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Abstract. In this paper we discuss prime down-sets of a semilat-

tice. We give a characterization of prime down-sets of a semilattice.

We also give some characterizations of 0-distributive semilattices

and a characterization of minimal prime ideals containing an ideal

of a 0-distributive semilattice. Finally, we give a characterization

of minimal prime ideals of a pseudocomplemented semilattice.

1. Introduction

Semilattices have been studied by many authors. The class of dis-

tributive semilattices is an important subclass of semilattices. We refer

the readers to [4, 9, 10] for distributive semilattices. We also refer the

monograph [5] for the background of distributive semilattices. The

class of 0-distributive semilattices is a nice extension of the class of

distributive semilattices. This extension is useful for the study of pseu-

docomplemented semilattices. For pseudocomplemented semilattices

we refer the readers to [2, 3, 5, 6]. We also refer the readers to [7, 8]

for 0-distributive semilattices (see [1, 11] for 0-distributive lattices). In

this paper we study 0-distributive semilattices. By semilattice we mean

meet-semilattice.

A semilattice S with 0 is called 0-distributive if for any a, b, c ∈ S

such that a ∧ b = 0 = a ∧ c implies a ∧ d = 0 for some d > b, c. The

pentagonal lattice P5 (see Figure 1) as a semilattice is 0-distributive

but the diamond lattice M3 (see Figure 1) as a semilattice is not 0-

distributive. A semilattice S is called directed above if for all x, y ∈ S

there exists z ∈ S such that z > x, y. Every 0-distributive semilattice

is directed above.
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Figure 1. 0-distributive and non-0-distributive

Minimal prime ideals and maximal filters play an important role in

semilattices. In Section 2, we introduce a notion of minimal prime

down-set and maximal filters in semilattices. Here we give a character-

ization of minimal prime down-sets and maximal filters in semilattices.

Like as a distributive semilattice (or distributive lattice) Stone’s ver-

sion separation theorem is not true for 0-distributive semilattice. For

example, if we consider the pentagonal lattice P5 (see Figure 1) as a

0-distributive semilattice, then F = [c) is a filter and I = (a], is an

ideal such that F ∩ I = ∅ but there is no prime filter containing F

and disjoint from I. In Section 3 we discuss Stone’s version separation

theorem for 0-distributive semilattices. In this section we give some

characterizations of 0-distributive semilattices.

In Section 4 we discuss the pseudocomplementation in semilattices.

We close the paper with a characterization of a minimal prime ideals

of a pseudocomplemented 0-distributive semilattice.

2. Prime down-sets and maximal Filters

Let S be a semilattice. A non-empty subset D of S is called a down-

set if a ∈ D, b ∈ S with b 6 a implies that b ∈ D. A down-set D of S

is called a proper down-set if D ̸= S. A prime down-set is a proper

down-set P of S such that a ∧ b ∈ P implies a ∈ P or b ∈ P . A prime

down-set P is called minimal if there is a prime down-set Q such that

Q ⊆ P , then P = Q.

Theorem 2.1. Any prime down-set of a semilattice contains a minimal

prime down-set.

Proof. Let S be a semilattice with 0. Let P be a prime down-set of

S and let P be the set of all prime down-sets contained in P . Then P
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is non-empty since P ∈ P . Let C be a chain in P and let

M :=
∩

{X | X ∈ C}.

We claim that M is a prime down-set. Clearly M is non-empty as

0 ∈ M . Let a ∈ M and b 6 a. Then a ∈ X for all X ∈ C. Hence b ∈ X

for all X ∈ C as X is a down-set. Thus b ∈ M . Now let x ∧ y ∈ M

for some x, y ∈ S. Then x ∧ y ∈ X for all X ∈ C. Since X is a

prime down-set for all X ∈ C, we have either x ∈ X or y ∈ X for all

X ∈ C. This implies that either x ∈ M or y ∈ M . Hence M is a prime

down-set.

Thus by applying the dual form of Zorn’s Lemma to P , there is a

minimal member of P . �

Let S be a semilattice. A non-empty subset F of S is called a filter

if

(i) a, b ∈ F implies a ∧ b ∈ F

(ii) a ∈ S, b ∈ F with a > b implies a ∈ F .

A filter F of a semilattice S is called proper filter if F ̸= S. A maximal

filter F of S is a proper filter which is not contained in any other proper

filter, that is, if there is a proper filter G such that F ⊆ G, then F = G.

Following result is due to [8].

Lemma 2.2. Let M be a proper filter of S with 0. Then M is maximal

if and only if for all a ∈ S\M , there is some b ∈ M such that a∧b = 0.

Now we have the following result.

Theorem 2.3. Let F be a non-empty proper subset of a semilattice S.

Then F is a filter if and only if S \ F is a prime down-set.

Proof. Let F be a filter of a semilattice S. Let x ∈ S \F and y 6 x.

Then x /∈ F and hence y /∈ F as F is a filter. This implies y ∈ S \ F .

Thus S \F is a down-set. Since F is a filter S \F ̸= S. Thus S \F is a

proper down-set. To prove S \F is a prime down-set, let a, b ∈ S such

that a ∧ b ∈ S \ F . Then a ∧ b /∈ F and hence either a /∈ F or b /∈ F

as F is filter. This implies either a ∈ S \ F or b ∈ S \ F . Therefore,

S \ F is a prime down-set.

Conversely, let S\F be a prime down-set and x, y ∈ F . Then clearly,

x, y /∈ S \ F and hence x ∧ y /∈ S \ F as S \ F is a prime down-set.

Thus x ∧ y ∈ F . Suppose x ∈ F and x 6 y. Then x /∈ S \ F . Since
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S \ F is a down-set, we have y /∈ S \ F . Hence y ∈ F . This implies F

is a filter. �

Theorem 2.4. Let F be a non-empty subset of a semilattice S. Then

F is a maximal filter if and only if S \F is a minimal prime down-set.

Proof. Let F be a maximal filter and S \ F is not a minimal prime

down-set. Then there exists a prime down-set I such that I ⊆ S \ F
which implies F ⊆ S \ I which contradict to the maximality of F .

Hence S \ F is minimal prime down-set.

Conversely, let S \ F be a minimal prime down-set and F is not a

maximal filter. Thus there exists a proper filter G such that F ⊆ G

which implies S \G ⊆ S \F which contradict the minimality of S \F .

Hence F is a maximal filter. �

3. Minimal Prime ideals

Let S be a semilattice. A down-set I of S is called an ideal if a, b ∈ I

implies the existence of c ∈ I such that a, b 6 c. The set of all ideals of

S is denoted by I(S). An ideal I of S is called a proper ideal if I ̸= S.

A prime ideal P is a proper ideal of S such that a ∧ b ∈ P implies

either a ∈ P or b ∈ P . A prime ideal P is called minimal if there is a

prime ideal Q such that Q ⊆ P , then P = Q. A filter F of S is called

a prime filter if F ̸= S and S \ F is a prime ideal.

We shall often use the following lemma in this paper.

Lemma 3.1. Let S be a directed above semilattice with 0. If S is not

0-distributive, then the set

F := {x ∈ S | x > a ∧ y ̸= 0 for all y > b, c},

where a, b, c ∈ S such that a ∧ b = a ∧ c = 0, is a proper filter.

Proof. Since S is not 0-distributive, there are p, q, r ∈ S such that

p∧ q = p∧ r = 0 and p∧ d ̸= 0 for all d > q, r. Now we have p > p∧ d.

Thus p ∈ F . Hence F is nonempty. Clearly 0 /∈ F . It is enough to

show that F is a filter. Let x ∈ F and z > x. Then x > a ∧ y for all

y > b, c and by transitivity z > a ∧ y for all y > b, c. Hence z ∈ F .

Again let x, z ∈ F . Then x > a∧ y and z > a∧ y for all y > b, c. Thus

x ∧ z > a ∧ y for all y > b, c. Hence x ∧ z ∈ F . This implies F is a

filter. �
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Now we have the following result.

Theorem 3.2. Every maximal filter of a 0-distributive semilattice is a

prime filter.

Proof. Let S be a 0-distributive semilattice. Again let Q be a max-

imal filter of S. We shall show that Q is prime. It is sufficient to

show that S \ Q is a prime ideal. By Theorem 2.4 we have S \ Q is a

minimal prime down-set. Now let x, y ∈ S \ Q. Then by Lemma 2.2

we have a ∧ x = 0 = b ∧ y for some a, b ∈ Q. Let c = a ∧ b. Clearly

c ∧ x = 0 = c ∧ y and c ∈ Q. Hence by the 0-distributivity of S there

exists z ∈ S such that z > x, y and c ∧ z = 0. Hence z ∈ S \Q. Thus

S \Q is a prime ideal which implies Q is prime. �

Let A be non-empty subset of a semilattice S with 0. Set

A⊥ := {x ∈ S | a ∧ x = 0 for all a ∈ A}.

Then A⊥ is called the annihilator of A. If A = S then A⊥ = S⊥ = (0].

For a ∈ S, the annihilator of {a} is simply denoted by a⊥ and hence

a⊥ = {x ∈ S | a ∧ x = 0}. We can easily show that

A⊥ =
∩
a∈A

a⊥.

Let S be a semilattice with 0. An ideal I of S is called an annihilator

ideal if I = A⊥ for some non-empty subset A of S.

Our aim is to prove a Stone’s version separation theorem for 0-

distributive semilattices. The following result due to [8, Theorem 7].

Theorem 3.3. Let S be a semilattice with 0. Then S is 0-distributive

if and only if for any filter F of S such that F ∩ x⊥ = ∅ (x ∈ S), there

exists a prime filter containing F and disjoint from x⊥.

Our conjecture is:

Conjecture 3.4. Let S be a directed above semilattice with 0. Then

S is 0-distributive if and only if for any filter F and any annihilator

ideal I of S such that F ∩ I = ∅, there exists a prime filter containing

F and disjoint from I.

The necessary conditions of a directed above semilattice to be 0-

distributive is given below, but unfortunately, we could not prove or

disprove the condition is sufficient or not.
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Theorem 3.5. Let S be a directed above semilattice with 0. If for

any filter F and any annihilator ideal I of S such that F ∩ I = ∅,
there exists a prime filter containing F and disjoint from I, then S is

0-distributive.

Proof. Suppose the condition holds. If S is not 0-distributive, then

there are a, b, c ∈ S such that a ∧ b = 0 = a ∧ c and a ∧ d ̸= 0 for all

d > b, c (such d exists as S is directed above). Let

F := {x ∈ S | x > a ∧ y for all y > b, c}.

Then by Lemma 3.1, we have F is a proper filter.

Let I be an annihilator ideal such that a ∧ d /∈ I (such annihilator

exists as a∧ d /∈ S⊥). We shall show that I ∩F = ∅. If x ∈ I ∩F , then

x > a∧y for all y > b, c which implies a∧d ∈ I, which is a contradiction.

Hence I ∩ F = ∅. Thus by the assumption, there is a prime filter Q

such that F ⊆ Q and I ∩Q = ∅. This implies a ∈ Q and y ∈ Q for all

y > b, c. We shall show that either b ∈ Q or c ∈ Q. If b, c /∈ Q then

b, c ∈ S \Q. Since Q is a prime filter, S \Q is a prime ideal. So, there

is e ∈ S \ Q such that e > b, c which is a contradiction. Hence either

b ∈ Q or c ∈ Q. This implies, either a ∧ b ∈ Q or a ∧ c ∈ Q. Hence

0 ∈ Q, which contradicts the fact that Q is a prime filter. Therefore,

a ∧ d = 0 for some d > b, c and hence S is 0-distributive. �

Let S be a semilattice. For a ∈ S, the ideal (a] is called the ideal

generated by a. It can be easily seen that (a]⊥ = a⊥ for any a ∈ S.

An ideal I of S is called an α-ideal if (i⊥)⊥ ⊆ I for any i ∈ I.

Now we shall give some characterizations of 0-distributive semilat-

tice.The following lemma is due to [1]

Lemma 3.6. Every proper filter of a semilattice with 0 is contained in

a maximal filter.

We have the following result which is a generalization of [1, Theo-

rem 3.1].

Theorem 3.7. Let S be a semilattice with 0. Then the following state-

ments (i)–(iv) are equivalent and any one of them implies (v) and (vi).

(i) S is 0-distributive;

(ii) every maximal filter of S is prime;

(iii) every minimal prime down-set of S is a minimal prime ideal;



SOME CHARACTERIZATIONS OF 0-DISTRIBUTIVE SEMILATTICES 7

(iv) every proper filter of S is disjoint from a minimal prime ideal;

(v) for each element a ∈ S such that a ̸= 0, there is a minimal

prime ideal not containing a;

(vi) each element a ∈ S such that a ̸= 0 is contained in a prime

filter.

Proof. (i)⇒(ii). This follows by the Lemma 3.2.

(ii)⇒(iii). Let N be a minimal prime down-set. Then by Lemma 2.4

we have S \N is a maximal filter. Hence by (ii) S \N is a prime filter.

Thus N is a prime ideal.

(iii)⇒(iv). Let F be a proper filter of S. By Lemma 3.6 there is a

maximal filter M such that F ⊆ M . Hence by Lemma 2.4 we have

S \M is a minimal prime down-set. Thus by (iii) S \M is a minimal

prime ideal. Clearly, F ∩ (S \M) = ∅.
(iv)⇒(i). Suppose S is not 0-distributive. Then there are a, b, c ∈ S

such that a ∧ b = a ∧ c = 0 and a ∧ d ̸= 0 for all d > b, c. Now set

F = {x ∈ S | x > a ∧ y for all y > b, c}.

Then by Lemma 3.1, we have F is a proper filter and hence by (iv)

there exists a prime ideal Q such that F ∩ Q = ∅. Thus a ∧ p /∈ Q

for any p > b, c. This implies a, p /∈ Q for any p > b, c. Now a /∈ Q

implies b, c ∈ Q. Then there is m > b, c such that m ∈ Q which is a

contradiction. Therefore, a ∧ d = 0 for some d > b, c and hence S is

0-distributive.

(iv)⇒(v). Let a ∈ S such that a ̸= 0. Then [a) is a proper filter.

Then by (iv) [a) is disjoint from a minimal prime ideal N of S. Thus

a /∈ N .

(v)⇒(vi). Let a ∈ S such that a ̸= 0. Then by (v) there is a

minimal prime ideal P such that a /∈ P which implies a ∈ S \ P . By

the definition of prime filter we have S \ P is a prime filter. �

Now we have following result which is a generalization of [1, Lemma 1.8].

Lemma 3.8. Let A be a non-empty subset of a semilattice S with 0.

Then A⊥ is the intersection of all the minimal prime down-set not

containing A.

Proof. Let S be a semilattice with 0 and ∅ ≠ A ⊆ S. Suppose

X :=
∩

{P | A * P and P is a minimal prime down-set}
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Let x ∈ A⊥. Then x ∧ y = 0 for all y ∈ A. This implies there is z /∈ P

such that x∧ z = 0 ∈ P . As P is prime, we have x ∈ P . Hence x ∈ X.

Conversely let, x ∈ X. If x /∈ A⊥. Then x ∧ q ̸= 0 for some q ∈ A.

Let D = [x ∧ q). Then 0 /∈ D. Hence, D ̸= S. Then by Lemma 3.6 we

have D ⊆ M for some maximal filter M . Hence by Lemma 2.4 we have

S \M is a minimal prime down-set. Now x /∈ S \M as x ∈ D implies

x ∈ M . Moreover A * S \M as q ∈ A but q ∈ M implies q /∈ S \M ,

which is a contradiction to x ∈ X. Hence x ∈ A⊥. Thus the lemma is

proved. �

Theorem 3.9. Let S be a 0-distributive semilattice. If A is a nonempty

subset of S and F is a proper filer intersecting A, there is a minimal

prime ideal containing A⊥ and disjoint from F .

Proof. Let S be a directed above semilattice with 0. Again let A be

a nonempty subset of S and F be a proper filter such that F ∩A ̸= ∅.
Then Lemma 2.3 S \ F is a prime down-set and by Lemma 2.1 N ⊆
S \ F for some minimal prime down-set N . Clearly, N ∩ F = ∅. Also

A * S \ F and so A * N . By Lemma 3.8 A⊥ ⊆ N . Since S is 0-

distributive, by theorem 3.7(iv) N is a minimal prime ideal. �

4. Pseudocomplementation for 0-distributive semilattices

Let S be a semilattice with 0. An element d ∈ S is called the pseu-

docomplement of x ∈ S, if x ∧ d = 0 and y ∈ S, x ∧ y = 0 implies

y 6 d. The pseudocomplement of x is denoted by x∗. A semilattice S

is called pseudocomplemented if each element of S has a pseudocom-

plement. The pseudocomplement of 0 is the largest element 1. Thus

a pseudocomplemented semilattice contains both the smallest element

and the largest element.

Theorem 4.1. Every pseudocomplemented semilattice is 0-distributive

but the converse is not true.

Proof. Let S be a pseudocomplemented semilattice. Suppose a, b, c ∈
S with a ∧ b = 0 = a ∧ c. By the definition of pseudocomplemented,

b 6 a∗, c 6 a∗ and a ∧ a∗ = 0. Thus S is a 0-distributive semilattice.
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To prove the converse is not true, consider the semilattice, M2 shown

in the Figure 2, which is clearly 0-distributive but not pseudocomple-

mented as a∗ does not exist.

c
0

ca1
c
6

a2 c
�
��

a

c

A
A
A
A

A

M2

Figure 2

�

Theorem 4.2. Let S be a pseudocomplemented semilattice and let J be

an ideal of S. Then a prime ideal P containing J is a minimal prime

ideal containing J if and only if for each x ∈ P there is y ∈ S \P such

that x ∧ y ∈ J .

Proof. Let P be a prime ideal of S containing J such that the

given condition holds. We shall show that P is a minimal prime ideal

containing J . Let K be a prime ideal containing J such that K ⊆ P .

Let x ∈ P . Then there is y ∈ S \ P such that x ∧ y ∈ J . Hence

x ∧ y ∈ K as K containing J . Since K is prime and y /∈ K implies

x ∈ K. Hence P ⊆ K. Thus K = P . Therefore, P is a minimal prime

ideal containing J .

Conversely, let P be a minimal prime ideal containing J . Let x ∈ P .

Suppose for all y ∈ S \ P, x ∧ y /∈ J . Set D = (S \ P ) ∨ [x). We

claim that 0 /∈ D. For if 0 ∈ D, then 0 = q ∧ x for some q ∈ S \ P .

Thus, x ∧ q = 0 ∈ J which is a contradiction. Therefore, 0 /∈ D. Since

(0] = 1⊥ by Theorem 3.3, there is a prime filter Q such that D ⊆ Q

and 0 /∈ Q. Let M = S \ Q. Then by the definition of prime filter

of a semilattice, M is a prime ideal. We claim that M ∩ D = ∅. If

a ∈ M ∩ D, then a ∈ M and hence a /∈ Q. Thus a /∈ D which is a

contradiction. Hence M∩D = ∅. Therefore, M∩(S\P ) = ∅ and hence

M ⊆ P . Also M ̸= P , because x ∈ D implies x ∈ Q and hence x /∈ M
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but x ∈ P . This shows that P is not minimal which is a contradiction.

Hence the given condition holds. �

We enclose the paper with the following useful characterization of

minimal prime ideal.

Theorem 4.3. Let S be a pseudocomplemented semilattice and let P

be a prime ideal of S. Then the followings are equivalent:

(i) P is minimal.

(ii) x ∈ P implies that x∗ /∈ P .

Proof. (i)⇒(ii). Let P be a minimal prime ideal and let x∗ ∈ P for

some x ∈ P . Set D = (S \P )∨ [x). We claim that 0 /∈ D. For if 0 ∈ D,

then 0 = q ∧ x for some q ∈ S \ P , which implies q 6 x∗ ∈ P which

is a contradiction. Therefore, 0 /∈ D. Since (0] = 1⊥ by Theorem 3.3,

there is a prime filter Q such that D ⊆ Q and 0 /∈ Q. Let M = S \Q.

Then by the definition of prime filter of a semilattice, M is a prime

ideal. We claim that M ∩ D = ∅. If a ∈ M ∩ D, then a ∈ M and

hence a /∈ Q. Thus a /∈ D which is a contradiction. Hence M ∩D = ∅.
Therefore, M ∩ (S \ P ) = ∅ and hence M ⊆ P . Also M ̸= P , because

x ∈ D implies x ∈ Q and hence x /∈ M but x ∈ P . This shows that P

is not minimal which is a contradiction. Hence (ii) holds.

(ii)⇒(i). Let P be a prime ideal of S such that (ii) holds. We shall

show that P is a minimal prime ideal. LetK be a prime ideal satisfying

(ii) such that K ⊆ P . Let x ∈ P . Then x ∧ x∗ = 0 ∈ K. Since K

is prime and x∗ /∈ K implies x ∈ K. Hence P ⊆ K. Thus K = P .

Therefore, P is a minimal prime ideal. �
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