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1 Introduction

Felix Klein is best known for his work in non-Euclidean geometry, for his work on the

connections between geometry and group theory. According to his approach, a geometry

is a G-space M , that is, a set M together with a group G of transformations of M . This

approach provides a powerful link between geometry and algebra. If the group G acts

transitively on M , that is, for any two points p and q in M there exists a transformation

in G which maps p to q, then M is called a homogeneous G-space. So if the action is

not transitive, we have nonhomogeneous geometries. One special case of nonhomogeneous

geometries is when the action of the transformation group G has an orbit of codimension

one in M , in which case the action is said to be of cohomogeneity one.

Cohomogeneity one Riemannian manifolds have been studied by many mathemati-

cians, (see [2, 5, 6, 13, 15, 16, 19, 21, 23, 24, 25]) and currently it is still a very active

subject. When the metric is indefinite there exist no much papers in the literature (see

[3, 4]). In fact there are substantial differences between these two cases. A main difference

is that in the Riemannian case, where G is closed in Iso(M), the action is proper which

is vital in the study of the subject, while in the indefinite case, this assumption in general

does not imply that the action is proper, so the study becomes much more difficult. Also

some of the results and techniques of the definite metric fails for the indefinite metric. In

this paper, we study cohomogeneity one pseudo-Euclidean space R4
ν , 0 6 ν 6 4, under
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the proper action of a closed and connected Lie subgroup G of Iso(R4
ν). We would like to

determine the acting group G up to conjugacy and consequently the orbits up to isometry.

Explicitly we prove that if there is a singular orbit B, then dimB > min{ν, 4 − ν} and

B is an affine Riemannian, time-like or Lorentzian subspace of R4
ν . In particular, there is

neither degenerate nor light-like orbit.

2 Preliminaries

A smooth manifold M is called of cohomogeneity one under an action of a Lie group G if

an orbit has codimension one. If M is a pseudo-Riemannian manifold and G is a closed

Lie subgroup of Iso(M) which acts isometrically and by cohomogeneity one on M , then

M is called a cohomogeneity one pseudo-Riemannian manifold. For a general theory of

cohomogeneity one pseudo-Riemannian manifolds we refer to [2, 3, 4, 8, 21, 23]. Here we

remind some of the indispensable backgrounds.

Definition 2.1 ([10, p.53]). An action of a Lie group G on a smooth manifold M is said

to be proper if the mapping ϕ : G×M →M ×M , (g, x) 7→ (g.x, x) is proper.

If there is a proper action of a Lie group G on a manifold M , then the orbit space

M/G equipped with the quotient topology is Hausdorff, each orbit is a closed submanifold

of M , and each isotropy (stabilizer) subgroup is a compact Lie subgroup of G (see [10,

p.149]). The following theorem makes a link between proper G-manifolds and Riemannian

G-manifolds

Theorem 2.2 ([22, p.77-78]) There is a proper action of a Lie group G on a finite di-

mensional manifold M if and only if there is a Riemannian metric on M such that G is

a closed subgroup of Iso(M).

An action of a Lie group G on a manifold M is called effective if
⋂
x∈M Gx = {e},

where Gx denotes the isotropy subgroup at x ∈ M . Throughout the paper we assume

that the action is effective and proper. A result by Mostert (see [18]), for the compact Lie

groups, and Berard Bergery (see [5]), for the general case, says that the orbit space M/G

is homeomorphic to one of the spaces

R , S1 , [0,+∞) , [0, 1] .

Consider the canonical projection map M → M/G to the orbit space. Given a point

x ∈M , we say that the orbit G(x) is principal (resp. singular) if the corresponding image

in the orbit space M/G is an internal (resp. boundary) point. A point x whose orbit is
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principal (resp. singular) will be called regular (resp. singular). All principal orbits are

diffeomorphic to each other, each singular orbit is of dimension less than or equal to n−1,

where n = dimM , and the union of regular points is open and dense in M ([10, p.152]). A

singular orbit of dimension n− 1 is called an exceptional orbit. Note that no exceptional

orbit is simply connected, and if M is simply connected no exceptional orbit may exist.

Remark 2.3 Let G be a connected Lie group and M be a smooth manifold. Suppose that

G acts on M properly and by cohomogeneity one . Then by Theorem 2.2, there exists

a Riemannian metric g′ on M such that G is a Lie subgroup of Iso(M, g′), and so the

action is isometric with respect to the metric g′. If x and y are regular and singular points,

respectively, then Gx $ Gy by Proposition 4.1 of [2].

Throughout the following Rn
ν denotes the n-dimensional real vector space Rn with a

scalar product of signature (ν, n− ν) given by

〈x, y〉 = −
ν∑
i=1

xiyi +
n∑

i=ν+1

xiyi . (1)

The set of all linear isometries Rn
ν → Rn

ν is the same as the set O(ν, n− ν) of all matrices

g ∈ GL(n,R) that preserve the scalar product defined above. The identity component of

O(ν, n−ν) is denoted by SO◦(ν, n−ν). Each maximal compact subgroup of SO◦(ν, n−ν)

is conjugate to SO(ν)× SO(n− ν) (see [14]).

Now we give a few facts of the theory of Lie groups which will be needed in the sequel.

Lemma 2.4 ([9, p.51]) A simply connected solvable Lie group is diffeomorphic to Rn,

n = dimG.

Lemma 2.5 ([9, p.52]) Let G be a connected Lie group. Then the following conditions

are equivalent:

(i) The Lie group G is diffeomorphic to Rn, n = dimG.

(ii) The maximal compact subgroup of G is trivial.

Lemma 2.6 ([17]) Let G be a compact, or connected and semisimple, Lie group. Then

any smooth representation of G by affine transformations of Rn admits a fixed point.

Let g and h be Lie algebras. A derivation of g is a linear map D : g→ g satisfying

D[X,Y ] = [DX,Y ] + [X,DY ] , ∀X,Y ∈ g

The vector space consists of derivations of g with the bracket operation [D1, D2] = D1D2−
D2D1 is a Lie algebra which is denoted by Der(g). Let ϕ : g → Der(h) be a Lie algebra
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homomorphism. The semi-direct sum g ⊕ϕ h is the direct sum of vector spaces g and h

with the bracket operation

[(X,Y ) , (X ′, Y ′)] = ([X,X ′]g , [Y, Y ′]h + ϕ(X)Y ′ − ϕ(X ′)Y )

for all X,X ′ ∈ g and Y, Y ′ ∈ h.

Theorem 2.7 ([9, p.213]) An arbitrary three dimensional connected real Lie group is

isomorphic to one of the following pairwise nonisomorphic Lie groups:

R3 , R2 × T , R× T2 , T3 , N3(R) , N∗3 , R2 × R , R2 × T , R3 , R3,λ(λ 6= 0)

R′3,λ(λ 6= 0) , E0(2) , Ek (k ∈ N) , SU(2) , SO(3) , A , A1(m) (m ∈ N).

Remark 2.8 Let’s describe the stated Lie groups in Theorem 2.7 in detail.

The Lie group N3(R) is three dimensional Heisenberg group which is simply connected

and nilpotent (see [9, p.54]) and N∗3 = N3(R)/Z(N3(Z)) where Z(N3(Z)) is the group

of integer points of the center Z(N3(R)) ∼= R of the group N3(R). The Lie group N∗3

is not linearizable (see example 7 of [9, p.23]). R2 = Aff◦(R) where Aff◦(R) is the

connected component of the group of affine transformations of the real line R1 (see ex-

ample 3 of [9, p.49]) and the Lie groups R3 , R3,λ , R
′
3,λ correspond to the Lie algebras

r3(R) , r3,λ(R) , r′3,λ(R) which are of the form R ⊕ϕ R2, where the matrix A = ϕ(1) is,

respectively,

[
1 1

0 1

]
,

[
1 0

0 λ

]
,

[
λ −1

1 λ

]
. The Lie groups R3 , R3,λ , R

′
3,λ are sim-

ply connected and solvable (see example 2 of [9, p.48]) so the maximal compact subgroup

of them are trivial by Lemmas 2.4 and 2.5. The Lie group Ek is the k-fold covering of the

Lie group E1 = E0(2) = SO(2) n R2. The Lie group A is the universal covering group

of SL(2,R) which is not linearizable (see example 6 of [9, p.23]) and A1(m) is the m-fold

covering of the Lie group A1(1) = PSL(2,R) which is linearizable only for m = 1, 2 (see

[9, p.152]).

3 Main results

Let R4
ν , 0 6 ν 6 4 , be of cohomogeneity one under the proper action of a connected Lie

subgroup G ⊂ Iso(R4
ν). The following theorem has been proved in [4] (see Lemmas 3.2 to

3.8 of [4]). To facilitate the reader we prove it directly.

Theorem 3.1 Let Rn
ν , 0 6 ν 6 n, be of cohomogeneity one under the proper action of a

connected Lie subgroup G ⊂ Iso(Rn
ν ).

(a) If 1 6 ν 6 n− 1, then G is not compact.
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(b) The orbit space Rn
ν/G is a one dimensional Hausdorff space homeomorphic to R

or [0,+∞). In particular, there is at most one singular orbit.

(c) Suppose that B is a singular orbit and H = Gb, the isotropy subgroup at a point

b ∈ B. Then H is a maximal compact subgroup of G, and B is diffeomorphic to Rk, for

some 0 6 k 6 n− 2.

Proof. (a) If G is compact then each (principal) orbit is compact, but there is no compact

pseudo-Riemannian hypersurface in Rn
ν for 1 6 ν 6 n − 1 (see [20, p.125]), so G is not

compact.

(b) The orbit space Rn
ν/G is homeomorphic to one of the spaces (see [5])

(i) R , (ii) S1 , (iii) [0,+∞) , (iv) [0, 1] .

By Proposition 3.3 of [23] there is at most one singular orbit, and so the case (iv) can not

occur. We claim that the case (ii) is also not admitted. If M/G ∼= S1 then the canonical

projection map π : Rn
ν → S1 is a fibration with fibre G/K, where K is the stabilizer of

a regular point ([1]). By Theorem 4.41 of [12, p.379] there is a long exact sequence of

homotopy groups

→ πm(G/K, x◦)→ πm(M,x◦)→ πm(S1, b◦)→ πm−1(G/K, x◦)→ · · · → π0(M,x◦)→ 0

where x◦ ∈ π−1(b◦) and b◦ ∈ S1.

Hence π0(G/K, x◦) ∼= Z and this contradicts the connectedness of G/K.

(c) Since the action is proper, so H is compact. Suppose that H is not maximal

compact in G. Hence H $ H ′, where H ′ is a compact Lie subgroup of G. There is a point

x◦ ∈ Rn
ν which is fixed under the action of H ′, so under H, by Lemma 2.6. We note that

G(x◦) is necessarily a singular orbit by Remark 2.3, and x◦ does not belong to the orbit

B, since otherwise H and H ′ would be conjugate, and hence equal. The unique geodesic

γ through b and x◦ is left pointwise fixed under the action of H, since b and x◦ are left

fixed. By the properness of the action M◦, the union of regular points, is open and dense

in Rn
ν (see ([10, p.152]). So γ(t0) is a regular point, for some t0 ∈ R, and is left fixed under

the action of H. Hence H ⊂ Gγ(t0), which is a contradiction by Remark 2.3.

Now we show that B is diffeomorphic to Rk, for some 0 6 k 6 n − 2. Let b ∈ B

and dimB = k. As there is at most one singular orbit and the action is proper, by using

Theorem 2.2 one gets that Rn
ν is homeomorphic to G ×Gb V , where V is an (n − k)-

dimensional vector space (see [1]). Hence Rn
ν is a fibre bundle with base G/Gb . Thus Rn

ν

and G(b) are of the same homotopy type, therefore G(b) is diffeomorphic to Rk by the

following lemma. �
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Lemma 3.2 ([10, p.137]). Let G be a connected Lie group and H a Lie subgroup of G.

If πn(G/H) = 0 for each n > 0, where πn is the n-th homotopy group, then the manifold

G/H is diffeomorphic to Rm, where m = dimG/H.

Two isometric actions on a pseudo-Riemannian manifold M are said to be orbit equiv-

alent if there exists an isometry of M mapping the orbits of one of these actions onto the

orbits of the other.

3.1 The case M = R4

If M = R4, i.e. ν = 0, and G is a connected Lie subgroup of Iso(R4) which acts by

cohomogeneity one on R4, then by Theorem 3.1 of [19] either each principal orbit is

isometric to R3 and there does not exist any singular orbit or each principal orbit is

isometric to Sk(r) × R3−k, 1 6 k 6 3, k is fixed for all orbits, and the unique singular

orbit is isometric to R3−k.

Proposition 3.3 Let R4 be of cohomogeneity one under the isometric action of a con-

nected, closed subgroup G ⊂ Iso(R4). If there is a singular orbit B, then one of the

following cases occurs:

(i) If dimB = 0, then G is conjugate to one of the following Lie groups

SO(4) , U(2) , SU(2) , Sp(1) , Sp(1)Sp(1) , Sp(1)U(1) .

(ii) If 1 6 dimB 6 2, then G is conjugate to one of the the following Lie groups

G1 =

{([
1 0

0 SO(3)

]
,

[
x

0

])
| x ∈ R

}

G2 =

{([
SO(2) 0

0 SO(2)

]
,

[
0

X

])
| X ∈ R2

}

G3 =

{([
R(θ) 0

0 R(cθ)

]
,

[
0

X

])
| X ∈ R2 , θ ∈ R

}

where c is a fixed real number and R(θ) =

[
cos θ sin θ

− sin θ cos θ

]
.

Proof : (i) If dimB = 0, then without loss of generality we may assume that B = {0}, so

G0 = G and so G is a compact subgroup of SO(4), and by Theorem 3.1 of [19] G acts on

S3 transitively. But for an n-dimensional real vector space V , if G ⊆ SO(n) is a compact
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connected Lie group which acts transitively on the unit sphere Sn−1 ⊂ V , then G is any

element of the following list which is called the Borel list (see [7]).

G SO(n) U(n) SU(n) Sp(n) Sp(n)Sp(1) Sp(n)U(1) Spin(9) Spin(7) G2

V Rn R2n R2n R4n R4n R4n R16 R8 R7

Hence for V = R4 one gets that G is one of the mentioned Lie groups in Proposition

3.3-(i).

(ii) If dimB = 2, then B is isometric to R2 and without loss of generality we may

assume that B = {0} × R2 ⊂ R2 ⊕ R2. Let

B⊥ = {x ∈ R4 | 〈x, y〉 = 0 , ∀y ∈ B}

where 〈., .〉 denotes the usual dot product on R4. The relation G(B) ⊆ B implies that

G(B⊥) ⊆ B⊥, and so p1(G)(B⊥) ⊆ B⊥, where p1 : SO(4) nR4 → SO(4) is the projection

on the first factor. Hence each element of p1(G) is of the form[
C

D

]
∈ SO(4)

where C and D belong to SO(2), and so p1(G) ⊆ diag(SO(2)× SO(2)). By the fact that

G(0) = B, each element of G should be of the form([
C

D

]
,

[
0

X

])

where X ∈ R2. On the other hand, for each x ∈ B⊥, G(x) = S1(r)×R2 implies that p1(G)

acts on S1 × {0} transitively, thus according to the dimension of p1(G), if dimp1(G) = 2

then G is conjugate to G2 and if dimp1(G) = 1 then G is conjugate to G3.

If dimB = 1, by a similar discussion one gets that G is conjugate to G1. �

3.2 The case M = R4
1

Let M = R4
ν , 1 6 ν 6 2, and G be a connected Lie subgroup of Iso(R4

ν) which acts on R4
ν

isometrically. Then there may be an orbit which is not closed in M and so the orbit space

is not Hausdorff and hence the definition of principal and singular orbits (see preliminaries

section) can not be used. Thus in the following subsections we assume that the action is

proper. First we determine the acting Lie group G up to conjugacy and then we specify

the orbits up to isometry and the orbit space up to homeomorphism.
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Lemma 3.4 The Lie algebra of any two dimensional non-abelian Lie subgroup of Iso◦(R2
1) =

SO◦(1, 1) n R2 is conjugate to{([
0 t

t 0

]
,

[
s

βs

])
| s, t ∈ R

}

where β = 1 or −1.

Proof : Consider the Lie algebra of the Lie group Iso◦(R2
1) as follows

I = so(1, 1)⊕τ R2 =

{([
0 t

t 0

]
,

[
s

u

])
| s, t, u ∈ R

}

where the representation τ of so(1, 1) on R2 is the standard representation and the bracket

is defined as follows:

[(A, a), (B, b)] = (AB −BA,Ab−Ba)

Let g be a non-abelian two dimensional Lie subalgebra of I. Since g is not abelian so

p1(g) 6= {0}. By the fact that dimg = 2, one gets that u , s and t are not independent

and hence one of them is a function of the others. Since g is a Lie algebra, this function

has to be linear. By choosing a new coordinate, one may assume that u := u(s, t) is a

linear function u : R2 −→ R and hence there exist fixed real numbers α , β such that

u(s, t) = αt+ βs, i.e. g as a vector space is

g =

{([
0 t

t 0

]
,

[
s

αt+ βs

])
| s, t ∈ R

}

Take the following vectors

X =

([
0 1

1 0

]
,

[
0

α

])
, Y =

([
0 0

0 0

]
,

[
1

β

])

then the relation [X,Y ] ∈ g implies that β = ±1. Finally, if

a =

([
1 0

0 1

]
,

[
α

0

])
∈ Iso◦(R2

1)

then aga−1 is equal to(
1 0 α

0 1 0

0 0 1

){(
0 t s

t 0 αt + βs

0 0 0

)
| s, t ∈ R

}(
1 0 −α
0 1 0

0 0 1

)
=
{(

0 t s

t 0 βs

0 0 0

)
| s, t ∈ R

}
which is the desired Lie algebra. �
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Corollary 3.5 If G is a two dimensional non-abelian Lie subgroup of Iso◦(R2
1) which

acts on R2
1 isometrically. Then the action is neither proper nor transitive. There are three

orbits, a light-like orbit of dimension one and two other orbits of dimension two. Each two

dimensional orbit is not closed in R2
1, so the orbit space (that is a set with three points),

with the quotient topology, is not Hausdorff.

Lemma 3.6 If G is a two dimensional abelian Lie subgroup of Iso◦(R2
1), then it is the

pure translation Lie subgroup.

Proof : Let G be a two dimensional abelian Lie subgroup of Iso◦(R2
1) and g be its Lie

algebra. Let p1 : g −→ so(1, 1) be the projection map to the first factor. If p1(g) 6= {0}
then by the proof of Lemma 3.4 g should be conjugate to{([

0 t

t 0

]
,

[
s

βs

])
| s, t ∈ R

}

which is non-abelian, a contradiction. Thus p1(g) = {0}, i.e. G is a pure translation Lie

group. �

In the proof of the following Theorem, whenever we use SO(2) or SO(3) as a Lie

subgroup of SO◦(1, 3)nR4 it is meant that SO(2) = diag(I2×2, SO(2))×{0}, and SO(3) =

diag(1, SO(3))× {0}.

Theorem 3.7 Let R4
1 be of cohomogeneity one under the proper action of a connected

and closed Lie subgroup G ⊂ Iso(R4
1). If there is a singular orbit, then G is conjugate to

one of the following Lie groups:

H1 =

{([
I2×2

SO(2)

]
,

[
X

0

])
| X ∈ R2

}
⊂ Iso(R4

1)

H2 =

{([
1

SO(3)

]
,

[
x

0

])
| x ∈ R

}
⊂ Iso(R4

1)

Proof : Let B = G(y) be the singular orbit, for some y ∈ R4
1. The Lie subgroup

Gy is compact by the properness of the action and connected by Proposition 17 of [20,

p.309]. Since each maximal compact Lie subgroup of SO◦(1, 3) is conjugate to SO(3), so

Gy ⊂ SO(3) up to conjugacy and hence one of the following cases occurs

(i) Gy = {I} (ii) Gy = SO(2) (iii) Gy = SO(3) .
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If Gy = {I} then by Remark 2.3, up to conjugacy, Gx ( Gy for each regular point

x ∈ R4
1 which is not obviously possible. Hence Gy 6= {I}. We follow the proof by

considering the following two cases.

Case 1 : Gy = SO(2), then for each regular point x ∈ R4
1, Gx is conjugate to a proper

Lie subgroup of Gy, so dimGx = 0 hence dimG = dimG/Gx = 3 and dimG(y) = 2, thus

G(y) is diffeomorphic to R2 (see Lemma 3.4 of [4]). Let G = SnL be a Levi decomposition

of G. If S is not trivial, then the semisimple group S fixes some point x◦ ∈ R4
1 by Lemma

2.6, so by the properness of the action S should be compact. On the other hand Gy is

a maximal compact subgroup of G by Theorem 3.1, so L is conjugate to some subgroup

of SO(2) which is in contrast to the fact that S is semisimple, hence S is trivial which

implies that G is solvable. Thus G = GynF by Theorem 7.1 of [9, p.66], where F is a two

dimensional simply connected normal Lie subgroup of G. We claim that Gy is a normal

Lie subgroup of G. Assume that Π is the two dimensional subspace of R4
1 on which Gy

acts by rotations, and so fixes Π⊥ pintwise, where

Π⊥ = {x ∈ R4
1 | 〈x, y〉 = 0 , ∀y ∈ Π}

where 〈., .〉 is defined by (1) for n = 4 and ν = 1. Since Gy = SO(2) ⊂ diag(1, SO(3))×{0}
up to conjugacy, so Π is a space-like subspace of R4

1 and hence Π ∩Π⊥ = {0}.
If x is a regular point then Gx is conjugate to some subgroup of Gy so if we assume that

Gx ⊂ Gy, then Gy/Gx is diffeomorphic to S1. So by considering the induced action of Gy
on R4

1 one gets that Gy(x) is diffeomorphic to S1. Hence each point in Π⊥ is a singular

point and so G(y) = Π⊥. This implies that Gy = Gy′ for each singular point y′. Hence

for arbitrary g ∈ G, if y′ = gy,

gGyg
−1 = Ggy = Gy

which shows that Gy is a normal Lie subgroup of G, hence G = Gy × F . So

F ⊂ ZG(SO(2)) ⊂ ZIso◦(R4
1)(SO(2))

and

ZIso◦(R4
1)(SO(2)) =

{([
SO◦(1, 1)

SO(2)

]
,

[
X

0

])
| X ∈ R2

}
.

Hence F is isomorphic to a Lie subgroup of Iso◦(R2
1) = SO◦(1, 1) n R2. If it is not

abelian, then by Lemma 3.4 and Corollary 3.5 its action, and so the action of G on R4
1, is
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not proper. So F is a pure translation Lie subgroup of Iso◦(R2
1) by Lemma 3.6. Thus

G =

{([
I2×2

SO(2)

]
,

[
X

0

])
| X ∈ R2

}

up to conjugacy.

Case 2 : Gy is conjugate to SO(3). We claim that dimGx > 0 for each regular point

x ∈ R4
1. If dimGx = 0 then dimG = dimG/Gx = 3 and dimG(y) = dimG/Gy = 0, so

G(y) = {y} by the connectedness of G. Hence G = Gy from which properness of the action

implies that G must be compact, that is not possible by Theorem 3.1. Thus dimGx > 0 for

each regular point x ∈ R4
1 which implies that Gx is conjugate to SO(2), hence dimG = 4.

Let G = SnL be the Levi decomposition of G. The Lie group S is a semisimple subgroup

of G, so S fixes some point x◦ ∈ R4
1 by Lemma 2.6 and by the properness of the action S

must be compact. Since Gy, and so SO(3), is the maximal compact Lie subgroup of G,

hence S is conjugate to SO(3), thus dimL = 1. Since G is not compact, L is isomorphic to

the additive group R. We show that G is isomorphic to SO(3)×R. Consider the adjoint

action of so(3) on the Lie algebra l of L

ad|so(3) : so(3) −→ Der(l)

Since ker(ad|so(3)) ia an ideal of the simple Lie algebra so(3), so ker(ad|so(3)) = so(3) or

ker(ad|so(3)) = 0. On the other hand, dim(Der(l)) = 1 shows that ad|so(3) is not one to

one, thus ker(ad|so(3)) = so(3) which implies that [so(3), l] = 0. Hence G is isomorphic to

SO(3)×R. Since SO(3) is the maximal compact subgroup of Iso◦(R4
1) and

ZIso◦(R4
1)(SO(3)) =



I4×4,


x

0

0

0



 | x ∈ R


so G is conjugate to{([
1

SO(3)

]
,

[
x

0

])
| x ∈ R

}
⊂ Iso(R4

1). �

Corollary 3.8 Let R4
1 be of cohomogeneity one under the proper action of a connected

and closed Lie subgroup G ⊂ Iso(R4
1). If B is a singular orbit, then B is isometric to Rk

1,

k = 1, 2 , and each principal orbit is isometric to Rk
1 × S3−k(r) for some r > 0, where k

is fixed for all orbits. In particular B is a Lorentzian affine subspace.
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Proof : By Theorem 3.7 G is conjugate to either H1 or H2. If G is conjugate to H1, there

is (A, a) ∈ SO◦(1, 3) n R4
1 such that

G = (A, a)H1(A−1,−A−1a)

Denote by R2
1 the vector subspace


x1

x2

0

0

 | x1, x2 ∈ R


⊂ R4

1

and consider the translation vector a as a point of R4
1, then

G(a) = (A, a)R2
1

Since (A, a) ∈ Iso◦(R4
1) , the orbit G(a) is isometric to R2

1.

Choose x ∈ R4
1 and let y = (A−1,−A−1a)x. If y does not belong to the vector subspace

R2
1 then

H1(y) = S1(r)× R2
1 , where r =

√
y2
3 + y2

4 , where y = (y1, y2, y3, y4)t

and

G(x) = (A, a)H1(y) .

Hence G(x) is isometric to S1(r)× R2
1.

If G is conjugate to H2, by a similar discussion one gets the result. �

3.3 The case R4
2

Lemma 3.9 Let R4
2 be of cohomogeneity one under the proper action of a connected and

closed Lie subgroup G ⊂ Iso(R4
2). Then G is solvable.

Proof : Let G = SnL be a Levi decomposition of G. We claim that S is trivial. If S is not

trivial, then it fixes some point x◦ ∈ R4
2 by Lemma 2.6. So by the properness of the action

S is a compact subgroup of G. Since SO(2)×SO(2) is the maximal compact Lie subgroup

of Iso◦(R4
2), the Lie group S must be conjugate to some subgroup of SO(2)×SO(2) which

is not possible obviously (there is no semisimple Lie group with dimension less than three).

Hence S is trivial and G is solvable. �
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Lemma 3.10 Let ϕ : E0(2) → SO(2, 2) n R4 be a faithful Lie group representation.

Suppose that G = ϕ(E0(2)) and g is the Lie algebra of G. If p1(G) is isomorphic to

SO(2), then g is conjugate to the following Lie algebra.{([
r(c1t)

r(c2t)

]
,

[
A1X + C1T

A2X + C2T

])
| T =

[
t

t

]
, t ∈ R , X ∈ R2

}
(2)

where Ai’s are fixed 2 × 2 real matrices such that AiAti = ±det(Ai)I2×2, Ci’s are fixed

2× 2 diagonal matrices, ci’s are fixed real numbers such that at least one of them must be

equal to either 1 or −1, and at most one of them may be equal to zero, where i = 1, 2, and

r(t) =
[

0 t

−t 0

]
. Each Ai is either invertible or equal to the zero matrix, for i = 1, 2, and

at least one of them is invertible. Furtherfore, if ci 6= ±1 then Ai = 0, where i = 1, 2.

Proof : Let e be the Lie algebra of E0(2) and so(2, 2) ⊕τ R4 be the Lie algebra of

SO◦(2, 2) n R4, where τ : so(2, 2) → Der(R4) is the natural action of so(2, 2) on R4, i.e.

τ(A)(X) = AX. Suppose that Φ : e → so(2, 2) ⊕τ R4 be the Lie algebra representation

corresponding to ϕ (see Chapter 4 of [11]). Since p1(G) is isomorphic to SO(2) and

any maximal compact Lie subgroup of SO◦(2, 2) nR4 is conjugate to SO(2)× SO(2), so

p1(G) ⊂ SO(2)×SO(2), up to conjugacy. Hence without loss of generality we may assume

that p1(g) ⊂ so(2)⊕ so(2). Since Φ is linear, so there exist fixed real numbers ai , bi , αi
, βi , ηi , ξi, where i = 1, 2, 3, such that

Φ

([
0 x1

−x1 0

]
,

[
x2

x3

])
=




0 Σaixi 0 0

−Σaixi 0 0 0

0 0 0 Σbixi
0 0 −Σbixi 0

 ,


Σαixi
Σβixi
Σηixi
Σξixi



 (3)

By the fact that Φ preserves the bracket, one gets that ai = bi = 0, i = 2, 3 , and the

following relations hold.

α2 = a1β3 , α3 = −a1β2 , β3 = a1α2 , β2 = −a1α3 (4)

and

η2 = b1ξ3 , η3 = −b1ξ2 , ξ2 = −b1η3 , ξ3 = b1η2 . (5)

If a1 6= ±1 then (4) implies that αi = βi = 0 and if b1 6= ±1 then (5) implies that

ηi = ξi = 0, where i = 2, 3. Hence a1 6= ±1 and b1 6= ±1, simultaneously, imply that

Φ, and so ϕ, is not faithful (see Theorem 2.21 of [11]), which is in contradict to the

assumption. Thus at least one of them must be equal to either 1 or −1. On the other

hand, If a1 = b1 = 0, then (4) and (5) imply that αi = βi = ηi = ξi = 0, for i = 2, 3, which
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shows that Φ, and so ϕ, is not faithful, that is a contradiction. Thus at most one of a1 or

b1 may be zero. To adjust the notation, assume that c1 := a1 , c2 := b1 and

A1 :=
[

α2 α3

β2 β3

]
, A2 :=

[
η2 η3

ξ2 ξ3

]
, C1 :=

[
α1 0

0 β1

]
, C2 :=

[
η1 0

0 ξ1

]
.

Therefore, if ci 6= ±1 thenAi = 0 by (4) and (5). If c1 = 1 thenA1 =
[

α2 α3

−α3 α2

]
by (4) and

so A1A
t
1 = det(A1)I2×2. If c1 = −1 then A1 =

[
α2 α3

α3 −α2

]
and so A1A

t
1 = −det(A1)I2×2.

Hence A1 is invertible or it is equal to the zero matrix. A similar discussion about c2
shows that A2A

t
2 = ±det(A2)I2×2.

If A1 and A2 are not invertible, then A1 = A2 = 0, and so Φ, hence ϕ, is not faithful,

which is in contradict to the assumption. Thus at least one of A1 or A2 is invertible. �

In the proof of the following theorem, whenever we use SO(2)×SO(2) as a Lie subgroup

of SO◦(2, 2) n R4 it is meant that SO(2)× SO(2) = diag(SO(2), SO(2))× {0}.

Theorem 3.11 Let R4
2 be of cohomogeneity one under the proper action of a connected

and closed Lie subgroup G ⊂ Iso(R4
2). If there is a singular orbit, then G is isomorphic

to one of the Lie groups E0(2) × SO(2) or SO(2) × R2 or Ek, for some k ∈ N, with the

following representations in SO(2, 2) nR4, up to conjugacy.

K1 =

{([
H

SO(2)

]
,

[
X

0

])
|X ∈ R2

}

K2 =

{([
SO(2)

H

]
,

[
0

X

])
|X ∈ R2

}

K3 =

{([
R(kt)

R(ckt)

]
,

[
X

0

])
| t ∈ R , X ∈ R2

}

K4 =

{([
R(ckt)

R(kt)

]
,

[
0

X

])
| t ∈ R , X ∈ R2

}

where H is either I2×2 or SO(2), k is a fixed natural number, c is a fixed nonzero real

number and R(θ) =
[

cos θ sin θ

− sin θ cos θ

]
.

Proof: Let B = G(y) be the singular orbit, for some y ∈ R4
2. Since Gy is compact

and each maximal compact Lie subgroup of SO◦(2, 2) is conjugate to SO(2)× SO(2), so

Gy ⊂ SO(2)× SO(2) up to conjugacy, hence Gy is isomorphic to one of the following Lie

groups

(i) {I} , (ii) SO(2)× SO(2) , (iii) SO(2)
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If Gy = {I} then by Remark 2.3, up to conjugacy, Gx ( Gy for each regular point

x ∈ R4
2 which is not obviously possible. Hence Gy 6= {I}.

Case 1: If Gy is isomorphic (hence conjugate) to SO(2) × SO(2). For each regular

point x ∈ R4
2, Gx is conjugate to a proper (compact) subgroup of Gy, so dimGx = 0 or

Gx is isomorphic to SO(2). If dimGx = 0 then dimG = dimG/Gx = 3 and by Lemma 3.9

G is solvable, so by Theorem 2.7 and Remark 2.8 G must be isomorphic to

T2 ×R = SO(2)× SO(2)×R

hence

R ⊂ ZIso◦(R4
2)(SO(2)× SO(2)) = SO(2)× SO(2)

which is not obviously possible. Thus Gx must be isomorphic to SO(2). If Gx is isomorphic

to SO(2), then dimG/Gx = 3 implies that dimG = 4, so dimG(y) = 2, hence G(y) is

diffeomorphic to R2. Since G is solvable by Lemma 3.9 and its maximal compact Lie

subgroup is isomorphic to SO(2)× SO(2), hence G is isomorphic to

SO(2)× SO(2) nR2

If g is the Lie algebra of G, by rechoosing coordinates in g we may assume that

g =






0 t 0 0

−t 0 0 0

0 0 0 s

0 0 −s 0

 ,


αu

βv

a1u+ a2v + a3t+ a4s

b1u+ b2v + b3t+ b4s



 | s, t, u, v ∈ R


where α, β, ai and bi are fixed real numbers. Closeness of g under the bracket shows

that α = 0 if and only if β = 0. So if α 6= 0, then closeness of g under the bracket implies

that ai = bi = 0, 1 6 i 6 3, and so g is conjugate to




0 t 0 0

−t 0 0 0

0 0 0 s

0 0 −s 0

 ,

u

v

0

0



 | s, t, u, v ∈ R


hence G is conjugate to{([

SO(2)

SO(2)

]
,

[
X

0

])
|X ∈ R2

}

15



and so G is isomorphic to E0(2) × SO(2). If α = β = 0, then by rechoosing coordinates

one gets that g is conjugate to




0 t 0 0

−t 0 0 0

0 0 0 s

0 0 −s 0

 ,


0

0

u

v



 | s, t, u, v ∈ R


hence G is conjugate to{([

SO(2)

SO(2)

]
,

[
0

X

])
|X ∈ R2

}
.

Thus G is isomorphic to SO(2)× E0(2).

Case 2: If Gy is isomorphic to SO(2). For each regular point x ∈ R4
2, Gx is conjugate

to a proper Lie subgroup of Gy , so dimGx = 0 , hence dimG = dimG/Gx = 3. Thus G

is a three dimensional solvable Lie group such that its maximal compact Lie subgroup is

isomorphic to SO(2) by Theorem 3.1 and Lemma 3.9. Hence G is isomorphic to one of

the following Lie groups by Theorem 2.7 and Remark 2.8

Ek (k ∈ N) , SO(2)× R2 , SO(2)×Aff◦(R) .

We claim that G is not isomorphic to SO(2)×Aff◦(R).

If G is isomorphic to SO(2)×Aff◦(R) then up to isomorphism,

Aff◦(R) ⊂ ZG(SO(2)) ⊂ ZIso◦(R4
2)(SO(2)) = SO(2)× E0(2)

which implies that Aff◦(R) is isomorphic to a Lie subgroup of E0(2) = SO(2) nR2, that

is not possible obviously. Hence we may consider the following subcases.

Case 2.1. If G is isomorphic to Ek for some k ∈ N, then by Lemma 3.10, g is conjugate

to {([
r(c1kt)

r(c2kt)

]
,

[
A1X + C1T

A2X + C2T

])
| T =

[
t

t

]
, t ∈ R , X ∈ R2

}
(6)

where ci, Ci and Ai, for i = 1, 2, are defined in the proof of Lemma 3.10. It is known by

the lemma that at least one of c1 or c2 must be equal to ±1.

Case 2.1.1. Let c1 = 1 and A1 be invertible. In this case we show that G is conjugate

to K3. Without loss of generality assume that g is equal to the Lie algebra defined by (6).

We claim that c2 6= 0. If c2 = 0 then A2 = 0 by Lemma 3.10, and so by choosing a new

coordinate, one gets that

aga−1 =

{([
r(kt)

0

]
,

[
X

C2T

])
| T =

[
t

t

]
, t ∈ R , X ∈ R2

}
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where a = (I4×4, (−β1/k, α1/k, 0, 0)t). Hence G is conjugate to{([
R(kt)

I2×2

]
,

[
Y

C2T

])
| T =

[
t

t

]
, t ∈ R , Y ∈ R2

}

where R(t) =
[

cos t sin t

− sin t cos t

]
. If C2 = 0 then there is no three dimensional orbit, which is

in contradict to the cohomogeneity one assumption, and if C2 6= 0, then there is no two

dimensional orbit, which is in contradict to the fact that dimG(y) = 2. Thus c2 6= 0 and

so

aga−1 =

{([
r(kt)

r(c2kt)

]
,

[
A1X

A2X

])
| t ∈ R , X ∈ R2

}
where a = (I4×4, (−β1, α1,−ξ1/kc2, η1/kc2)t).

We claim that A2 = 0. If A2 6= 0 then it is invertible and c2 is equal to 1 or −1, by

Lemma 3.10. Since A1 is invertible by assumption, so by choosing a new coordinate one

may assume that

g =

{([
r(kt)

r(c2kt)

]
,

[
X

A3X

])
| t ∈ R , X ∈ R2

}

where A3 = A2A
−1
1 , and so each orbit will be two dimensional which is in contradict to

the cohomogeneity one assumption. Thus A2 = 0 and so g is conjugate to{([
r(kt)

r(c2kt)

]
,

[
X

0

])
| t ∈ R , X ∈ R2

}
.

Therefore G is conjugate to K3.

If c = −1 and A1 is invertible, then the same proof shows that G is conjugate to K3.

Case 2.1.2. If c1 = 1 and A1 is not invertible. In this case we show that G is conjugate

to K4. Since A1 is not invertible, A1 = 0 by Lemma 3.10, and so A2 is invertible. Hence

c2 is equal to 1 or −1 by Lemma 3.10. Thus by choosing a new coordinate, one gets that

aga−1 =

{([
r(kt)

r(c2kt)

]
,

[
0

X

])
| t ∈ R , X ∈ R2

}
where a = (I4×4, (−β1/k, α1/k,−ξ1/c2k, η1/c2k)t). Thus G is conjugate to K4 (note that

c2 is equal to either 1 or −1).

If c1 = −1 and A1 is not invertible, then the same discussion shows that G is conjugate

to K4.

Case 2.1.3. Let c2 be equal to 1 or −1. If A2 is invertible, then by a similar discussion

to that of Case 2.1.1. one gets that G is conjugate to K4. If A2 is not invertible, then by

a similar discussion to that of Case 2.1.2. one obtains that G is conjugate to K4.
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Case 2.2. G is isomorphic to SO(2)×R2. So

R2 ⊂ ZG(SO(2)) ⊂ ZIso◦(R4
2)(SO(2)) = SO(2)× E0(2)

hence R2 is isomorphic to a Lie subgroup of E0(2) = SO(2) n R2. Thus, by Lemma 3.6,

G is conjugate to either K1 or K2. �

Corollary 3.12 Let R4
2 be of cohomogeneity one under the proper action of a connected

and closed Lie subgroup G ⊂ Iso(R4
2). If B is a singular orbit, then B is isometric to

either R2 or R2
2 and each principal orbit is isometric to either R2 × S1(r) or R2

2 × S1(r).

Proof : By Theorem 3.11 the action of G is orbit equivalent to the action of one the Lie

groups Ki, where 1 6 i 6 4. So by a similar proof of Corollary 3.8 one gets the result. �

Remark 3.13 The mapping Rn
ν → Rn

n−ν , is defined by (x1, ..., xn) 7→ (xν+1, ..., xn, x1, ..., xν),

is an anti isometry. So for a singular orbit B, if ν = 4 then 0 6 dimB 6 3 and B is a

time-like affine subspace of R4
4 by Proposition 3.3, and if ν = 3 then B is anti-isometric

to Rk
1, where k = 1, 2, by Corollary 3.8. Thus we may sum up the results in the following

Theorem.

Theorem 3.14 Let R4
ν , 0 6 ν 6 4, be of cohomogeneity one under the proper action of

a connected and closed Lie subgroup G ⊂ Iso(R4
ν). If B is a singular orbit, then dimB >

min{ν, n − ν} and each orbit is a Riemannian, time-like or Lorentzian submanifold. In

particular, there is neither degenerate nor light-like orbit.
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