-M -gp-injective if for each homomorphism 0 6= α ∈ End(M ),
there exists n ∈ N such that αn 6= 0 and every monomorphism from αn(M )
to N can be extended to a homomorphism from M to N ([17]). A module M
is called quasi-pseudo-gp-injective if M is pseudo-M -gp-injective. A ring R is
called right pseudo GP-injective if RR is quasi-pseudo-gp-injective. In this paper,
we continue studying more properties of pseudo-p-injective modules, pseudo-gp-
injective modules and the endomorphism rings of pseudo-p-injective modules.

2 On pseudo-M-gp-injective

Firstly, we give a new characterization of pseudo-M -gp-injective modules.

Theorem 2.1 Let M , N be right R-modules. Then following conditions are equiv-
alent:

(1) N is pseudo-M -gp-injective.

(2) For each 0 6= s ∈ End(M ), there exists n ∈ N such that sn 6= 0 and

{f ∈ Hom(M,N )| Kerf = Kersn} ⊆ Hom(M,N )sn.

(3) For each 0 6= s ∈ End(M ), there exists n ∈ N such that sn 6= 0 and

{f ∈ Hom(M,N )| Kerf = Kersn} = {f ∈ Hom(M,N )| Kerf∩Imsn = 0}sn.

Proof. (1) ⇒ (2). Suppose that 0 6= s ∈ End(M ). Since N is pseudo-M -
gp-injective, there exists n ∈ N such that sn 6= 0 and every monomorphism
from sn(M ) to N can be extended to a homomorphism from M to N . Let
f ∈ Hom(M,N ) such that Kerf = Kersn. We consider homomorphism

ϕ : sn(M ) → N via ϕ(sn(m)) = f(m), ∀m ∈M.

It is easy to see that ϕ is a monomorphism. By our assumption, there exists a
homomorphism h : M → N such that hι = ϕ, where ι is the inclusion map from
sn(M ) →M, which implies that f = hsn ∈ Hom(M,N )sn.

(2) ⇒ (3). It is clear that

{f ∈ Hom(M,N )| Kerf ∩ Imsn = 0}sn ⊆ {f ∈ Hom(M,N )| Kerf = Kersn}.
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Let g ∈ Hom(M,N ) such that Kerg = Kersn. Then by (2), there exists a homo-
morphism h : M → N such that g = hsn. It follows that Kerh∩ Imsn = 0. Hence,
g ∈ {f ∈ Hom(M,N )| Kerf ∩ Ims = 0}sn.

(3) ⇒ (1). For each 0 6= s ∈ End(M ), by (3), there exists n ∈ N such that
sn 6= 0 and

{f ∈ Hom(M,N )| Kerf = Kersn} = {f ∈ Hom(M,N )| Kerf ∩ Imsn = 0}sn.

Assume that φ : sn(M ) → N is a monomorphism. Then Ker(φsn) = Kersn.

Hence there is h ∈ Hom(M,N ) such that φsn = hsn. It gives hι = φ, where ι is
the inclusion map, proving that N is pseudo-M -gp-injective. �

From the above theorem, we get some characterizations of quasi-pseudo-gp-
injective modules.

Corollary 2.2 Let M be right R-module and S = End(M ). The following condi-
tions are equivalent:

(1) M is quasi-pseudo-gp-injective;

(2) For each 0 6= s ∈ S, there exists n ∈ N such that sn 6= 0 and

{f ∈ S| Kerf = Kersn} ⊆ Ssn;

(3) For each 0 6= s ∈ S, there exists n ∈ N such that sn 6= 0 and

{f ∈ S| Kerf = Kersn} = {f ∈ S| Kerf ∩ Imsn = 0}sn.

Corollary 2.3 Let M , N be right R-modules. The following conditions are equiv-
alent:

(1) N is pseudo-M -p-injective;

(2) For each s ∈ End(M ),

{f ∈ Hom(M,N )| Kerf = Kers} ⊆ Hom(M,N )s;

(3) For each s ∈ End(M ),

{f ∈ Hom(M,N )| Kerf = Kers} = {f ∈ Hom(M,N )| Kerf ∩ Ims = 0}s.

Proposition 2.4 Let N be pseudo-M -p-injective. Then for any elements s, α ∈
End(M ), we have:

{β ∈ Hom(M,N )|Kerβ ∩ Ims = Kerα ∩ Ims} =

{γ ∈ Hom(M,N )|Kerγ ∩ Im(αs) = 0}α+ {δ ∈ Hom(M,N )|δs = 0}.
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Proof. Let

A = {β ∈ Hom(M,N )|Kerβ ∩ Ims = Kerα ∩ Ims}

B = {γ ∈ Hom(M,N )|Kerγ ∩ Im(αs) = 0}
C = {δ ∈ Hom(M,N )|δs = 0}

It is easy to see that Bα + C ⊆ A. Conversely, let β ∈ Hom(M,N ) such that
Kerβ ∩ Ims = Kerα ∩ Ims (β ∈ A). It follows that Ker(αs) = Ker(βs). By
Corollary 2.3, there exists γ ∈ B such that βs = γαs or (β − γα)s = 0. It means
β − γα ∈ C, which implies that β ∈ Bα+ C. �

Proposition 2.5 If M = M1 ⊕M2 is quasi-pseudo-p-injective, then M1 is M2-p-
injective.

Proof. Let M = M1 ⊕ M2 be quasi-pseudo-p-injective and s ∈ End(M2). Let
f : s(M2) → M1 be a homomorphism. Consider homomorphism g : s(M2) → M

defined by g(a) = f(a) + a for all a ∈ s(M2). Then g is a monomorphism. By
[16, Proposition 1.3], M is pseudo-M2-p-injective, whence g extends to a homo-
morphism ḡ : M2 → M . Let π : M → M1 be the canonical projection. Then
πḡ : M2 →M extends f . Thus M1 is M2-p-injective, as required. �

Corollary 2.6 For any integer n ≥ 2, if Mn is quasi-pseudo-p-injective, then M

is quasi-p-injective.

Proposition 2.7 Let M and N be modules and X = M ⊕ N. The following
conditions are equivalent:

(1) N is pseudo-M -p-injective.

(2) For each M -cyclic submodule K of X with K ∩M = K∩N = 0, there exists
C ≤ X such that K ≤ C and N ⊕C = X.

Proof.(1) ⇒ (2). Let K be a submodule of X which is M -cyclic with K ∩M =
K ∩ N = 0, and πM : M ⊕ N → M and πN : M ⊕ N → N be the canonical
projections. We can check that N ⊕ K = N ⊕ πM(K) and hence πM (K) ' K,
proving that πM(K) is a M -cyclic submodule of M . Let ϕ : πM (K) → πN (K) be
a homomorphism defined as follows: for k = m + n ∈ K (with m ∈ M,n ∈ N ),
ϕ(m) = n. It is easy to see that ϕ is a monomorphism. Since N is pseudo
M -p-injective, there is a homomorphism ϕ̄ : M → N extending ϕ. Let C =
{m + ϕ̄(m)| m ∈M}. Then X = N ⊕C and K ≤ C.

(2) ⇒ (1). Let s ∈ End(M ) and ϕ : s(M ) → N be a monomorphism. Put
K = {s(m) − ϕ(s(m))| m ∈ M}. Then K ∩M = 0 and N ⊕K = N ⊕ πM (K) =
N ⊕ s(M ). It is easy to see that K is M -cyclic. By assumption, there exists a
submodule C of X containing K with N ⊕ C = X. Let π : N ⊕ C → N be the
natural projection. Then the restriction π|M extends ϕ, proving (1). �
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3 On quasi-pseudo-gp-injective rings and modules

From Corollary 2.3, we have some characterizations of quasi-pseudo-p-injective
modules.

Theorem 3.1 The following conditions are equivalent for module M with S =
End(M ):

(1) M is quasi-pseudo-p-injective;

(2) If Kerf = Kerg with f, g ∈ S = End(M ), then Sf = Sg;

(3) If f ∈ S = End(M ) and α, β : f(M ) → M is monomorphisms, then α = sβ

for some s ∈ S.

Proof. (1) ⇒ (2). By Corollary 2.3.
(2) ⇒ (3). Assume that 0 6= f ∈ S satisfies (2). Let α, β : f(M ) → M be

monomorphisms. Then Ker(αf) = Ker(βf). By our assumption, there exists
s ∈ S such that αf = sβf , which implies that α = sβ.

(3) ⇒ (1). Let s ∈ S and ϕ : s(M ) → M be a monomorphism. Let ι : s(M ) →
M be the inclusion. By (3), there exists ϕ̄ ∈ S such that ϕ = ϕ̄ι showing that ϕ̄
extends ϕ. Thus M is quasi-pseudo p-injective. �

Corollary 3.2 The following conditions are equivalent for ring R:

(1) R is right pseudo P-injective;

(2) If r(x) = r(y) with x, y ∈ R, then Rx = Ry.

We have the following relations:
quasi-p-injective ⇒ quasi-pseudo-p-injective ⇒ quasi-pseudo-gp-injective.

Example 3.3 i) Let F be an algebraically closed field and x, y be indeterminates.
Let R = F (y)[x] such that xf − fx = df/dy, f ∈ F (y) (see [20, Example]). Then
the R-module M = R/(x(x + y)(x + y − 1/y))R is quasi-pseudo-p-injective but
not quasi-p-injective by [20, Example].

ii) Let K = F (y1, y2, ...) and L = F (y2, y3, ...) with F a field, and ρ : K → L

be an isomorphism via ρ(yi) = yi+1 and ρ(c) = c for all c ∈ F (see [4, Exmaple 1].
Let K[x1, x2; ρ] be the ring of twisted left polynomials over K where xik = ρ(k)xi

for all k ∈ K and for i = 1, 2. Set R = K[x1, x2; ρ]/(x2
1, x

2
2). Then RR is quasi-

pseudo-gp-injective which is not quasi-pseudo-p-injective.

Next we study some properties of quasi-pseudo-gp-injective, self-generator mod-
ules and their endomorphism rings.
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Theorem 3.4 Let M be a right R-module with S = End(M ). Then

(1) If S is a right pseudo GP-injective ring, then M is quasi-pseudo-gp-injective.

(2) If M is quasi-pseudo-gp-injective and self-generator, then S is a right pseudo
GP-injective ring.

Proof. (1). Let f ∈ S. Since S is right pseudo GP-injective, there exists n ∈ N
such that fn 6= 0 and if rS(fn) = rS(g) for some g ∈ S, then g ∈ Sfn by Corollary
2.2. Assume that Kerfn = Kerg with g ∈ S. Then rS(fn) = rS(g) and hence
g ∈ Sfn . Thus M is quasi-pseudo-gp-injective by Corollary 2.2.

(2). Let 0 6= f ∈ S. Since M is quasi-pseudo-gp-injective, there exists n ∈ N
such that fn 6= 0 and if Ker(fn) = Ker(g) with g ∈ S, then g ∈ Sfn. Let g ∈ S

with rS(fn) = rS(g). Since M is a self-generator, we get Kerfn = Kerg. By our
assumption, g ∈ Sfn and so S is right pseudo GP-injective. �

Corollary 3.5 Let M be a right R-module with S = End(M ). Then

(1) If S is a right pseudo P-injective ring, then M is quasi-pseudo-p-injective.

(2) If M is a quasi-pseudo-p-injective module which is a self-generator, then S

is a right pseudo P-injective ring.

For a right R-module M , S = End(M ) we denote:

W (S) = {s ∈ S| Ker(s) is essential in M}.

Lemma 3.6 Let MR be a quasi-pseudo-gp-injective module which is a self-generator,
S = End(M ). If a 6∈W (S), then Ker(a) < Ker(a− ata) for some t ∈ S.

Proof. If a 6∈ W (S), then Ker(a) is not an essential submodule of M . Hence
there exists 0 6= m ∈ M such that mR ∩ Ker(a) = 0. Since M is a self-generator,
there exists λ ∈ S such that 0 6= λ(M ) ≤ mR. Hence Ker(a) ∩ λ(M ) = 0. It
follows that aλ 6= 0. Since M is quasi-pseudo-gp-injective, there exists n ∈ N such
that (aλ)n 6= 0 and if Ker(aλ)n = Kerg with g ∈ S = End(M ), then g ∈ S(aλ)n.
From Ker(a) ∩ λ(M ) = 0 we also have Ker((aλ)n) = Ker(λ(aλ)n−1). Hence
λ(aλ)n−1 ∈ S(aλ)n. Therefore λ(aλ)n−1 = s(aλ)n for some s ∈ S, which implies
that Im(λ(aλ)n−1) ≤ Ker(a − asa). It follows that Ker(a) < Ker(a− asa), since
Im(λ(aλ)n−1) 6≤ Ker(a) and (aλ)n 6= 0. �

Lemma 3.7 Assume that M is quasi-pseudo-gp-injective module which is a self-
generator. Then J(S) = W (S).
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Proof. Let a ∈ J(S). If a 6∈ W (S), then by the proof of Lemma 3.6, there exist
a positive integer n and λ, t ∈ S such that (aλ)n 6= 0 and (1 − at)(aλ)n = 0.
Note that 1 − at is left invertible, so (aλ)n = 0, a contradiction. Conversely, let
a ∈ W (S). Then, for each t ∈ S, ta ∈ W (S) and hence 1 − ta 6= 0. Since M
is a quasi-pseudo-p-injective module, there exists n ∈ N such that (1 − ta)n 6= 0
and if Ker(1 − ta)n = Kerg for some g ∈ S = End(M ), then g ∈ S(1 − ta)n. Put
u = (1 − ta)n, 1 − u = v for some v ∈ W (S). Since Ker(v) ∩ Ker(1 − v) = 0, we
have Ker(1 − v) = 0. Then Ker(u) = Ker(1S). It follows that Su = S and hence
(1 − ta)n is left invertible, proving our lemma. �

Corollary 3.8 If R is right pseudo GP-injective, then J(R) = Z(RR).

Recall that a moduleM is said to satisfy the generalized C2-condition (or GC2)
(see [25]) if for any N 'M with N ≤ M , N is a direct summand of M .

Theorem 3.9 If M is quasi-pseudo-gp-injective, then M satisfies GC2.

Proof. Let S = End(M ). Assume that Kers = 0 with s ∈ S. We need to prove
that S = Ss. Since M is quasi-pseudo-gp-injective, there exists n ∈ N such that
sn 6= 0 and Kersn = Kerg with g ∈ S, which would imply that g ∈ Ssn. Note that
Kers = 0 = Ker1S . It follows that 1S ∈ Ssn ≤ Ss, whence S = Ss. Thus M is
GC2 by [25, Theorem 3]. �

Corollary 3.10 If R is right pseudo GP-injective, then R is right GC2.

Proposition 3.11 Let M be a quasi-pseudo-p-injective module which is a self-
generator and S = End(M ). If every complement submodule of M is M -cycilc,
then S/J(S) is von Neumann regular.

Proof. We have J(S) = W (S) by Lemma 3.7. For all λ ∈ S, let L be a comple-
ment of Kerλ. We consider the map φ : λ(L) →M defined by φ(λ(x)) = x for all
x ∈ L. Then φ is a monomorphism and λ(L) ' L which implies λ(L) is a M -cyclic
submodule of M . Since M is quasi-pseudo-p-injective, there exists θ ∈ S, which is
an extension of φ. Then Kerλ+L ≤ Ker(λθλ−λ), and we see that Kerλ⊕L ≤e M .
Consequently λθλ − λ ∈W (S) = J(S). �

Theorem 3.12 LetM be a quasi-pseudo-gp-injective module which is a self-generator
and S = End(M ). Then the following conditions are equivalent:

(1) S is right perfect;

(2) For any infinite sequence s1, s2, · · · ∈ S, the chain

Ker(s1) ≤ Ker(s2s1) ≤ · · ·

is stationary.
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Proof.(1) ⇒ (2). Let si ∈ S, i = 1, 2.... Since S is right perfect, S satisfies DCC
on finitely generated left ideals. So the chain Ss1 ≥ Ss2s1 ≥ ... terminates. Thus
there exists n > 0 such that Ssnsn−1...s1 = Ssksk−1...s1 for all k > n. It follows
that Ker(snsn−1...s1) = Ker(sksk−1...s1) for all k > n.

(2) ⇒ (1). We first prove that S/W (S) is a von Neumann regular ring. Let a1 6∈
W (S). Then by Lemma 3.6, there is c1 ∈ S such that Ker(a1) < Ker(a1−a1c1a1).
Put a2 = a1 − a1c1a1. If a2 ∈ W (S), then we have ā1 = ā1c̄1ā1, i.e., ā1 is
a regular element of S/W (S). If a2 6∈ W (S), there exists a3 ∈ S such that
Ker(a2) < Ker(a3) with a3 = a2 − a2c2a2 for some c2 ∈ S by the preceding proof.
Repeating the above-mentioned process, we get a strictly ascending chain

Ker(a1) < Ker(a2) < ...,

where ai+1 = ai − aiciai for some ci ∈ S, i = 1, 2.... Let

b1 = a1, b2 = 1 − a1c1, ..., bi+1 = 1 − aici, ...,

then
a1 = b1, a2 = b2b1, ..., ai+1 = bi+1bi...b2b1, ....

and we have the following strictly ascending chain

Ker(b1) < Ker(b2b1) < ...,

which contradicts the hypothesis. Hence there exists a positive integer m such that
am+1 ∈ W (S), i.e., am−amcmam ∈W (S). This shows that ām is a regular element
of S/W (S), and hence ām−1, ām−2, ..., ā1 are regular elements of S/W (S), i.e.,
S/W (S) is von Neumann regular. We have J(S) = W (S) by Lemma 3.7, proving
that S/J(S) is von Neumann regular. Thus S is right perfect by [5, Lemma 1.9].
�

Lemma 3.13 Let M be a right R-module and S = End(M ). Then

(1) lS (A(M )) = lS (A) for all A ⊆ S with A(M ) =
∑
s∈A

s(M ).

(2) lS (rM(lS (A))) = lS(A) for all A ⊆ S.

Proof.(1). Let a ∈ lS (A), a · A = 0. Therefore a · s = 0 or a(s(M )) = 0 for all
s ∈ A. This implies that a ∈ lS (A(M )). Hence lS (A) ≤ lS(A(M )). Conversely,
for every a ∈ lS (A(M )), we have a.s(M ) = 0 for all s ∈ A. This implies that
a ∈ lS(A).

(2). It is clear that lS(rM (lS(A))) ≥ lS (A). Conversely, for all s ∈ lS (A),
s.A(M ) = 0. This implies that A(M ) ≤ rM (lS(A)). Thus
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lS (A(M )) ≥ lS(rM (lS(A))).

By (1) we get the result. �
Let ∅ 6= A ⊂ S = End(M ). Put

KerA =
⋂

f∈A

Kerf = {m ∈M |f(m) = 0 ∀f ∈ A}.

If X ≤ M and X = KerA for some ∅ 6= A ⊂ S, X is called an M -annihilator.

Proposition 3.14 Let MR be a quasi-pseudo-gp-injective, self-generator module
and S = End(MR). If MR satisfies ACC on M -annihilators, then S is semipri-
mary.

Proof. Now we will claim that S satisfies ACC on right annihilators or DCC on
left annihilators. Indeed, we consider the descending chain

lS(A1) ≥ lS (A2) ≥ ... where Ai ⊆ S,

then
rM(lS (A1)) ≤ rM (lS (A2)) ≤ ....

By our assumption, there exists n ∈ N such that rM (lS(An)) = rM (lS(Ak)) for all
k > n, and so lSrM(lS (An)) = lSrM(lS (Ak)). By Lemma 3.13, lS(An) = lS (Ak)
for all k > n. This shows that S satisfies DCC on left annihilators or ACC on
right annihilators. Therefore J(S) is nilpotent by [14, Lemma 3.29] and Lemma
3.7. It follows that S is semiprimary by Theorem 3.12. �

Corollary 3.15 If R is right pseudo GP-injective and satisfies ACC on right
annihilators, then R is semiprimary.

For quasi-pseudo-p-injective modules, we have

Theorem 3.16 Let MR be a quasi-pseudo-p-injective module and S = End(MR).
If M satisfies ACC on M -annihilators, then S is semiprimary.

Proof. Consider the chain Sf1 ≥ Sf2 ≥ · · · of cyclic left ideals of S. Then
we have Kerf1 ≤ Kerf2 ≤ · · · . By hypothesis, there exists n ∈ N such that
Kerfn = Kerfn+k, ∀k ∈ N. It follows that Sfn = Sfn+k ∀k ∈ N. Thus R is right
perfect.

Consider the ascending chain rM(J(S)) ≤ rM (J(S)2) ≤ · · · . By assumption,
there is n ∈ N such that rM (J(S)n) = rM (J(S)n+k) for all k ∈ N. Let B = J(S)n.
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Then we get rM (B) = rM(B2). Assume J(S) is not nilpotent. Then B2 6= 0 and
the non-empty set

{Kerg| g ∈ B and Bg 6= 0}

has a maximal element Kerg0, g0 ∈ B. The relation BBg0 = 0 would imply that
Img0 ≤ rM (B2) = rM (B) and hence Bg0 = 0, contradicting to the choice of g0.
Therefore we can find an h ∈ B with Bhg0 6= 0. However, since Kerg0 ≤ Ker(hg0),
the maximality of Kerg0 implies that Kerg0 = Kerhg0. Since M is quasi-pseudo-
p-injective, this implies that Sg0 = Shg0, i.e. g0 = shg0 for some s ∈ S or
g0(1 − sh) = 0. Since sh ∈ B ≤ J(S), this gives g0 = 0, a contradiction. Thus
J(S) must be nilpotent. �

Following [14], a ring R is called directly finite if ab = 1 in R implies that
ba = 1.

Proposition 3.17 A right pseudo P-injective ring R is directly finite if and only
if all monomorphisms RR → RR are isomorphisms.

Proof. Assume that ϕ : RR → RR is a monomorphism. Let a = ϕ(1). Then
r(a) = 0 = r(1) and so Ra = R by Corollary 2.2. Hence ba = 1 for some b ∈ R, so
ab = 1 by hypothesis, and so ϕ is onto. Conversely, let ab = 1 in R. Therefore the
homomorphism α : R → R, α(r) = br, ∀r ∈ R is monomorphism. By hypothesis
α is an epimorphism. There exists c ∈ R such that 1 = α(c) = bc. It follows that
a = c and ba = 1. �

The series of higher left socles {Sl
α} of the ring R are defined inductively as

follows: Sl
1 = Soc(RR), and Sl

α+1/S
l
α = Soc(R/Sl

α) for each ordinal α ≥ 1.

Motivated by [3, Lemma 9 (ii)], we have the following proposition.

Proposition 3.18 If R is a right pseudo GP-injective ring and satisfies ACC on
essential left ideals, then

(1) r(J) ≤e RR,

(2) J is nilpotent,

(3) J = lr(J).

Proof. (1) Since R has ACC on essential left ideals, R/Sl is a left Noetherian ring.
Then, there exists k > 0 such that Sl

k = Sl
k+1 = · · · and R/Sl

k is a right Noetherian
ring. Now we will claime that Sl

k ≤e RR. In fact, assume that xR∩Sl
k = 0 for some

0 6= x ∈ R. Let R̄ = R/Sl
k and lR̄(ā) be maximal in the set {lR̄(ȳ)| 0 6= y ∈ xR}.

Since Sl
k = Sl

k+1, we get Soc(R̄R̄) = 0, and so R̄ā is not simple as left R̄-module.
Thus there exists t ∈ R such that 0 6= R̄t̄ā < R̄ā.
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If āt̄ā = 0̄, then ata ∈ aR∩Sl
k = 0, and so ata = 0. From this fact and pseudo

GP-injectivity of R, we see that if r(ta) = r(b), b ∈ R then Rta = Rb by Corollary
2.2. If r(a) = r(ta), then Ra = Rta, a contradiction. Thus r(a) < r(ta). Then
there exixts b ∈ R such that ab 6= 0 and tab = 0. That means 0 6= ab ∈ xR and
lR̄(ā) < lR̄(ab). This contradicts to the maximality of lR̄(ā0).

If āt̄ā 6= 0̄, then 0 6= R̄āt̄ā < R̄ā. Since R is right pseudo GP-injective,
there exists m ∈ N such that (ata)m 6= 0 and if r((ata)m) = r(b), b ∈ R then
b ∈ R(ata)m. It follows that r(a) < r((ata)m). Let c ∈ r((ata)m) \ r(a). Then
0 6= ac ∈ xR, (āt̄ā)m−1āt̄ ∈ lR̄(ac) \ lR̄(ā), a contradiction.

Thus Sl
k ≤e RR and hence r(J) ≤e RR (since Sl

k ≤ r(J)).
(2). By [3, Lemma 9 (ii)].
(3). Since r(J) ≤e RR, lr(J) ≤ Zr = J . �

A module MR is called extending (or CS) if every submodule of M is essential
in a direct summand of M. A ring R is called right CS if RR is CS (see [7]).
Following [10], a module M is called NCS if there are no nonzero complement
submodules which is small in M. A ring R is right NCS if RR is NCS. Clearly
every CS module is NCS, but the converse is not true, as we can see that the
Z-module Z2⊕Z8 is NCS but not CS. On the other hand, let K be a division ring
and V be a left K-vector space of infinite dimension. Let S = EndK(V ). Take

R =
(
S S

S S

)
, then R is right NCS but not right CS.

Proposition 3.19 If R is a left Noetherian, right pseudo P-injective and right
NCS ring, then R is left Artinian.

Proof. First, we prove that R̄ = R/J is a regular ring. Assume that a 6∈ J .
Since J = lr(J) = Zr, there exists a nonzero complement right ideal I of R
such that r(a) ∩ I = 0 by Lemma 3.18. We claim that there exists b ∈ I such
that ab 6∈ J . Suppose on the contrarily that aI ≤ J . Then aIr(J) = 0. Since
r(a) ∩ I = 0, Ir(J) ≤ I ∩ r(a) = 0. Thus I ≤ lr(J) = J . It follows that I is small
in RR, a contradiction. Hence we have b ∈ I such that r(a) ∩ bR = 0 and ab 6∈ J .
It follows that r(b) = r(ab). Hence Rb = Rab and so b = cab for some c ∈ R. This
implies that b̄ ∈ rR̄(ā− āc̄ā), where r̄ = r+ J ∈ R/J for any r ∈ R. Since ab 6= 0̄,
we see that rR̄(ā) < rR̄(ā− āc̄ā). If a− aca ∈ J , then a is a regular element of R.
If a− aca /∈ J, let a1 = a − aca. Then r(a1) is not essential in RR. By the same
way, we get a2 = a1−a1c1a1 for some c1 ∈ R and rR̄(ā1) < rR̄(ā2). If a2 ∈ J , then
a1 is a regular element of R. It follows that a is a regular element of R. If a2 6∈ J ,
we have a3 = a2 − a2c2a2 for some c2 ∈ R and rR̄(ā2) < rR̄(ā3). Continuing this
process, we get ak ∈ R, k = 1, 2, .... Since R is left noetherian and Jac(R̄) = 0, R̄
is a semiprime and left Goldie ring. By [9, Lemma 5.8], R̄ satisfies ACC on right
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annihilators. Hence there exists some positive integer m such that am ∈ J , and
thus a is also a regular element of R. Since ā is an arbitrary nonzero element of R̄,
we see that R̄ is a regular ring. Then R̄ is semisimple because R is left noetherian.
Moreover, by Lemma 3.18, J is nilpotent and so R is semiprimary. Thus R is left
artinian. �

4 On maximal ideals

In this section, we study the endomorphism ring of quasi-pseudo-gp-injective mod-
ules.

Let S = EndR(M ) be the endomorphism ring of a rightR-moduleM. Following
[19], an element u ∈ S is called a right uniform element of S if u 6= 0 and u(M )
is a uniform submodule of M. An element u ∈ R is called right uniform if uR is a
uniform right ideal (see [14]). In this section, we generalize some results of Sanh
and Shum for quasi-p-injective modules; Nicholson and Yousif for p-injective rings
to quasi-pseudo-gp-injective modules.

First, we need the following lemma:

Lemma 4.1 Let M be a quasi-pseudo-gp-injective module and S = End(M ).
Then for any right uniform element u of S, the set

Au = {s ∈ S|Kers ∩ Imu 6= 0}

is the unique maximal left ideal of S containing lS (Imu).

Proof. Clearly, Au is a left ideal of S. It is easy to see that lS (Imu) ≤ Au and
Au 6= S (because 1 /∈ Au). We now claim that Au is maximal. In fact, for any
s ∈ S \ Au, we have Imu ∩ Kers = 0, whence su 6= 0. There exists m ∈ N
such that (su)m 6= 0 and if Ker(su)m = Ker(g), g ∈ S then g ∈ S(su)m . Since
Ker((su)m) = Keru, we get S(su)m = Su. Then there exists t ∈ S such that
(1− t(su)m−1s)u = 0. It follows from S = lS (u) + Ss, that Au is maximal in S. It
remains to show that Au is unique. In fact, assume that there is another maximal
left ideal L of S containing lS(Imu) and L 6= Au. Repeating above process we also
have S = L, a contradiction. �

Corollary 4.2 ([19, Lemma 1]) Let M be a quasi-p-injective module and S =
End(M ). Then for any right uniform element u of S, the set

Au = {s ∈ S|Kers ∩ Imu 6= 0}

is the unique maximal left ideal of S containing lS (Imu).
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Corollary 4.3 Let R be right pseudo GP-injective. If u ∈ R is a right uniform
element, define

Mu = {x ∈ R|r(x) ∩ uR 6= 0}.

Then Mu is the unique maximal left ideal which contains l(u).

The following lemma is a generalization of Lemma 3 in [19] .

Lemma 4.4 Let M be a quasi-pseudo-p-injective module, S = End(MR) and W =
⊕n

i=1ui(M ) a direct sum of uniform submodule ui(M ) of M. If A ≤ S is a maximal
left ideal which is not of the form Au for some right uniform element u of S, then
there is ψ ∈ A such that Ker(1 − ψ) ∩W is essential in W.

Proof. Since A 6= Au1 , we can take k ∈ A \ Au1 . Then Imu1 ∩ Kerk = 0,
whence ku1 6= 0. There exists m ∈ N such that (ku1)m 6= 0 and if Ker(ku1)m =
Ker(g), g ∈ S then g ∈ S(ku1)m. It is easy to see that Ker(ku1)m = Ker(u1)
and hence S(ku1)m = Su1. Consequently we have u1 = α1(ku1)m for some
α1 ∈ S. Let ϕ1 = α1(ku1)m−1k ∈ SA ⊂ A. Then (1 − ϕ1)u1 = 0. This shows that
Ker(1 − ϕ1) ∩ u1(M ) = u1(M ) 6= 0. If Ker(1 − ϕ1) ∩ ui(M ) 6= 0 for all i ≥ 2,
then we are done and in this case ⊕n

i=1(Ker(1 − ϕ1) ∩ ui(M )) ≤e W . Without
loss of generality, we now assume that Ker(1 − ϕ1) ∩ u2(M ) = 0. It follows that
(1 − ϕ1)(u2(M )) ' u2(M ) is uniform. Since A 6= A(1−ϕ1)u2 , we can take any
h ∈ A \ A(1−ϕ1)u2 . By using the above argument, there exists α2 ∈ S such that
(1 − ϕ1)u2 = α2h(1 − ϕ1)u2. It follows that

(1 − (α2h+ ϕ1 − α2hϕ1))u2 = 0.

Let ϕ2 = α2h + ϕ1 − α2hϕ1. Then (1 − ϕ2)ui = 0 for i = 1, 2. Continuing this
way, we eventually obtain a ψ ∈ A such that Ker(1 − ψ) ∩ ui(M ) 6= 0 for all
i = 1, . . . , n. In other words, we have shown that Ker(1−ψ)∩W is essential in W
as required. �

The following theorem describes the properties of the endomorphism ring S =
End(MR) of a quasi pseudo p-injective module MR.

Theorem 4.5 Let M be a quasi-pseudo-gp-injective, self-generator module with
finite Goldie dimension and S = End(MR).

(1) If I ⊂ S is a maximal left ideal, then I = Au for some right uniform element
u ∈ S.

(2) S is semilocal.
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Proof. Since M is a self-generator which has finite Goldie dimension, there exist
elements u1, u2, ..., un of S such thatW = u1(M )⊕u2(M )⊕· · ·⊕un(M ) is essential
in M, where each ui(M ) is uniform. Moreover, M is a quasi-p-injective module,
we have J(S) = W (S) = {s ∈ S| Ker(s) is essential in M} by Lemma 3.7.

(1). Suppose on the contrary that I is not of the form Au for some right
uniform element of u ∈ S. Then by Lemma 4.4, there exists a ϕ ∈ I such that
Ker(1−ϕ)∩W is essential in W. It follows that 1−ϕ ∈ J(S) ⊂ I, a contradiction.
Hence I = Au for some right uniform element u ∈ S.

(2). If ϕ ∈ Au1 ∩Au2 ∩ · · · ∩Aun , then Ker(ϕ) ∩ ui(M ) 6= 0 for each i. Hence
Ker(ϕ) is essential in M. Therefore ϕ ∈ J(S), i.e., Au1 ∩ · · · ∩ Aun = J(S). This
shows that S/J(S) is semisimple. �

As a consequence, we immediately get the following result for the right pseudo
GP-injective rings.

Corollary 4.6 Let R be a right pseudo GP-injective ring which has right finite
Goldie dimension. Then

(1) If I ⊂ R is a maximal left ideal, then I = Au for some right uniform element
u ∈ R.

(2) R is semilocal.
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