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Abstract

In this paper, we deal with and improve one of the uniqueness results
on two difference products of entire functions sharing one value by con-
sidering that the functions share the value zero, counting multiplicities.
The research findings also include some IM-analogues of the theorems
that we obtain, i.e., the nonzero value is allowed to be shared ignoring
multiplicities. Meanwhile, we investigate the situation where the differ-
ence products share a nonzero polynomial instead, by confining its degree
and generalize the previous concerning results. Moreover, we show by il-
lustrating examples and a number of remarks that our results are best
possible in certain senses.

1. Introduction

In this paper, by meromorphic functions we will always mean meromorphic functions

in the complex plane. We adopt the standard notations of the Nevanlinna theory of

meromorphic functions as explained in [6, 10, 19]. It will be convenient to let E denote

any set of positive real numbers of finite linear measure, not necessarily the same at

each occurrence. For a nonconstant meromorphic function h, we denote by T (r, h) the

Nevanlinna characteristic of h and by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)},
as r → ∞ and r ̸∈ E.

Let f and g be two nonconstant meromorphic functions, and let a be a value in the

extended plane. We say that f and g share the value a CM, provided that f and g have

the same a-points with the same multiplicities. We say that f and g share the value a IM,

provided that f and g have the same a-points ignoring multiplicities (see [19]). We say

that a is a small function of f, if a is a meromorphic function satisfying T (r, a) = S(r, f)

(see [25]). We say f and g sharing a function h CM(IM) if f−h and g−h share 0 CM(IM).

Throughout this paper, we denote by ρ(f) and ρ2(f) the order and the hyper-order of f

respectively (see [6, 10, 19]).

Many research works on meromorphic functions whose differential polynomials share

value or fixed points have been done (see [2, 13, 14, 18]). Recently the difference variant

of the Nevanlinna theory has been established, see, e.g.[1, 2] and, in particular, in [3],
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by Halburd-Korhonen and by Chiang-Feng, independently. Using these theories, some

mathematicians from Finland and China began to consider the uniqueness questions of

entire functions sharing values with their shifts, and have done many fine works (see [7,

8, 17]). We recall the following results.

Theorem A ([14, Theorem 1.2]). Let f and g be transcendental entire functions

of finite order, and c be a nonzero complex constant, and let n ≥ 6. If fnf(z + η) and

gng(z+ η) share 1 CM, then fg = t1 or f = t2g for some constants t1 and t2 that satisfies

tn+1
1 = tn+1

2 = 1.

Let P (z) = anz
n+an−1z

n−1+· · ·+a0 be a nonzero polynomial, where an(̸= 0), an−1, · · · , a0
are complex constants. Next we denote Γ1, Γ2 by Γ1 = m1 + m2, Γ2 = m1 + 2m2 re-

spectively, where m1 is the number of the simple zeros of P (z) and m2 is the number of

the multiple zeros of P (z). Throughout this paper we denote d = GCD(λ0, λ1, · · · , λn),

where λi = n+ 1 if ai = 0, λi = i+ 1 if ai ̸= 0.

Theorem B ([16, Theorem 2]). Let f and g be transcendental entire functions of

finite order, c be a nonzero complex constant, and let n > 2Γ2 + 1 be an integer. If

P (f(z))f(z + η) and P (g(z))g(z + η) share 1 CM , then one of the following cases holds:

(i)f = tg, td = 1,

(ii)R(f, g) ≡ 0, where R(w1, w2) = P (w1)w1(z + η)− P (w2)w2(z + η),

(iii)f = eα, g = eβ, where α and β are two polynomials and α+β = b, b is a constant,

a2ne
(n+1)b = 1.

We recall the following example:

Example 1([16]). Let P (z) = (z − 1)6(z + 1)6z11, f(z) = sin z, g(z) = cos z and

η = 2π. It immediately yields that n > 2Γ2 + 1 and P (f(z))f(z + η) = P (g(z))g(z + η),

and so P (f(z))f(z + η) and P (g(z))g(z + η) share 1 CM.

Clearly, we have f ̸≡ tg for a constant t satisfying tm = 1, where m ∈ Z+. But f

and g satisfy the algebraic equation R(f, g) = 0, where R(w1, w2) = P (w1(z))w1(z + η)−
P (w2(z))w2(z + η).

Moreover, we can see that f and g do not share 0 CM. Regarding this, one may ask,

what can be said about the relationship between f and g, if f and g share 0 CM in

Theorem B? In this direction, we will prove the following result:

Theorem 1. Let f, g be transcendental entire functions of finite orders such that f

and g share 0 CM, let η be a nonzero complex number, and let n > 2Γ2 +1 be an integer.

If P (f(z))f(z+ η) and P (g(z))g(z+ η) share 1 CM, then one of the following cases holds:

(i)f = tg, td = 1.

(ii)f = eα, g = ce−α, where α is a nonconstant polynomial, c is a constant satisfying

a2nc
n+1 = 1.

Remark 1. From Example 1 we can see that the assumption that “f and g share 0

CM” in Theorem 1 is necessary.
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The following result is an IM-analogue of Theorem 1 related to difference polynomials:

Theorem 2. Let f , g be two transcendental entire functions of finite orders such that

f and g share 0 CM, η be a nonzero complex constant, and let n > 3Γ1 + 2Γ2 + 4 be an

integer. If P (f(z))f(z + η) and P (g(z))g(z + η) share 1 IM , then one of the two cases

holds:

(i)f = tg, td = 1,

(ii)f = eα, g = ce−α, α is a polynomial and c is a constant satisfying a2nc
n+1 = 1.

Remark 2. Suppose that the polynomial P (z) in Theorem 2 is a nonzero monomial,

say, P (z) = zn, where n > 11. Then m1 = 0, m2 = 1, and so Γ1 and Γ2 in Theorem 2

satisfy Γ1 = 1 and Γ2 = 2 respectively. From this we can get Corollary 1 without the

assumption that f and g share 0 CM:

Corollary 1. Let f, g be transcendental entire functions of finite order, and c be a

non-zero complex constant and let n > 11 be an integer. If fnf(z+c) and gng(z+c) share

1 IM, then fg = t1 or f = t2g for some constants t1 and t2 satisfying tn+1
1 = tn+1

2 = 1.

Next we let P0 ̸≡ 0 be a nonzero polynomial, and set

F (z) =
f(z)nf(z + η)

P0(z)
, G(z) =

g(z)ng(z + c)

P0(z)
(1.1)

Theorem C ([12, Theorem 1.1]). Let f, g be transcendental entire functions of finite

order, η be a nonzero complex number, n be an integer and 2 degP0 < n + 1. Suppose

that fn(z)f(z + η) and gn(z)g(z + η) share P0 CM. Then

(I) If n ≥ 4 and that F is a Möbius transformation of G, then one of the following

two cases holds: (i) f = tg, where t is a constant satisfying tn+1 = 1, (ii) f = eQ and

g = te−Q, where P0 reduces to a nonzero constant c, say, and t is a constant such that

tn+1 = c2, Q is a nonconstant polynomial.

(II) If n ≥ 6, then one of the above cases I(i) and I(ii) hold.

Theorem D ([12, Theorem 1.2]). Let f, g be transcendental entire functions of finite

order, α be a meromorphic function such that ρ(α) < ρ(f) and α ̸≡ 0,∞. Suppose that

η is a nonzero complex number, n and m are two positive integers, where n ≥ m + 6. If

fn(z)(fm(z)+1)f(z+η) and gn(z)(gm(z)+1)g(z+η) share α(z) CM, then f = tg, where

t is a constant satisfying tm = 1.

The following results are IM-analogues of Theorem C and D related to difference

polynomials:

Theorem 3. Let f, g be transcendental entire functions of finite order, let η be a

nonzero complex constant and let n be an integer such that degP0 < n + 1. Suppose

that fn(z)f(z + η) and gn(z)g(z + η) share P0 IM. If n ≥ 4 and that F is a Möbius

transformation of G, or if n > 11, then one of the following cases holds:

(i) f = tg, tn+1 = 1,t is a constant,
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(ii) f = eα and g = te−α, where P0 reduces to a nonzero constant c, say, and t is a

constant such that tn+1 = c2, α is a nonconstant polynomial.

Proceeding as in the proof of Theorem 1.2[12], we can get the following result by

Lemma 9 in Section 2:

Theorem 4. Let f, g be transcendental entire functions of finite order, η be a nonzero

complex constant, α be a meromorphic function such that ρ(α) < ρ(f) and α ̸≡ 0,∞, and

let n and m be positive integers such that n > 5m+ 11. If fn(z)(fm(z) + 1)f(z + η) and

gn(z)(gm(z)+ 1)g(z+ η) share α IM, then f = tg, where t is a constant satisfying tm = 1.

Next we let P0 be a nonzero polynomial, and let P (z) = anz
n + an−1z

n−1 + · · · + a0

be a nonzero polynomial, where an(̸= 0), an−1, · · · , a0 are complex constants. Set

F (z) =
P (f)f(z + η)

P0(z)
, G(z) =

P (g)g(z + η)

P0(z)
, , (1.2)

We continue to our study in this paper by establishing uniqueness theorems related to

entire functions whose difference polynomials share a nonzero polynomial P0 and obtain

the results as follows.

Theorem 5. Let f, g be transcendental entire functions of finite orders such that f

and g share 0 CM, η be a nonzero complex constant, and let n be an integer such that

degP0 < n + 1. Suppose that P (f(z))f(z + η) and P (g(z))g(z + η) share P0 CM. If

n > 2Γ1 + 1 and that F is a Möbius transformation of G, or if n > 2Γ2 + 1, then one of

the following cases holds:

(i)f = tg, td = 1,

(ii)f = eα and g = te−α, where P0 reduces to a nonzero constant c, say, and t is a

constant such that tn+1 = c2, α is a nonconstant polynomial.

Remark 3. Suppose that the polynomial P (z) in Theorem 5 is a nonzero monomial,

say, P (z) = zn, where n > 5. Then m1 = 0, m2 = 1, and so Γ1 and Γ2 in Theorem 5

satisfy 2Γ1+1 = 3 and 2Γ2+1 = 5 respectively. From this we can get Theorem C without

the assumption that f and g share 0 CM.

Theorem 6. Let f, g be transcendental entire functions of finite orders such that

f and g share 0 CM, η be a nonzero complex constant, and let n be an integer such

that degP0 < n + 1. Suppose that P (f(z))f(z + η) and P (g(z))g(z + η) share P0 IM. If

n > 2Γ1 + 1 and that F is a Möbius transformation of G, or if n > 3Γ1 + 2Γ2 + 4, then

one of the following cases holds:

(i)f = tg, td = 1,

(ii)f = eα and g = te−α, where P0 reduces to a nonzero constant c, say, and t is a

constant such that tn+1 = c2, α is a nonconstant polynomial.

Remark 4. Suppose that the polynomial P (z) in Theorem 6 is a nonzero monomial,

say, P (z) = zn, where n > 11. Then m1 = 0 and m2 = 1, and so Γ1 and Γ2 in Theorem 5

satisfy 2Γ1 + 1 = 3 and 3Γ1 + 2Γ2 + 4 = 11 respectively. From this we can get Theorem 3
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without the assumption that f and g share 0 CM.

Theorem E ([16, Theorem 1]). Let f be a transcendental entire function of finite

order and c be a fixed nonzero complex constant, let P (z) = anz
n + an−1z

n−1 + · · · + a0

be a nonzero polynomial, where an(̸= 0), an−1, · · · , a0 are complex constants, and m is the

number of the distinct zeros of P (z). Then for n > m, P (f)f(z + c) = a(z) has infinitely

many solutions, where a(z) is a small function of f .

Corresponding to the above result, we investigate the uniqueness of difference polyno-

mials of entire functions, and obtain the next result.

Theorem 7. Let f, g be transcendental entire functions of finite non-integer orders

such that f and g share 0 CM, η be a nonzero complex constant and let n be an integer.

Suppose that P (f(z))f(z + η) and P (g(z))g(z + η) share a(z) IM ,where a(z) is a small

function of f and g. If n > 3Γ1 + 2Γ2 + 4, then f = tg, td = 1.

Remark 5. The following example shows that Theorem 7 may fail to occur for entire

functions of finite integer order.

Example 2. Let P (z) = z10, f(z) = (7z − 3)2(z + 1)e(z−1)3 , g(z) = (7z − 3)2(z +

1)e−(z−1)3 , a(z) = (7z − 3)20(z + 1)10(7z + 4)2(z + 2) and η = 1. Clearly we see that f

and g are of integer order, n > 3Γ1 +2Γ2 +4, and that P (f)(z)f(z+ η) and P (g)g(z+ η)

share a(z) IM. However, we get f ̸≡ tg for a constant m such that tm = 1, where m ∈ Z+.

2. Some Lemmas

In this section, we state some lemmas which are important to prove the main results.

Lemma 1 ([5, Theorem 5.1]). Let f be a nonconstant meromorphic function and

η ∈ C. If f is of finite order, then

m

(
r,
f(z + η)

f(z)

)
= O

(
T (r, f(z)) log r

r

)
for all r outside of a set E satisfying

lim sup
r−→∞

∫
E∩[1,r) dt/t

log r
= 0,

i.e., outside of a set E of zero logarithmic density. If ρ2(f) = ρ2 < 1 and ε > 0, then

m

(
r,
f(z + η)

f(z)

)
= o

(
T (r, f(z))

r1−ρ2−ε

)
,

for all r outside of a set of finite logarithmic measure, where and in what follows, ε is an

arbitrary positive number.

Lemma 2 ([12, Lemma 2.3]). Let f(z) be a nonconstant meromorphic function of

order ρ(f) < ∞, let η be a nonzero complex number, and let P (f) be defined as in (2.1).

Suppose that F (z) = P (f(z))f(z + η). Then

m(r, F (z)) = (n+ 1)m(r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(1),

for all r outside of a set of finite logarithmic measure.
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Lemma 3 ([5, Lemma 8.3]). Let T : [0,+∞) −→ [0,+∞) be a non-decreasing contin-

uous function and let s ∈ R+. If the hyper-order of T is strictly less than one, i.e.,

lim sup
r→∞

log log T (r)

log r
= ζ < 1,

and δ ∈ (0, 1− ζ), then

T (r + s) = T (r) + o

(
T (r)

rδ

)
,

where r runs to infinity outside of a set of finite logarithmic measure.

Lemma 4. Let f and g be two transcendental entire functions of finite orders, η be a

nonzero complex constant, a(z) be a small function of f and g, P (z) = anz
n+an−1z

n−1+

· · · + a0 be a nonzero polynomial, where a0, a1, · · · , an(̸= 0) are complex constants; let

n > Γ1 be an integer. If P (f)f(z + η) and P (g)g(z + η) share a(z) IM, then ρ(f) = ρ(g).

Proof. Set

F (z) =
P (f)f(z + η)

a(z)
, G(z) =

P (g)g(z + η)

a(z)
, (2.1)

then from Lemma 2 and f(z) is entire we get

T (r, F (z)) = (n+ 1)T (r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(log r) (2.2)

and

T (r,G(z)) = (n+ 1)T (r, g(z)) + o

(
T (r, g(z))

r1−ε

)
+O(log r), (2.3)

as r −→ ∞ and r ̸∈ E, where and in what follows, E ⊂ [0,+∞) is some subset with its

logarithmic measure logmesE < ∞. Since f, g are of finite orders, it follows from (2.2),

(2.3) and the standard reasoning of removing exceptional set (see[13, Lemma 1.1.2]) that

the same is true for F and G as well. By ρ(f) < ∞ we have ρ2(f) = 0. Therefore, by a

simple geometric observation and Lemma 2 we have

N(r,
1

f(z + η)
) ≤ N(r + |η|, 1

f(z)
)

≤ T (r + |η|, f(z)) +O(1)

= T (r, f(z)) + o(
T (r, f(z))

rδ
),

as r −→ ∞ and r ̸∈ E, where and in what follows, δ ∈ (0, 1) is a positive integer. This

together with Lemma 3, the assumptions of Lemma 4 and the second fundamental theorem

gives

T (r, F (z)) ≤ N(r, F (z)) +N(r,
1

F (z)
) +N(r,

1

F (z)− 1
) +O(log r)

≤ N(r,
1

P (f)
) +N(r,

1

f(z + η)
) +N(r,

1

G(z)− 1
) +O(log r)

≤ (Γ1 + 1)T (r, f(z)) + T (r,G(z)) + o(
T (r, f(z))

rδ
) +O(log r),
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as r −→ ∞ and r ̸∈ E. This together with (2.2) and (2.3) gives

(n+ 1)T (r, f(z)) ≤ (Γ1 + 1)T (r, f(z)) + (n+ 1)T (r, g(z)) + o(
T (r, f(z))

rδ
)

+o(
T (r, g(z))

r1−ε
) +O(log r),

i.e.,

(n− Γ1)T (r, f(z)) ≤ (n+ 1)T (r, g(z)) + o(
T (r, f(z))

rδ
) + o(

T (r, g(z))

r1−ε
)

+O(log r),

as r −→ ∞ and r ̸∈ E. From the above inequality, the condition n > Γ1 and the standard

reasoning of removing exceptional set we get

ρ(f) ≤ ρ(g). (2.4)

Similarly

ρ(g) ≤ ρ(f). (2.5)

From (2.4) and (2.5) we get ρ(f) = ρ(g), this proves Lemma 4.

Lemma 5 ([11, Lemma 3]). Suppose that h is a nonconstant meromorphic function

satisfying

N(r, h) +N(r,
1

h
) = S(r, h).

Let f = a0h
p + a1h

p−1 + · · · + ap, and g = b0h
q + b1h

q−1 + · · · + bq be polynomials in h

with coefficients a0, a1, · · · , ap, b0, b1, · · · , bq being small functions of h and a0b0ap ̸≡ 0. If

q ≤ p, then m(r, g/f) = S(r, h).

Lemma 6 ([9, Lemma 2.2]). Let φ(r) be a nondecreasing, continuous function on R+.

Suppose that

0 < ρ < lim sup
r−→∞

logφ(r)

log r
,

and set

I = {t : t ∈ R+, φ(r) ≥ rρ}.

Then we have

log densI = lim sup
r−→∞

∫
I∩[1,r]

dr
r

log r
> 0.

Lemma 7 ([15, Lemma 7.1]). Let F and G be two nonconstant meromorphic functions

such that G is a Möbius transformation of F. Suppose that there exists a subset I ⊂ R+

with its linear measure MesI = +∞ such that

N(r,
1

F
) +N(r, F ) +N(r,

1

G
) +N(r,G) < (λ+ o(1))T (r, f),

as r ∈ I and r → ∞, where λ < 1. If there exists a point z0 ∈ C such that F (z0) =

G(z0) = 1, then F = G or FG = 1.
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Let h be a nonconstant meromorphic function. We denote by N(r, h) the counting

function of simple poles of h, and by N (2(r, h) the counting function of poles of h with

multiplicities ≥ 2, each point in these counting functions is counted only once. Set

N2(r, h) = N(r, h) +N (2(r, h).

Lemma 8 ([19, Theorem 1.48 and 7.10]). Let F and G be two nonconstant meromor-

phic functions such that F, G share 1, ∞ CM. Suppose that there exists a subset I ⊂ R+

with its linear measure mesI = +∞ such that

N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2N(r, F ) < λT (r) + S(r),

as r ∈ I and r −→ ∞, where λ < 1, T (r) = max{T (r, F ), T (r,G)} and S(r) = o{T (r)},
as r ∈ I and r −→ ∞. Then F = G or FG = 1.

Lemma 9 ([20, proof of Theorem 1]). Let f, g be nonconstant entire functions. If f

and g share 1 IM, then one of the following cases holds:

(i)T (r, f) ≤ N2(r,
1
f ) +N2(r,

1
g ) + 2N(r, 1

f ) +N(r, 1g ) + S(r, f) + S(r, g)

the same inequality holding for T (r, g);

(ii)f = g;

(iii)fg = 1.

Let F and G be two nonconstant meromorphic functions, let a ∈ C ∪ {∞}, and let

NE(r, a) “count” those points in N(r, 1/(F − a)), where a is taken by F and G with

the same multiplicity, and each point is counted only once, and N0(r, a) when ignoring

multiplicities. N(r, 1/(F −∞)) means N(r, F ). We say that F and G share the value a

CM*, if

N

(
r,

1

F − a

)
−NE(r, a) = S(r, F ), N

(
r,

1

G− a

)
−NE(r, a) = S(r,G),

and F and G share the value a IM*, if NE(r, a) is replaced by N0(r, a).

Proceeding as in the proof of Theorem 1[20], Theorems 1.48 and 7.10[19], the above

two lemmas still hold if CM(IM) is replaced by CM*(IM*).

3. Proof of Theorems

Proof of Theorem 2. Let F = P (f)f(z+η), G = P (g)g(z+η), then F and G share

1 IM. Applying Lemma 9 to F and G, we consider the following three cases:

Case 1. If

T (r, F ) ≤ N2(r,
1

F
) +N2(r,

1

G
) + 2N(r,

1

F
) +N(r,

1

G
) +O(log r)

by Lemma 4 and Lemma 9, we have

T (r, F ) ≤ N2(r,
1

F
) +N2(r,

1

G
) + 2N(r,

1

F
) +N(r,

1

G
) +O(log r)

= N2(r,
1

P (f)f(z + η)
) +N2(r,

1

P (g)g(z + η)
) + 2N(r,

1

P (f)f(z + η)
)
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+N(r,
1

P (g)g(z + η)
) +O(log r)

≤ N2(r,
1

P (f)
) +N2(r,

1

f(z + η)
) +N2(r,

1

P (g)
) +N2(r,

1

g(z + η)
)

+2N(r,
1

P (f)
) + 2N(r,

1

f(z + η)
) +N(r,

1

P (g)
) +N(r,

1

g(z + η)
) +O(log r)

≤ (2Γ1 + Γ2)T (r, f) + (Γ1 + Γ2)T (r, g) + 3T (r,
1

f(z + η)
) + 2N(r,

1

g(z + η)
)

+O(log r)

≤ (2Γ1 + Γ2 + 3)T (r, f) + (Γ1 + Γ2 + 2)T (r, g) + o

(
T (r, f(z))

rδ

)
+O(log r)

From f is entire and Lemma 4, we deduce

(n+1)T (r, f) ≤ (2Γ1+Γ2+3)T (r, f)+(Γ1+Γ2+2)T (r, g)+o

(
T (r, f(z))

rδ

)
+O(log r). (3.1)

Similarly, we obtain

(n+1)T (r, g) ≤ (2Γ1+Γ2+3)T (r, g)+(Γ1+Γ2+2)T (r, f)+o

(
T (r, f(z))

rδ

)
+O(log r). (3.2)

Combining (3.1) and (3.2), we have

(n+ 1)[T (r, f) + T (r, g)] ≤ (3Γ1 + 2Γ2 + 5)[T (r, f) + T (r, g)] + o

(
T (r, f(z))

rδ

)
+O(log r).

which contradicts with n > 3Γ1 + 2Γ2 + 4.

Case 2. If F = G, that is

P (f(z))f(z + η) ≡ P (g(z))g(z + η). (3.3)

Set h = f/g, then substituting f = gh into (3.3), we deduce that

h(z + η)[ang
n(z)hn(z) + an−1g

n−1(z)hn−1(z) + · · ·+ a0] ≡ ang
n(z) + · · ·+ a0

where an(̸= 0), an−1, · · · , a0 are complex constants.

From above, we get

ang
n(z)[h(z+ η)hn(z)− 1]+ an−1g

n−1(z)[h(z+ η)hn−1(z)− 1]+ · · ·+ a0[h(z+ η)− 1] ≡ 0,

(3.4)

We discuss the following subcases.

Case 2.1. Suppose that h is a constant. We claim hd = 1, where d is defined as in

Theorem B. Thus, f ≡ tg for a constant t such that td = 1.

In fact, if an is the only nonzero coefficient, since g is transcendental entire function,

we have hn+1 = 1.

If an is not the only nonzero coefficient, suppose that h(z+η)hn = hn+1 ̸= 1. By (3.4),

we deduce T (r, g) = S(r, g), which is a contradiction. Hence, hn+1 = 1. According to the

similar discussion, we obtain that hk+1 = 1 when ak ̸= 0 for some k = 0, · · · , n. Therefore,
we get f = tg for a constant t such that td = 1, where d = GCD(λ0, λ1, · · · , λn).
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Case 2.2. Suppose that h is not a constant. We claim

h(z + η)hn ≡ 1. (3.4)

In fact, if an is the only nonzero coefficient, i.e., P (f) = anf
n. Therefore from g ̸≡ 0

we have h(z + η)hn ≡ 1.

If an is not the only nonzero coefficient, suppose that h(z+ η)hn ̸≡ 1, by (3.4) we have

an−1g
n−1h(z + η)hn−1 − 1

h(z + η)hn − 1
+ · · ·+ a0

h(z + η)− 1

h(z + η)hn − 1
= −ang

n, (3.5)

Let

Hi =
h(z + η)hn−i − 1

h(z + η)hn − 1
, i = 1, 2, · · · , n

Then we have

H1 =
h(z + η)hn−1 − 1

h(z + η)hn − 1
=

h(z+η)
h(z) hn − 1

h(z+η)
h(z) hn+1 − 1

Since f and g are entire functions and share 0 CM, from Lemma 5 we have m(r,H1) =

S(r, h). Similarly, we have m(r,Hi) = S(r, h), i = 1, 2, · · · , n.
Thus by (3.5) and g is entire we deduce

T (r, g) = m(r, g) = S(r, g)

which is a contradiction. Therefore we have (3.4).

From the assumption that f and g are entire functions and share 0 CM, we can write

h = eω(z), where ω(z) is a polynomial. Thus by (3.4), we have

eω(z+η)+nω(z) ≡ 1.

Differentiating this yields

nω
′
(z) + ω

′
(z + η) ≡ 0.

Since ω
′
(z) is a polynomial, we suppose deg(ω

′
(z)) = m, and z1, · · · , zm are the zeros of

ω
′
(z). Thus, z1+η, · · · , zm+η are also zeros of ω

′
(z). Therefore, ω

′ ≡ 0, ω ≡ b, where b is

a constant. Immediately we have h is a constant, which contradicts with our assumption.

Case 3. If FG ≡ 1, that is

P (f)f(z + η)P (g)g(z + η) ≡ 1. (3.6)

From the assumption that f and g are two nonconstant entire functions, we deduce by

(3.6) that P (f) ̸= 0, P (g) ̸= 0.

By the second main theorem, we claim that P (f) = an(f − a)n, P (g) = an(g − a)n,

where a is a complex constant. Otherwise, the Picard’s exceptional values are at least

three, which is a contradiction.
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Hence, from the assumption that f and g be transcendental entire functions of finite

order, we obtain that f(z) = eα(z) + a, g(z) = eβ(z) + a, where α(z) and β(z) are two

nonconstant polynomials.

By (3.6), we also get f(z + η) ̸= 0, g(z + η) ̸= 0. So a = 0, i.e.,f(z) = eα(z), g(z) =

eβ(z), P (z) = anz
n, and a2ne

n(α(z)+β(z))+α(z+η)+β(z+η) ≡ 1. Then we must have α+ β ≡ c,

where c is a constant.

From this we can easily obtain that f(z) = eα(z), g(z) = ce−α(z), where α(z) is a

polynomial, c is a constant satisfying a2nc
n+1 = 1.

This completes the proof of Theorem 2.

Proof of Theorem 5. First of all, we set (1.2). Then we have (2.2) and (2.3) From

Lemma 4 and the assumptions of Theorem 5 we deduce ρ(f) = ρ(g) = ρ(F ) = ρ(G), and

so F, G are of finite orders. We discuss the following two cases.

Case 1. Suppose that F is a Möbius transformation of G. Then it follows from (1.2)

and the standard Valiron-Mokhon’ko lemma that

T (r, P (f)f(z + η)) = T (r, P (g)g(z + η)) +O(log r).

Then from (2.2), (2.3) and the condition that f, g are transcendental entire functions we

deduce
T (r, f)

T (r, g)
→ 1,

T (r, F )

T (r, f)
→ n+ 1, r → ∞, r ̸∈ E.

By ρ(f) < ∞ we have ρ2(f) = 0. This together with a Lemma 3 and a simple geometric

observation gives

T (r, f(z + η)) ≤ T (r + |η|, f(z)) = T (r, f(z)) + o

(
T (r, f(z))

rδ

)
,

as r −→ ∞ and r ̸∈ E. Therefore we have

N(r, F (z)) +N

(
r,

1

F (z)

)
≤ N2

(
r,

1

P (f)

)
+N

(
r,

1

f(z + η)

)
+O(log r)

≤ Γ1T (r, f(z)) + T (r, f(z + η)) +O(log r)

≤ (Γ1 + 1)T (r, f(z)) + o

(
T (r, f(z))

rδ

)
+O(log r),

as r −→ ∞ and r ̸∈ E. That is,

N(r, F (z)) +N

(
r,

1

F (z)

)
≤ (Γ1 + 1)T (r, f(z)) + o

(
T (r, f(z))

rδ

)
+O(log r).

Similarly,

N(r,G(z)) +N

(
r,

1

G(z)

)
≤ (Γ1 + 1)T (r, g(z)) + o

(
T (r, g(z))

rδ

)
+O(log r),

as r −→ ∞ and r ̸∈ E. Then we have

N

(
r,

1

F

)
+N(r, F ) +N

(
r,

1

G

)
+N(r,G) ≤ 2(Γ1 + 1)

n+ 1
T (r, F )(1 + o(1)), (3.7)
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as r −→ ∞, r ̸∈ E. From (1.2), Lemma 3 and the second main theorem we get

T (r, F (z)) ≤ N(r, F (z)) +N

(
r,

1

F (z)

)
+N

(
r,

1

F (z)− 1

)
+O(log r)

≤ N

(
r,

1

P (f)

)
+N

(
r,

1

f(z + η)

)
+N

(
r,

1

F (z)− 1

)
+O(log r)

≤ Γ1T (r, f(z)) + T (r, f(z + η)) +N

(
r,

1

F (z)− 1

)
+O(log r)

≤ Γ1T (r, f(z)) + T (r + |η|, f(z)) +N

(
r,

1

F (z)− 1

)
+O(log r)

≤ Γ1T (r, f(z)) +N

(
r,

1

F (z)− 1

)
+ o

(
T (r, f(z))

rδ

)
+O(log r),

as r −→ ∞ and r ̸∈ E. This together with (2.2) gives

(n+ 1− Γ1)T (r, f) ≤ N

(
r,

1

F − 1

)
+ o{T (r, f)},

as r −→ ∞, r ̸∈ E. From the inequality and the fact that F, G share 1 CM* we know

that there exists a point z0 ∈ C such that F (z0) = G(z0) = 1. Hence from (3.7), Lemma

7 and the condition n > 2Γ1 + 1 we get FG = 1 or F = G. We discuss the following two

subcases:

Case 1.1. Suppose that F = G. Then it follows from (1.2) that

P (f)f(z + η) = P (g)g(z + η).

With it and the similar arguments of Case 2 in the proof of Theorem 2 we can get our

conclusion (1) with n > 2Γ1 + 1.

Case 1.2. Suppose that FG = 1. By substituting (1.2) into FG = 1 we get

P (f(z))f(z + η)P (g(z))g(z + η) = P 2
0 (z). (3.8)

Then from f, g are transcendental entire functions, one may immediately see, P (f), P (g),

f and g have at most finitely many zeros. Suppose that P (u) has two zeros, say u1,

u2, u1 ̸= u2 then P (f) = an(f − u1)
n1(f − u2)

n2 , where n1, n2, are positive integers and

n1+n2 = n. Therefore f−u1, f−u2 has at most finitely many zeros. Applying the second

main theorem we immediately get a contradiction.

Next we consider P (u) has only one zero. Then we may write P (f) = an(f − a)n,

where a is a complex constant. Here, from the assumption that f and g be transcendental

entire functions of finite order, we obtain that

f(z) = µ(z)eα(z) + a, g(z) = ν(z)eβ(z) + a, (3.9)

and

f(z + η) = µη(z)e
αη(z), g(z + η) = νη(z)e

βη(z), (3.10)
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where where µ, ν, µη, and νη are nonzero polynomials, α and β are nonconstant polyno-

mials. From the left of (3.9) and (3.10), we have f(z + η) = µ(z + η)eα(z+η) + a and

µη(z)e
αη(z) = µ(z + η)eα(z+η) + a

Considering that µη(z) and µ(z + η) are both polynomials, we must have a = 0 to avoid

a contradiction comparing the quantity of the zeros on both sides.

Noticing that f and g share 0 CM, we get µ = ν. Therefore, we have f = µeα, g = µeβ.

Substituting to (3.8), we have

a2nµ
2nµ2(z + η)en(α+β)+α(z+η)+β(z+η) ≡ P 2

0 .

Clearly, we must have n(α + β) + α(z + η) + β(z + η) ≡ b and α + β ≡ d,where b, d are

nonzero constants. Therefore we get

a2nbµ
2nµ2(z + η) ≡ P 2

0 . (3.11)

If µ is not a constant, the degree of the left side of (3.11) is not less than 2(n + 1). But

the condition degP0 < n+1 implies that the degree of the right side of (3.11) is less than

2(n+ 1), a contradiction. Hence µ and P0 reduce to nonzero constants, say t0 and c. Set

t = t0d then the assertion (2) now follows from (3.11).

Case 2. Suppose that n > 2Γ2 + 1. From (1.2), (2.2), Lemma 2, Lemma 3 and the

assumptions of Theorem 5 we get

2N(r, F (z)) +N2

(
r,

1

F (z)

)
≤ N2

(
r,

1

P (f)

)
+N

(
r,

1

f(z + η)

)
+O(log r)

≤ Γ2T (r, f(z)) + T (r, f(z + η)) +O(log r)

≤ Γ2T (r, f(z)) + T (r + |η|, f(z)) +O(log r)

≤ (Γ2 + 1)T (r, f(z)) + o

(
T (r, f(z))

rδ

)
+O(log r)

=
Γ2 + 1

n+ 1
T (r, F (z)) + o

(
T (r, f(z))

r1−ε

)
+ o

(
T (r, f(z))

rδ

)
+O(log r)

≤ Γ2 + 1

n+ 1
T (r, F (z))(1 + o(1))

i.e.,

2N(r, F (z)) +N2

(
r,

1

F (z)

)
≤ Γ2 + 1

n+ 1
T (r, F (z))(1 + o(1)). (3.12)

In the same way,

2N(r,G(z)) +N2

(
r,

1

G(z)

)
≤ Γ2 + 1

n+ 1
T (r,G(z))(1 + o(1)), (3.13)

as r −→ ∞ and r ̸∈ E. From (3.12) and (3.13) we have

N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2N(r, F ) ≤ 2(Γ2 + 1)

n+ 1
T (r) + o{T (r)}, (3.14)
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as r −→ ∞ and r ̸∈ E, where T (r) = max{T (r, F ), T (r,G)}. From (3.14), Lemma 8 and

the condition n > 2Γ2 + 1 we have FG = 1 or F = G. Next in the same manner as in

subcases 1) and 2) we get the conclusion. This completes the proof of Theorem 5.

Proof of Theorem 7. First of all, we set (2.1). Then F and G share 1 IM except

the zeros and poles of a(z). From (2.1) we have (2.2) and (2.3). From Lemma 4 and the

assumptions of Theorem 7 we deduce ρ(f) = ρ(g) = ρ(F ) = ρ(G), and so F, G are of

finite orders. Applying Lemma 9 to F and G, we consider the following three cases:

Case 1. If

T (r, F ) ≤ N2(r,
1

F
) +N2(r,

1

G
) + 2N(r,

1

F
) +N(r,

1

G
) +O(log r)

by Lemma 4 and Lemma 9, we can get a contradiction with n > 3Γ1 + 2Γ2 + 4 as it go

through in proof of Theorem 2.

Case 2. Suppose that F = G. Then it follows from (2.1) that

P (f)f(z + η) = P (g)g(z + η).

With it and the similar arguments of Case 2 in the proof of Theorem 2 we can get our

conclusion with n > 3Γ1 + 2Γ2 + 4, i.e., we get f = tg for a constant t such that td = 1,

where d = GCD(λ0, λ1, · · · , λn).

Case 3. Suppose that FG = 1. By substituting (2.1) into FG = 1 we get

P (f)f(z + η)P (g)g(z + η) = a2(z). (3.15)

Since f and g are entire then we have a(z) is entire. From (3.15) and f, g are transcendental

entire functions of finite order, one may immediately see,

N

(
r,

1

P (f)

)
= O(log r), N

(
r,

1

P (g)

)
= O(log r).

Suppose that P (u) has two zeros, say u1, u2, u1 ̸= u2 then P (f) = an(f −u1)
n1(f −u2)

n2 ,

where n1, n2, are positive integers and n1 + n2 = n. Therefore

N

(
r,

1

f − u1

)
= O(log r),

(
r,

1

f − u2

)
= O(log r).

Applying the second main theorem we immediately get a contradiction.

Next we consider P (u) has only one zero. Then we may write P (f) = an(f−a)n, where

a is a complex constant. Therefore, from the assumption that f and g are transcendental

entire functions of finite order and that f and g share 0 CM, we can obtain

f(z) = P1(z)e
α(z) + a, g(z) = P1(z)e

β(z) + a, (3.16)

where α and β are nonconstant polynomials. Therefore, from (3.16) we have ρ(f) =

deg(α), which contradicts the assumption that ρ(f) is not a positive integer.

Thus we complete the proof of Theorem 7.
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