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Abstract

The class of limit distribution functions (df’s) of multivariate order statistics from

independent and identical random vectors with random sample size is fully character-

ized. Two cases in this study are considered, the first case is when the random sample

size is assumed to be independent of all the basic random vectors, and the second

case is when the interrelation of the random size and the basic random vectors is not

restricted.
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1 Introduction

The pioneer papers Finkelstein (1953), Tiago de Oliveira (1958), Gumbel (1960) and

Galambos (1975) gave the foundations for the multivariate approach to extreme value

distributions. Following these works several bivariate and trivariate extreme value models

began to appear in the literature. In fact, many works, e.g., Mikhailov (1974), Tiago de

Oliveira (1975), Marshall and Olkin (1983), Galambos (1987), Takahashi (1994), Barakat

(1990, 1997, 2001) and Barakat, et al. (2004, 2012) have been devoted to study the

asymptotic behaviour, as well as the conditions of the convergence of the bivariate and

trivariate extremes. In the last two decades much attention has been paid to multivariate

order statistics, especially the models for multivariate extremes based on extreme value

theory. These models have attracted a great deal of attention particularly in the area of

environmental extremes. For example, in the analysis of environmental extreme value data

there is often need to study joint inter-site extreme behaviour: examples are joint flooding

at various see ports, or at various rain gauges. If measurements of m characteristics
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are taken on the same members of the population, then the observed random quantities

follow some type of multivariate distribution. Let this distribution of a random vector

X = (X1, X2, ..., Xm) be F (x
¯
) = F (x1, x2, ..., xm). Consider a sequence of n independent

m−dimensional random vectors Xj = (X1,j , X2,j , ..., Xm,j), j = 1, 2, ..., n, with common df

F (x
¯
) = P (X1,j < x1, X2,j < x2, ..., Xm,j < xm) and the survival function G(x

¯
) = P (X ≥

x) = P (X1,j ≥ x1, X2,j ≥ x2, ..., Xm,j ≥ xm). Let Ft(x
¯t

) and Gt(x
¯t

) be the possible

marginals of F (x
¯
) and G(x

¯
), respectively, where t = (t1, t2, ..., tk), k = 1, 2, ...,m − 1, 1 ≤

tk ≤ m, and x
¯t

= (xt1 , xt2 , ..., xtk). The order statistics of the kth marginal random sample

Xk,1, Xk,2, ..., Xk,n, k = 1, 2, ...,m, are Xk,1:n ≤ Xk,2:n ≤ ... ≤ Xk,n:n. Write Zk:n and W k:n

to denote the random vectors (X1,n−k1+1:n, ..., Xm,n−km+1:n) and (X1,k1:n, ..., Xm,km:n),

respectively, where k = (k1, ..., km) are any positive integers (independent of n). Clearly,

any investigation of Zk:n can be easily carried over W k:n by turning to −Xj . In many

biological, agricultural and military activities problem it is almost impossible to have a

fixed sample size, because some observations are always lost for various reasons. Therefore,

the sample size n itself is considered frequently to be a random variable (rv) νn. In this case

the random vector Zk:νn is called the random extreme vector. In this paper, the asymptotic

behavior of the vector Zk:νn is investigated, assuming that the random sample size itself

is a positive integer-valued rv νn, which weakly converges ( w−→
n

) to a nondegenerate

limit, as n → ∞. Subsequently, operations and relations for vectors are understood

componentwise. Given a, b, x, y ∈ Rm, let ax + b = (a1x1 + b1, ..., amxm + bm) and

x ≤ y means xj ≤ yj , j = 1, ...,m. Moreover, for any suitable normalizing constants

an = (a1,n, ..., am,n) > (0, 0, ..., 0) = 0 and bn = (b1,n, ..., bm,n), let F 〈n〉(x) = F (anx +

bn), G〈n〉(x) = G(anx + bn), F
〈n〉
t (xt) = Ft(anxt + bn), G

〈n〉
t (xt) = Gt(anxt + bn) and

H
〈n〉
k:n(x) = Hk:n(anx + bn) = P (Zk:n < anx + bn). Finally, we adopt the abbreviations

max(a1, ..., an) =
∨n
i=1 ai and min(a1, ..., an) =

∧n
i=1 ai.

The key ingredient in getting a suitable exact expression of Hk:n is the realization of

the event E = {Xj,n−kj+1:n ≤ xj , j = 1, ...,m} under certain collection of conditions Cn as

follows: Let x = (x1, ..., xm) be a fixed point in Rm and define for ik ∈ {0, 1}, k = 1, 2, ...,m,

the random events Ei(x) = {X ∈ Rm : Xk ≥ xk, if ik = 0 and Xk < xk, if ik = 1, k =

1, 2, ...,m}. The derivation of the df of Hk:n for all rank vector k is mainly based on the

finding the probabilities of the events Ei(x). Barakat and Nigm (2012) calculated these

probabilities by considering the set of indices i and denote I0
i and I1

i the sets of ranks

associated with the null and units subindex values, respectively (e.g., if i = (0, 0, 1, 1), we

get I0
i = I0

(0,0,1,1) = (1, 2) and I1
i = I1

(0,0,1,1) = (3, 4)). In this case the probabilities of
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these events can be easily evaluated for i 6= (1, 1, ..., 1) in terms of the marginal survival

function of X as P (Ei(x)) = Pi(x) = GI0
i
(x

I0
i

) +
∑
I⊆I1i

(−1)card(I)G
I0
i
∪I

(x
I0
i
∪I

), where

card(I) refers to the cardinality (number of elements) of the set I. Barakat and Nigm

(2012) have used the above idea to introduce the following two theorems.

Theorem 1.1. For any extreme rank vector k = (k1, ..., km) in Rm, we get

Hk:n(x) = n!

k1−1∑
i11=0

...

km−1∑
i1m=0

∑
ri∈Cn

∏
i∈{0,1}m

(GI0i
(xI0i

) +
∑
I⊆I1i

(−1)card(I)GI0i ∪I
(xI0i ∪I

))ri

ri!
,

(1.1)

where Cn = {ri ∈ N+ :
∑

i∈{0,1}m
ri = n,

∑
i∈Ωj

ri = i1j , j = 1, 2, ...,m} and Ωj =

{i = (i1, i2, ..., im) ∈ {0, 1}m : ij = 0}.

Theorem 1.2. For any suitable normalizing vectors of constants an = (a1,n,...,am,n)> 0

and bn ∈ Rm and an extreme rank vector k = (k1, ..., km), we have

H
〈n〉
k:n(x) w−→

n
Hk(x), (1.2)

where Hk(x) is a nondegenerate df if and only if, for all x for which the univariate

marginals of Hk(x) (Hk1(x1) = Hk(x1,∞), Hk2(x2) = Hk(∞, x2,∞), ..., Hkm(xm) =

Hk(∞, xm)) are positive, the limits

nG
〈n〉
I0i

(xI0i
)→ hI0i

(xI0i
), ∀ i ∈ {0, 1}m, as n→∞, (1.3)

nG
〈n〉
I0i ∪I

(xI0i ∪I
)→ hI0i ∪I

(xI0i ∪I
), ∀ I ⊆ I1

i , i ∈ {0, 1}m/1, as n→∞, (1.4)

are finite, and the function

Hk(x) = H1(x)

k1−1∑
i11=0

k2−1∑
i12=0

...

km−1∑
i1m=0

∑
ri∈C

.
∏

i∈{0,1}m/1

(hI0i
(xI0i

) +
∑
I⊆I1i

(−1)card(I)hI0i ∪I
(xI0i ∪I

))ri

ri!
(1.5)

is a nondegenerate df, where H1(x) = exp(
m∑
j=1

(−1)j
∑

1≤i1<i2<...<ij≤m
hi1,...,ij (xi1 , ..., xij ))

(note that hi1,...,im(xi1 , ..., xim) = h(x) = hI01 (x)) and C = {ri ∈ N+ :
∑
i∈Ωj

ri = i1j , j =

1, 2, ...,m}. The actual limit df of Zk:n is the one given by (1.5). Moreover, the compo-

nents of Zk:n are asymptotically independent if and only if hi1,i2(xi1 , xi2) ≡ 0, for all

1 ≤ i1 < i2 ≤ m.
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Remark 1.1. If, we let each component xj of x in Hk(x), except xt, 1 ≤ t, j ≤ m, t 6= j,

tend to infinity, we obtain the tth univariate marginal of Hk(x). Namely, Hkt(xt) =

1 − Γkt(ht(xt)) =
kt−1∑
it=0

h
it
t (xt)
it!

e−ht(xt), t = 1, 2, ...,m. In view of the Extremal Types The-

orem (see, Galambos, 1987) the function ht(xt) can take one and only one of the three

types h
(1)
t (xt) = x−αt , xt > 0; h

(2)
t (xt) = (−xt)α, xt ≤ 0; and h

(3)
t (xt) = e−xt , where α > 0.

Remark 1.2. For all integers k1, k2, ..., km, the limit Hk(x) is continuous in x (since, the

univariate marginals Hkt(xt), t = 1, 2, ...,m, are all differentiable). Hence, the convergence

in (1.2) is uniform with respect to x. We conclude this section by introducing a lemma,

which is due to Helly and it will be used in the next section. Moreover, it is independent

of the number of dimensions (see Feller, 1979).

Lemma 1.1. Every sequence of df ’s {Fn} possesses a subsequence {Fnk
}, that converges

to an extended df F (by the extended df we mean that F (∞) − F (−∞) ≤ 1). Moreover,

a necessary and sufficient condition for such a limit to be a proper one is that {Fn} is

stochastically bounded (for the definition see Feller, 1979, p. 247). Finally, Fn
w−→
n

F if

and only if the limit of every convergent subsequence equals F.

2 Asymptotic Properties of the Random Extreme Vector,

when the Random Sample Size and the Basic rv’s are

Independent

Throughout this section we deal with the weak convergence of different multivariate ex-

treme order statistics, when the sample size itself is a rv νn, which is assumed to be

independent of the basic random vector. Consider now the following assumptions:

H
〈n〉
k:n(x) w−→

n
Hk(x), [A]

An(nx) = P (
νn
n
< x) w−→

n
A(x), [B]

where Hk(x) is a nondegenerate df and A(x) is a df with A(+0) = 0,

H
〈n〉
k:νn

(x) = P (Z
〈n〉
k:νn

< x) w−→
n

Ψk(x) =

∫ ∞
0

H̃k(zhI0i
(xI0i

), zhI0i ∪I
(xI0i ∪I

))dA(z), [C]

where

H̃k(zhI0i
(xI0i

), zhI0i ∪I
(xI0i ∪I

)) = H1(z, x)

k1−1∑
i11=0

...

km−1∑
i1m=0

∑
ri∈C∏

i∈{0,1}m/1

(zhI0i
(xI0i

) +
∑

I⊆I1i
(−1)card(I)zhI0i ∪I

(xI0i ∪I
))ri

ri!
,
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H1(z, x) = exp

 m∑
j=1

(−1)j
∑

1≤i1<i2<...<ij≤m
zhi1,...,ij (xi1 , ..., xij )

 .

Theorem 2.1. The following implications hold:

(1) [A] + [B]⇒ [C], (2) [A] + [C]⇒ [B], (3) [B] + [C]⇒ [A],

where in the third implication, A(x) is assumed to be a nondegenerate df.

Remark 2.1. The continuity of the limit df Hk(x) in [A] implies the continuity of the

limit Ψk(x). Hence the convergence in [C] is uniform with respect to x.

Remark 2.2. It is natural to look for the limitations on νn, under which we get the relation

Hk(x) = Ψk(x), ∀x. In view of Theorem 2.1, the last equation is satisfied if and only if the

df A(z) is degenerate at one, which means the asymptotically almost randomlessness of

νn. In practice, this limitation is satisfied, when the rv νn has a Poisson distribution with

mean n, or νn has a binomial distribution(p = 1 − 1
n , n). Moreover, in view of Theorems

1.2 and 2.1, we deduce that the components of the vector Z
(n)
k:νn

= (Zk:νn − bn)/an are

asymptotically independent if and only if hi1,i2(xi1 , xi2) ≡ 0, for all 1 ≤ i1 < i2 ≤ m, and

A(x) is degenerate df at one. Throughout the proof, due to Remark 2.2, we assume that

A(x) is a nondegenerate df.

Proof of the implication [A] + [B]⇒ [C] : First, we note that H
〈n〉
k:n(x) can be written

in the form (see Barakat and Nigm, 2009)

H
〈n〉
k:n(x) =

k1−1∑
i11=0

k2−1∑
i12=0

...

km−1∑
i1m=0

∑
ri∈C−n

F 〈n〉
n−

∑
i∈{0,1}m/1 ri

(x)(1 + o(1))

∏
i∈{0,1}m/1

(nG
〈n〉
I0i

(xI0i
) +

∑
I⊆I1i

(−1)card(I)nG
〈n〉
I0i ∪I

(xI0i ∪I
))ri

ri!
, (2.1)

where C−n = {ri ∈ N+ :
∑

i∈{0,1}m/1
ri ≤ n,

∑
i∈Ωj

ri = i1j , j = 1, 2, ...,m} → C = {ri ∈ N+ :∑
i∈Ωj

ri = i1j , j = 1, 2, ...,m}, as n→∞,

F 〈n〉
n−

∑
i∈{0,1}m/1 ri(x)=(1 +

m∑
j=1

(−1)j
∑

1≤i1<i2<...<ij≤m

nG
〈n〉
i1,...,ij

(xi1 , ..., xij )

n
)n−

∑
i∈{0,1}m/1 ri .

Now, by using the total probability theorem and by the independence of νn and

X1, X2, ..., Xn, we get

H
〈n〉
k:νn

(x) =

∞∑
S=∨mi=1ki

H
〈n〉
k:s (x)P (νn = s). (2.2)
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Assume that z = [Sn ], where [θ] denotes the greatest integer part of θ. Thus, the relations

(1.1) and (2.1) show that the sum in (2.2) is a Riemann sum of the integral

H
〈n〉
k:νn

(x) =

∫ ∞
0

M
〈n〉
k:n (x, z)dAn(nz), (2.3)

where

M
〈n〉
k:n (x, z) =

k1−1∑
i11=0

k2−1∑
i12=0

...

km−1∑
i1m=0

∑
ri∈C−zn

F 〈n〉
zn−

∑
i∈{0,1}m/1 ri

(x)(1 + o(1))

∏
i∈{0,1}m/1

(znG
〈n〉
I0i

(xI0i
) +

∑
I⊆I1i

(−1)card(I)znG
〈n〉
I0i ∪I

(xI0i ∪I
))ri

ri!
.

Appealing to the condition [A], Theorem 1.2 and Remark 1.2, we get

M
〈n〉
k:n (x, z) w−→

n
H̃k(zhI0i

(xI0i
), zhI0i ∪I

(xI0i ∪I
)), (2.4)

where the convergence is uniform with respect to x over any finite interval of z.

Now, let ζ be a continuity point of A(x) such that 1−A(ζ) < ε. Then∫ ∞
ζ

H̃k(zhI0i
(xI0i

), zhI0i ∪I
(xI0i ∪I

)) dA(z) ≤ 1−A(ζ) < ε. (2.5)

Moreover, due to (2.5) and the condition B), we get for sufficiently large n∫ ∞
ζ

M
〈n〉
k:n (x, z) dAn(nz) ≤ 1−An(nζ) ≤ (1−A(ζ)) + (A(ζ)−An(nζ)) < 2ε. (2.6)

In order to estimate the difference H
〈n〉
k:νn

(x)−Ψ(x), we first estimate∫ ζ

0
M
〈n〉
k:n (x, z) dAn(nz)−

∫ ζ

0
H̃k(zhI0i

(xI0i
), zhI0i ∪I

(xI0i ∪I
))dA(z).

By the triangle inequality∣∣∣∣∫ ζ

0
M
〈n〉
k:n (x, z) dAn(nz)−

∫ ζ

0
H̃k(zhI0i

(xI0i
), zhI0i ∪I

(xI0i ∪I
))dA(z)

∣∣∣∣ (2.7)

≤
∣∣∣∣∫ ζ

0
M
〈n〉
k:n (x, z) dAn(nz)−

∫ ζ

0
H̃k(zhI0i

(xI0i
), zhI0i ∪I

(xI0i ∪I
))dAn(nz)

∣∣∣∣
+

∣∣∣∣∫ ζ

0
H̃k(zhI0i

(xI0i
), zhI0i ∪I

(xI0i ∪I
))dAn(nz)−

∫ ζ

0
H̃k(zhI0i

(xI0i
), zhI0i ∪I

(xI0i ∪I
))dA(z)

∣∣∣∣ ,
where the convergence in (2.4) is uniform over the finite interval [0, ζ]. Therefore, for

arbitrary ε > 0 and for sufficiently large n,∣∣∣∣∫ ζ

0
[M
〈n〉
k:n (x, z)− H̃k(zhI0i

(xI0i
), zhI0i ∪I

(xI0i ∪I
))]dA(z)

∣∣∣∣ ≤ ε(An(nζ)−An(0)) ≤ ε. (2.8)
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In order to estimate the third term in (2.7), we construct Riemann sums which are close to

the integral there. Let N be a fixed number and 0 = ζ0 < ζ1 < ... < ζN = ζ be continuity

points of A(x). Furthermore, let N and ζi be such that∣∣∣∣∫ ζ

0
H̃k(zhI0i

(xI0i
), zhI0i ∪I

(xI0i ∪I
))dAn(nz)

−
N∑
i=0

H̃k(ζihI0i
(xI0i

), ζihI0i ∪I
(xI0i ∪I

))(An(nζi)−An(nζi−1))

∣∣∣∣∣ < ε

and ∣∣∣∣∫ ζ

0
H̃k(zhI0i

(xI0i
), zhI0i ∪I

(xI0i ∪I
))dAn(nz)

−
N∑
i=0

H̃k(ζihI0i
(xI0i

), ζihI0i ∪I
(xI0i ∪I

))(A(ζi)−A(ζi−1))

∣∣∣∣∣ < ε.

Since, by the assumption An(nζi)
w−→
n

A(ζi), 0 ≤ i ≤ N, the two Riemann sums are closer

to each other than ε for all n sufficiently large. Thus, once again by the triangle inequality,

the absolute value of the difference of the integrals is smaller than 3ε. Combining this fact

with (2.8), the left hand side of (2.7) becomes smaller than 4ε for all large n. Therefore,

in view of (2.5), (2.6) and (2.4),∣∣∣H〈n〉k:νn
(x)−Ψ(x)

∣∣∣ < ∣∣∣∣∫ ζ

0
M
〈n〉
k:n (x, z) dAn(nz)−

∫ ζ

0
H̃k(zhI0i

(xI0i
), zhI0i ∪I

(xI0i ∪I
)) dA(z)

∣∣∣∣
+

∫ ∞
ζ

M
〈n〉
k:n (x, z) dAn(nz) +

∫ ∞
ζ

H̃k(zhI0i
(xI0i

), zhI0i ∪I
(xI0i ∪I

)) dA(z) < 7ε.

This completes the proof of the first part of the theorem.

Proof of the implication [A] + [C]⇒ [B]: Starting with (2.4), we select a subsequence

{n′} of {n} for which An′(n
′z) converges weakly to an extended df A′(z) (i.e., A′(∞)−

A′(0) ≤ 1 and such a subsequence exists by the compactness of df’s). Then, by repeating

the first part of the theorem for the subsequence {n′}, with the exception that we choose

ζ so that A′(∞)−A′(ζ) < ε, we get Ψ(x) =
∫∞

0 e−u(z,x) dA′(z). Since the two limits Ψk(x)

and H̃k(x) are df’s, we get Ψk(∞) = 1 =
∫∞

0 dA′(z) = A′(∞)−A′(0), which implies that

A′(z) is a df. Now, if An(nz) did not converge weakly, then we can select two subsequences

{n′} and {n′′} such that An′(n
′z)

w−→
n′

A′(z) and An′′(n
′′z)

w−→
n′′

A′′(z), where A′(z) and

A′′(z) are df’s. In this case, we get

Ψk(x)=

∫ ∞
0

H̃k(zhI0i
(xI0i

), zhI0i ∪I
(xI0i ∪I

))dA′(z)=

∫ ∞
0

H̃k(zhI0i
(xI0i

), zhI0i ∪I
(xI0i ∪I

))dA′′(z).

Thus, let (x2 →∞, ..., xm →∞) (say), we get∫ ∞
0

Γk1(zh1(x1))dA′(z) =

∫ ∞
0

Γk1(zh1(x1))dA′′(z). (2.9)
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Let L′(t) =
∫∞

0 Γk1(tz) dA′(z) and L′′(t) =
∫∞

0 Γk1(tz) dA′′(z), where Γk(tz) =
∞∑
r=k

(tz)r

r! e
−tz.

Evidently L′(t) and L′′(t) are analytic functions on the region R = {t : 0 < |t| <∞}∩{t :

Real(t) > 0}. In view of (2.9) we deduce that

L′(h1(x1)) = L′′(h1(x1)), ∀ real values of x1. (2.10)

Since the function h1(x1) is continuous and h1(−∞) = +∞, h1(+∞) = 0, the equation

(2.10) shows that the two analytic functions L′ and L′′ coincide on some interval contained

in R. Thus by the uniqueness theory of analytic functions, we deduce that L′ and L′′ are

coincide on the region R, which implies A′(z) = A′′(z). This completes the proof of this

part.

Proof of the implication [B] + [C]+ ⇒ [A]: We can assume, in view of Remark

2.1, without any loss of generality, that the df Ψk(x) is continuous. Therefore, in view

of Lemma 5.2.1 in Galambos (1987), the condition [C] will be satisfied for all univariate

marginals of Ψk(x), i.e. we have

H
〈n〉
ki:νn

(xi)
w−→
n

Ψki(xi), i = 1, 2, .....,m, (2.11)

where Ψki(xi) is the ith univariate marginal df of Ψk(x). We shall now prove

H
〈n〉
ki,n

(xi)
w−→
n

Hki(xi), i = 1, 2, ..,m. (2.12)

In view of Lemma 1.1, we first show that the sequences {Z〈n〉ki:n
}, i = 1, 2, ...,m, are stochas-

tically bounded . If we assume the contrary, we would find εi,1, εi,2 > 0 such that at least

one of the relations

(a) lim
n→∞

P (Z
〈n〉
ki:n
≥ xi) ≥ εi,1 > 0, ∀ xi > 0, i = 1, ...,m,

(b) lim
n→∞

P (Z
〈n〉
ki:n

< xi) ≥ εi,2 > 0, ∀ xi < 0, i = 1, ...,m,

is satisfied. The assertions (a) and (b) mean that the sequence {Z〈n〉ki:n
}n, i = 1, ...,m, is

not stochastically bounded at the left (−∞) and at the right (+∞), respectively. Let the

assumption (a) be true. Since A(x) is nondegenerate df, we find ε0 > 0 and β > 0 such

that

P
(νn
n
≥ β

)
≥ ε0, for sufficiently large n. (2.13)

Using the well known inequality, for i = 1, 2, ...,m,

P
(
Z
〈n〉
ki,`
≥ xi

)
≥ P

(
Z
〈n〉
ki,j
≥ xi

)
, ∀` ≥ j. (2.14)

We thus get the following inequalities, for sufficiently large n,

P
(
Z
〈n〉
ki:νn

) ≥ xi
)
≥
∑
s≥[nβ]

P
(
Z
〈n〉
ki:s
≥ xi

)
P (νn = s)
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≥ P
(
Z
〈n〉
ki:[nβ] ≥ xi

)
P (νn ≥ [nβ]) ≥ ε0P

(
Z
〈n〉
ki:[nβ] ≥ xi

)
, i = 1, 2, ....m

(note that P (νn ≥ [nβ]) ≥ P (νn ≥ nβ)). Therefore,

lim
n→∞

P (Z
〈n〉
ki:νn

≥ xi) ≥ ε0 lim
n→∞

P (Z
(n)
ki:[nβ] ≥ xi).

Now, if we find ε′t > 0 such that lim
n→∞

P (Z
〈n〉
ki:[nβ] ≥ xi) ≥ ε

′
i > 0, we get lim

n→∞
P (Z

〈n〉
ki:νn

≥

xi) ≥ ε0ε
′
i > 0, which contradicts the right stochastic boundedness of the sequence

{Z〈n〉ki:νn
}n and consequently contradicts the relation (2.11). However, if such an ε′i > 0

does not exist we have lim
n→∞

P (Z
〈n〉
ki:[nβ] ≥ xi) = 0, which in view of the first relation (3.10)

of Lemma 3.1 in Barakat (1997) leads to the following chain of implications (∀ xi > 0)

P (Z
〈n〉
ki:[nβ] ≥ xi) → 0 ⇒ Γki([nβ]Gi:n(xi)) → 0 ⇒ [nβ]Gi:n(xi) → 0 ⇒ nGi:n(xi) → 0

(since nGi:n(xi)→ 0) ⇒ Γki(nGi:n(xi))→ 0⇒ P (Z
〈n〉
ki:n
≥ xi)→ 0, which contradicts the

assumption (a). Consider the assumption (b). Since A(x) is a df we can find a positive

integer γ and real number α > 0 such that

P (νn ≤ γ) ≥ α, for sufficiently large n. (2.15)

Therefore, in view of (2.15) and the inequality (2.14), we have

P (Z
〈n〉
ki:νn

< xi) ≥
γn∑

s=∨mi=1ki

P (Z
〈n〉
ki:s

< xi)P (νn = s) ≥ P (Z
〈n〉
ki:γn

< xi)P (
νn
n
≤ γ)

≥ αP (Z
〈n〉
ki:γn

< xi), i = 1, 2, ....,m.

Hence, we get lim
n→∞

P (Z
〈n〉
ki:νn

< xi) ≥ α lim
n→∞

P (Z
〈n〉
ki:γn

< xi). By using the second

relation (3.11) of Lemma 3.1 in Barakat (1997) and applying the same argument as in

the case (a), it is easy to show that the last inequality leads to a contradiction (the last

inequality, in view of the assumption (b)), which yields that the sequences {Z〈n〉ki:n
}n, i =

1, 2, ...,m, are not stochastically bounded at the left. This completes the proof that the

sequences {Z〈n〉ki:n
}n, i = 1, 2, ...,m, are stochastically bounded. Now, if H

〈n〉
ki:n

(xi) did not

converge weakly, then we could select two subsequences {n′} and {n′′} such that H
〈n′〉
ki:n′

(xi)

would converge weakly to H
′
ki

(xi) and H
〈n′′〉
ki:n′′

(xi) to another df H
′′
ki

(xi), i = 1, 2, ...,m.

In this case we get (by repeating the first part of Theorem 2.1 for the univariate case and

for the two subsequences {n′}, {n′′})

Ψki(xi) =

∫ ∞
0

(1− Γki(zh
′
i(xi)))dA(z) =

∫ ∞
0

(1− Γki(zh
′′
i (xi)))dA(z).

However, Lemma 3.2 in Barakat (1997) shows that the last equalities, cannot hold unless

h′i(xi) ≡ h′′i (xi). Hence the relation (2.12) is proved.
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For accomplishing the proof of the last part of Theorem 2.1, we have to prove the

relation (1.4). Since (2.12) implies (1.3), the elementary inequality Gn(x) ≤ Gi:n(xi), i =

1, 2, ...,m, yields that, the sequence {Gn(x)}n is bounded. Therefore, we can select a

subsequence {n′} of {n}, for which the relation (1.4) is satisfied. Let us repeat the first

part of Theorem 2.1 for this subsequence. We get

Ψk(x) =

∫ ∞
0

H̃k(zhI0i
(xI0i

), zhI0i ∪I
(xI0i ∪I

))dA(z), (2.16)

where the function hI0i
(xI0i

) in (2.16) may depend on the actual subsequence {n′}. Ob-

serving, however, that

∂

∂hI0i
(xI0i

)
H̃k(hI0i

(xI0i
), hI0i ∪I

(xI0i ∪I
)) > 0, if m is even,

∂

∂hI0i
(xI0i

)
H̃k(hI0i

(xI0i
), hI0i ∪I

(xI0i ∪I
)) < 0, if m is odd,

for all values of hI0i
(xI0i

), for which 0 < hI0i
(xI0i

) <
∧m
i=1 hi(xi) < ∞, i = 1, 2, ...,m.

Hence, the function H̃k(hI0i
(xI0i

), hI0i ∪I
(xI0i ∪I

)) is strictly monotone in hI0i
(xI0i

), or in other

words, the function H̃k(hI0i
(xI0i

), hI0i ∪I
(xI0i ∪I

)) is uniquely determined by hI0i
(xI0i

), where

hi, i = 1, ...,m, are fixed and 0 < hI0i
(xI0i

) <
∧m
i=1 hi <∞. This fact, with Lemma 3.3 in

Barakat (1997), lead to a contradiction if we assume that the limit hI0i
(xI0i

) depends on

the subsequence {n′} and at the same time consider the representation (2.16). Hence, the

proof of Theorem 2.1 is completed.

3 Asymptotic Properties of the Random Extreme Vector,

when the Interrelation of the Random Size and the Basic

rv’s is not Restricted

When the interrelation between the random index and the basic variables is not restricted,

parallel theorem of Theorem 2.1 may be proved by replacing the condition [B] by a stronger

one. Namely, the weak convergence of the df An(nx) must be replaced by the convergence

in probability of the rv νn
n to a positive rv τ. However, the key ingredient of the proof

of this parallel result is to prove the mixing property, due to Rényi (see, Barakat and

Nigm, 1996) of the sequence of order statistics under consideration. In the sense of Rényi

a sequence {Xn} of rv’s is called mixing if for any event E of positive probability, the

conditional df of {Xn}, under the condition E , converges weakly to a nondegenerate df,
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which does not depend on E , as n→∞. The following lemma proves this property for the

sequence {Z〈n〉k:n}n.

Lemma 3.1. Under the condition [A], the sequence {Z〈n〉k:n}n is mixing.

Proof. The lemma will be proved if one shows the relation P (Z
〈n〉
k:n < x | Z〈`〉k:` <

x) w−→
n

Hk(x), for all integers ` = (
∨m
i=1 ki), (

∨m
i=1 ki) + 1, .... The sufficiency of the

above relation can easily be proved as a direct multivariate extension of Lemma 6.2.1.

of Galambos (1987). However, this relation is equivalent to

P (Z
〈n〉
k:n ≥ x | Z

〈`〉
k:` ≥ x) w−→

n
Tk(x), (3.1)

where, Tk(x) is the survival function of the limit df Hk(x), i.e.,

Tk(x) = 1 +
m−1∑
j=1

(−1)j
∑

1≤ı1≤ı2≤...≤ıj≤m
Hk(cı) + (−1)mHk(x),

where ı = (ı1, ..., ıj), cı = (c1, ..., cm), cıj = xıj and cs = ∞, ∀s 6= ıj , j = 1, 2, ...,m.

Therefore, our lemma will be established if one proves the relation (3.1). Now, we can

write

P (Z
〈n〉
k:n ≥ x | Z

〈`〉
k:` ≥ x) = P (Z

〈n〉
k:n ≥ x, Z

〈n〉
k:` < x | Z〈`〉k:` ≥ x)

+ P (Z
〈n〉
k:n ≥ x, Z

〈n〉
k:` ≥ x | Z

〈`〉
k:` ≥ x). (3.2)

Bearing in mind that all vectors are independent and identical, the first term in (3.2) can

be written in the form

P (Z
〈n〉
k:n ≥ x, Z

〈n〉
k:` < x | Z〈`〉k:` ≥ x) = P (Z

∗〈n〉
k:(n−`) ≥ x, Z

〈n〉
k:` < x | Z〈`〉k:` ≥ x)

= P (Z
∗〈n〉
k:(n−`) ≥ x)− P (Z

∗〈n〉
k:(n−`) ≥ x, Z

〈n〉
k:` ≥ x | Z

〈`〉
k:` ≥ x),

where

Z
∗〈n〉
k:(n−`) = (Z

∗〈n〉
k1:(n−`), Z

∗〈n〉
k2:(n−`), ..., Z

∗〈n〉
km:(n−`)),

Z
∗〈n〉
k1:(n−`) = ((k1th largest of X1,(`+1), X1,(`+2), ..., X1,n)− b1,n)/a1,n,

Z
∗〈n〉
k2:(n−`) = ((k2th largest of X2,(`+1), X2,(`+2), ..., X2,n)− b2,n)/a2,n,

....................................................................................................,

Z
∗〈n〉
km:(n−`) = ((kmth largest of Xm,(`+1), Xm,(`+2), ..., Xm,n)− bm,n)/am,n.

Therefore, in view of (3.2), we have

P (Z
〈n〉
k:n ≥ x | Z

〈`〉
k:` ≥ x) = P (Z

∗〈n〉
k:(n−`) ≥ x)−∆n(x), (3.3)
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where ∆n(x) = P (Z
〈n〉
k:n ≥ x, Z

〈`〉
k:` ≥ x | Z〈`〉k:` ≥ x) − P (Z

∗〈n〉
k:(n−`) ≥ x, Z

〈n〉
k:` ≥ x | Z〈`〉k:` ≥ x).

By using the well-known inequalities Z
∗〈n〉
k:(n−`) ≤ Z

〈n〉
k:n and P (E2

⋂
E3) − P (E1

⋂
E3) ≤

P (E2)− P (E1), for any three events E1, E2 and E3, for which E1 ⊆ E2, we get

0 ≤ ∆n(x)P (Z
〈`〉
k:` ≥ x) ≤ P (Z

〈n〉
k:n ≥ x)− P (Z

∗〈n〉
k:(n−`) ≥ x). (3.4)

On the other hand, by virtue of the condition [A], it is easy to prove that

lim
n→∞

P (Z
∗〈n〉
k:(n−l) ≥ x) = lim

n→∞
P (Z

〈n〉
k:(n−l) ≥ x) = Tk(x) (3.5)

(not that nG
〈n〉
i (xi) → hi(xi) ⇒ (n − 1)G

〈n〉
i (xi) → hi(xi), ∀ X ′is for which hi(xi) <

∞, i = 1, 2, ...,m and nG
〈n〉
t (xt) → ht(xt) ⇒ (n − 1)G

〈n〉
t (xt) → ht(xt), ∀xt’s for which

ht(xt) <∞). By combining the relations (3.3)-(3.5), the proof of the relation (3.1) follows

immediately. Hence the required result.

Considering the facts that the normalizing constants, which may be used in the multi-

variate extreme case are the same as those for the univariate case, and the limit df Hk(x)

is continuous, we can easily by using Lemma 3.1, show that the proof of the following

theorem follows without any essential modifications as a direct multivariate extension of

the proof of Theorem 2.1 in Barakat and El Shindidy (1990).

Theorem 3.1. Consider the condition

νn/n→ τ, in probability, as n→∞, [B′]

where τ is a positive rv. Under the conditions of Theorem 2.1, we have the implication

[A] + [B′]⇒ [C].

Acknowledgment. The authors are grateful to a referee for several helpful comments.
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