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Abstract. Characterizations of prime ideals, semiprime ideals, irreducible k-ideals and
irreducible principal T -ideals in the ternary semiring of non-positive integers are inves-
tigated.

1. Introduction

Generalizing the notion of ternary ring introduced by Lister [15], Dutta and Kar [4]
introduced the notion of ternary semiring. A non-empty set S together with a binary
operation called addition (+) and a ternary operation called ternary multiplication (·) is
called ternary semiring if it satisfies the following conditions for all a, b, c, d, e ∈ S:

1. (a + b) + c = a + (b + c);
2. a + b = b + a;
3. (a · b · c) · d · e = a · (b · c · d) · e = a · b · (c · d · e);
4. there exists 0 ∈ S such that a + 0 = a = 0 + a, a · b · 0 = a · 0 · b = 0 · a · b = 0;
5. (a + b) · c · d = a · c · d + b · c · d;
6. a · (b + c) · d = a · b · d + a · c · d;
7. a · b · (c + d) = a · b · c + a · b · d.

Clearly, every semiring is a ternary semiring. Denote the sets of all non-positive, negative,
and positive integers respectively by Z−0 , Z−, and N. The set Z−0 is a ternary semiring
under usual addition and ternary multiplication of non-positive integers but it is not a
semiring.

If there exists an element e in a ternary semiring S such that eex = exe = xee = x
for all x ∈ S, then e is called the identity element of S. A ternary semiring S is said to
be commutative if abc = acb = cab for all a, b, c ∈ S. The ternary semiring (Z−0 , +, ·) is
commutative with identity element −1. A non-empty subset I of a commutative ternary
semiring S is called an ideal of S if the following conditions are satisfied:

1. a, b ∈ I implies a + b ∈ I;
2. a ∈ I, r, s ∈ S implies rsa ∈ I.

An ideal I of a ternary semiring S is called a k-ideal (= subtractive ideal) if a, a + b ∈ I,
b ∈ S, then b ∈ I. If S is a commutative ternary semiring with identity element, then
a proper ideal I of S is called i) prime if abc ∈ I, a, b, c ∈ S implies a ∈ I or b ∈ I
or c ∈ I; ii) semiprime if a3 ∈ I, a ∈ S implies a ∈ I. Clearly, every prime ideal is a
semiprime ideal. The concept of irreducible ideals in a ternary semirings can be defined
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on the similar lines as in semirings and rings. If n ∈ (Z−0 , +, ·) and n ≤ −2, then n can
be written as

n = (−p1)
r1(−p2)

r2 · · · (−pk)
rk(−1)r1(−1)r2 · · · (−1)rk(−1)

= (−p1)
r1(−p2)

r2 · · · (−pk)
rk(−1)(

∑k
i=1 ri)+1

where p1, p2, · · · , pk ∈ N are pairwise distinct primes and ri, k ∈ N. An ideal I of
(Z−0 , +, ·) is said to be generated by a subset A = {a1, a2, · · · , an} of Z−0 if for every x ∈ I,
there exist αi, βi ∈ Z−0 such that x =

∑n
i=1 αiβiai. If A = {a}, then Z−0 Z−0 a is called a

principal ideal generated by a. For a1, a2, · · · , ak ∈ Z−0 , we denote i) 〈a1, a2, · · · , ak〉 = the
ideal generated by a1, a2, · · · , ak in the ternary semiring Z−0 ; ii) (a1, a2, · · · , ak) = g.c.d.
of a1, a2, · · · , ak. Two elements a1, a2 ∈ Z−0 are said to be relatively prime if (a1, a2) = 1.
For n ∈ Z−, we denote In = {r ∈ Z− : r ≤ n}∪{0}. Clearly In is an ideal in the ternary
semiring Z−0 . An ideal I of Z−0 is called i) a T -ideal if In ⊆ I for some n ∈ Z−; ii) a
principal T -ideal if I = 〈a〉 ∪In for some a ∈ Z−0 and n ∈ Z−. Further i) for n ∈ Z−, we
denote n+1 as the immediate successor of n in Z−0 ; ii) for n ∈ Z−−{−1}, we denote n+2
as the immediate successor of n + 1 in Z−0 . For example, −5 = (−6) + 1 is the immediate
successor of −6 and −4 = (−6) + 2 is the immediate successor of (−6) + 1 (= −5).

Dutta and Kar [6, 7] have characterized respectively the prime k-ideals and semiprime
k-ideals of the ternary semiring of non-positive integers. Some works on ternary semirings
may be found in [2, 5, 8, 9]. Theory of ideals in the semiring of non-negative integers is
recently studied by Gupta and Chaudhari [11] and by Chaudhari and Ingale [3]. Theory
of ideals in the ternary semiring of non-positive integers is studied by Kar [13].

In this paper, we obtain characterizations of prime ideals, semiprime ideals, irreducible
k-ideals and irreducible principal T -ideals in the ternary semiring of non-positive integers.
In Section 2, we obtain characterizations of prime ideals, semiprime ideals and irreducible
k-ideals in the ternary semiring of non-positive integers. In section 3, we obtain charac-
terization of irreducible principal T -ideals in the ternary semiring of non-positive integers.

The following results will be used to prove our results.

Lemma 1.1. [13, Lemma 3.12] Let I = 〈a1, a2, · · · , an〉 ⊆ Z−0 . If (a1, a2, · · · , an) = d,
then there exists a largest t ∈ Z−0 such that (−1)(−d)r ∈ I for all r ≤ t.

Lemma 1.2. [13, Lemma 3.3] If a, b ∈ Z−0 are relatively prime, then there exist p, q ∈ Z−0
such that (−1)qa = (−1)pb + (−1) or (−1)pb = (−1)qa + (−1).

Theorem 1.3. [13] Every ideal of Z−0 is finitely generated.

Theorem 1.4. [6, Theorem 5.5] An ideal I of Z−0 is a k-ideal if and only if I is a principal
ideal.

Theorem 1.5. [2, Theorem 3.8] An ideal I of Z−0 is semiprime if and only if an ∈ I
where n is an odd natural number implies a ∈ I.

2. Prime ideals, semiprime ideals and irreducible k-ideals in Z−0
In this section, we characterize prime ideals, semiprime ideals and irreducible k-ideals

in the ternary semiring Z−0 . We give a short and elementary proof of [13, Lemma 3.4].
This lemma will be used in the proof of subsequent theorem.
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Lemma 2.1. Let a, b ∈ Z−0 , b < a < −1 and let a, b be relatively prime. Then there exists
m ∈ Z−0 such that t ∈ 〈a, b〉 for all t ≤ m.

Proof. By Lemma 1.2, there exist p, q ∈ Z−0 such that (−1)qa = (−1)pb+(−1) or (−1)pb =
(−1)qa + (−1). Without loss of generality assume that (−1)qa = (−1)pb + (−1). Clearly
p, q 6= 0. Let us write m = (−1)paqa ∈ 〈a, b〉. Let t = m + r where r ≤ 0. If r = 0, then
t = m ∈ 〈a, b〉. If a < r < 0, then

t = m + r = (−1)paqa + r = pa(−1)qa + r

= pa((−1)pb + (−1)) + r = −(pa + r)pb + (−1)pa + rpb + r

= −(pa + r)pb + (−1)pa + rqa ∈ 〈a, b〉.

If r ≤ a, then by the division algorithm r = (−1)au + v where u, v ∈ Z−0 and a < v ≤ 0.
Then t = m + v + (−1)au ∈ 〈a, b〉.

Now the following theorem gives a characterization of non-zero prime ideals in the
ternary semiring Z−0 :

Theorem 2.2. A non-zero ideal I of the ternary semiring Z−0 is prime if and only if I
= 〈−p〉 for some prime number p ∈ N or I = 〈−2,−3〉.

Proof. Let I be a prime ideal. By Theorem 1.3, I is a finitely generated ideal. If I is a
principal ideal say I = 〈m〉, m < −1, then let

m = (−1)(
∑k

i=1 ri)+1(−p1)
r1(−p2)

r2 · · · (−pk)
rk

where p1, p2, · · · , pk ∈ N are pairwise distinct primes and ri, k ∈ N. If k ≥ 2, then

(−1)ab = m ∈ I where a = (−1)r1+1(−p1)
r1 , b = (−1)(

∑k
i=2 ri)+1(−p2)

r2 · · · (−pk)
rk . Since

I is a prime ideal, we have −1 ∈ I or a ∈ I or b ∈ I, a contradiction. So k = 1 and hence
m = (−1)r1+1(−p1)

r1 . Again if r1 ≥ 2, then (−1)r1+1(−p1)
r1 ∈ I. Since I is a prime ideal,

we have −1 ∈ I or −p1 ∈ I, a contradiction. So r1 = 1 and hence I = 〈−p〉.
Now assume that I is not a principal ideal. Take I = 〈a1, a2, · · · , an〉 where an < an−1 <

· · · < a1 < −1, ai does not divide aj for all i < j, j = 2, 3, · · · , n, n ≥ 2. By using the
procedure as in the above part, we have a1 = −p for some prime number p ∈ N. Then
a1, a2 are relatively prime. By Lemma 2.1, there exists m ∈ Z−0 such that

(2.1) t ∈ 〈a1, a2〉 ⊆ I for all t ≤ m.

If a1 < −2, then by (2.1), choose a smallest j such that (−1)j+1(−2)j ∈ I, j > 1. Since
I is a prime ideal, −1 ∈ I or −2 ∈ I, a contradiction. Hence a1 = −2. If a2 < −3, then
by (2.1), choose a smallest s such that (−1)s+1(−3)s ∈ I, s > 1. Since I is a prime ideal,
−1 ∈ I or −3 ∈ I, a contradiction. Hence a2 = −3. So I= 〈−2,−3〉. The converse is
trivial.

From Theorem 1.4 and Theorem 2.2, we have the following corollary in which character-
ization of non-zero prime k-ideals in the ternary semiring Z−0 is obtained. This corollary
shows that the [6, Lemma 5.9] is not true for the ideal {0} where {0} is a prime k-ideal.

Corollary 2.3. A non-zero k-ideal I of the ternary semiring Z−0 is prime if and only if
I = 〈−p〉 for some prime number p ∈ N.
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Now the following theorem gives a characterization of non-zero semiprime ideals in the
ternary semiring Z−0 :

Theorem 2.4. A non-zero ideal I of the ternary semiring Z−0 is semiprime if and only
if I = 〈m〉 where m = (−1)k+1(−p1)(−p2) · · · (−pk), p1, p2, · · · , pk ∈ N are pairwise
distinct primes or I = 〈−2,−3〉.

Proof. Let I be a semiprime ideal. By Theorem 1.3, I is a finitely generated ideal. If I is
a principal ideal say I = 〈m〉, m < −1, then let

m = (−1)(
∑k

i=1 ri)+1(−p1)
r1(−p2)

r2 · · · (−pk)
rk

where p1, p2, · · · , pk ∈ N are pairwise distinct primes and ri, k ∈ N. If ri ≥ 2 for some i,
then ( m

(−1)(−pi)
)3 ∈ I but m

(−1)(−pi)
/∈ I, a contradiction. Hence each ri = 1. Now assume

that I is not a principal ideal. Take I = 〈a1, a2, · · · , an〉 where an < an−1 < · · · < a1 < −1,
ai does not divide aj for all i < j, j = 2, 3, · · · , n and n ≥ 2. Let d = (a1, a2, · · · , an). If
−d < −1, then let

−d = (−1)(
∑k

i=1 ri)+1(−p1)
r1(−p2)

r2 · · · (−pk)
rk

where p1, p2, · · · , pk ∈ N are pairwise distinct primes and ri ≥ 1 for all i. If a1 < −d,
then by Lemma 1.1, choose a smallest odd t ∈ N such that (−d)t ∈ I. By Theorem 1.5,
−d ∈ I, a contradiction as a1 < −d. If −d = a1, then a1 | a2, a contradiction. Hence

−d = −1. If a1 < −2, then by Lemma 1.1, choose a smallest odd j such that (−2)j ∈ I,
j > 1. By Theorem 1.5, −2 ∈ I, a contradiction as a1 < −2. Hence a1 = −2. If a2 < −3,
then by Lemma 1.1, choose a smallest s such that (−3)s ∈ I, s > 1. By Theorem 1.5,
−3 ∈ I, a contradiction as a2 < −3. Hence a2 = −3. Now 〈−2,−3〉 ⊆ I implies I =
〈−2,−3〉.

Conversely, If I = 〈m〉 where m = (−1)k+1(−p1)(−p2) · · · (−pk), p1, p2, · · · , pk ∈ N are
pairwise distinct primes and a3 ∈ I, then clearly m|a3 implies m|a. Hence a ∈ 〈m〉 =
I. If I = 〈−2,−3〉, then by Theorem 2.2, I is a prime ideal and hence I is a semiprime
ideal.

From Theorem 1.4 and Theorem 2.4, we have the following corollary in which charac-
terization of non-zero semiprime k-ideals in the ternary semiring Z−0 is obtained. This
corollary shows that [7, Theorem 5.5] is not true for the ideal {0} where {0} is a semiprime
k-ideal.

Corollary 2.5. A non-zero k-ideal I of the ternary semiring Z−0 is semiprime if and
only if I = 〈(−1)k+1(−p1)(−p2) · · · (−pk)〉 where p1, p2, · · · , pk ∈ N are pairwise distinct
primes.

Now the following theorem gives a characterization of non-zero irreducible k-ideals in
the ternary semiring Z−0 :

Theorem 2.6. A non-zero proper ideal I in the semiring Z−0 is an irreducible k-ideal if
and only if I = 〈(−1)n+1(−p)n〉 for some prime number p ∈ N and for some n ∈ N.

Proof. Let I be an irreducible k-ideal of Z−0 . By Theorem 1.4, I = 〈m〉 for some m < −1.
Since I is an irreducible ideal, I = 〈(−1)n+1(−p)n〉 for some prime number p ∈ N and for
some n ∈ N. Conversely suppose that I = 〈(−1)n+1(−p)n〉 for some prime number p ∈ N
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and for some n ∈ N. By Theorem 1.4, I is a k-ideal. If I is not an irreducible ideal, then
there exist ideals A, B of Z−0 such that I = A ∩ B and I 6= A, I 6= B. Let a ∈ A, b ∈ B
be such that a, b /∈ I. If a = −1 or b = −1, then A = Z−0 or B = Z−0 and hence I = B or
I = A, a contradiction. Suppose that a < −1, b < −1. Let

a = (−1)(
∑k

i=1 αi)+α+1(−p1)
α1(−p2)

α2 · · · (−pk)
αk(−p)α,

b = (−1)(
∑k

i=1 βi)+β+1(−p1)
β1(−p2)

β2 · · · (−pk)
βk(−p)β

where p1, p2, · · · , pk, p are pairwise distinct primes and αi, α, βi, β ≥ 0. Now a, b /∈ I

implies α, β < n. Denote l = (−1)(
∑k

i=1 λi)+λ+1 (−p1)
λ1(−p2)

λ2 · · · (−pk)
λk(−p)λ where

λi = max{αi, βi}, λ = max{α, β}. Then a ∈ A, b ∈ B implies l ∈ A ∩ B = I =
〈(−1)n+1(−p)n〉. So (−1)n+1(−p)n|l. Hence n ≤ λ, a contradiction. So I is an irreducible
ideal.

Corollary 2.7. Let I be a non-zero proper ideal in the ternary semiring Z−0 . Then the
following statements are equivalent:

1) I is a prime k-ideal;
2) I = 〈−p〉 for some prime p ∈ N;
3) I is an irreducible and semiprime k-ideal.

Proof. (1) ⇒ (2) Follows from Corollary 2.3.
(2) ⇒ (3) By Corollary 2.3, I is a prime k-ideal and hence I is a semiprime ideal.

Clearly every prime ideal is an irreducible ideal and hence I is an irreducible ideal.
(3) ⇒ (1) Follows from Theorem 2.6, Corollary 2.5 and Corollary 2.3.

3. Irreducible principal T -ideals in Z−0
In this section, we characterize irreducible principal T -ideals in the ternary semiring

Z−0 . In general, the union of two ideals in a commutative ternary semiring S may not
be an ideal of S. But for any ideal In in the ternary semiring Z−0 , we have the following
lemma:

Lemma 3.1. If A is an ideal of the ternary semiring Z−0 , then A ∪ In is an ideal of Z−0 .

Theorem 3.2. In is an irreducible ideal if and only if n ≥ −3.

Proof. Let In be an irreducible ideal. Suppose that n ≤ −4. Denote A = 〈n+1〉∪ In and
B = 〈n + 2〉∪ In. By Lemma 3.1, A, B are ideals of Z−0 such that In 6= A and In 6= B.
Clearly, In = A∩B. Hence In is a reducible ideal, a contradiction. So n ≥ −3. Conversely
suppose that n ≥ −3. Clearly I−1 = Z−0 and I−2 = 〈−2,−3〉 are irreducible ideals. Now
if I−3 = A ∩B and I−3 ⊂ A, then A = Z−0 or A = I−2 and hence B = I−3.

Corollary 3.3. A principal T-ideal I = 〈m〉 ∪ In is irreducible in Z−0 for n ≥ −3 and for
every m ∈ Z−0 .

Proof. Clearly 〈m〉 ⊆ In for all m ≤ n. So I = I−1 or I−2 or I−3 for n ≥ −3 and every
m ∈ Z−0 . By Theorem 3.2, I is an irreducible ideal.

Theorem 3.4. Every ideal I ⊇ 〈−2〉 of Z−0 is irreducible.
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Proof. Let A 6= I 6= B be ideals of Z−0 such that I = A ∩ B. Then there are a ∈ A
and b ∈ B such that a, b /∈ I ⊇ 〈−2〉. Hence a and b are odd negative integers. We
may assume that a ≥ b and therefore b = a + (−1)(−2)r for some r ∈ Z−0 . Since
(−1)(−2)r ∈ 〈−2〉 ⊆ I ⊆ A, we get b ∈ A and therefore b ∈ A ∩ B = I, a contradiction.
Hence either I = A or I = B.

Now we prove the following lemmas which will be used in the subsequent theorems.

Lemma 3.5. If a, b ∈ Z−0 and n ∈ Z− are such that a + b ≤ n, then A = 〈a〉 ∪ 〈b〉∪ In is
an ideal of Z−0 .

Proof. Let x, y ∈ A. If x and y satisfy at least one of the following: i) x = 0 or y = 0;
ii) x ≤ n or y ≤ n; iii) x, y ∈ 〈a〉 or x, y ∈ 〈b〉, then clearly x + y ∈ A. Now without
loss of generality assume that n < x < 0, n < y < 0 and x ∈ 〈a〉, y ∈ 〈b〉. Then
x + y = (−1)ra + (−1)tb ≤ a + b ≤ n for some r, t ∈ Z−. Hence x + y ∈ A. If α, β ∈ Z−0
and x ∈ A, then clearly αβx ∈ A. Hence A is an ideal of Z−0 .

Lemma 3.6. Let I be an ideal in the ternary semiring Z−0 such that I ⊇ In where
n ∈ Z−. If b, c ∈ Z−0 are such that (−1)(−2)b ≤ n, b ≤ c and c does not divide b, then I
= (〈b〉 ∪ I) ∩ (〈c〉 ∪ I).

Proof. Clearly (−1)(−2)b ≤ n implies

(3.1) (−1)rb ∈ In ⊆ I for all r ≤ −2.

Let x ∈ (〈b〉∪I)∩ (〈c〉∪I). If x /∈ I, then clearly x = (−1)rb = (−1)tc for some r, t ∈ Z−.
By (3.1), r = −1 and hence b = (−1)tc i.e. c | b, a contradiction. Hence x ∈ I. So
(〈b〉∪ I)∩ (〈c〉∪ I) ⊆ I. Clearly I ⊆ (〈b〉∪ I)∩ (〈c〉∪ I). Hence I = (〈b〉∪ I)∩ (〈c〉∪ I).

The following two theorems are essential to obtain the characterization of the irreducible
principal T -ideals in the ternary semiring Z−0 .

Theorem 3.7. Let I = 〈−3〉 ∪ In be a principal T-ideal in Z−0 . Then I is an irreducible
ideal if and only if n > −6.

Proof. Let I be an irreducible ideal of Z−0 . Let if possible n ≤ −6. Choose smallest
k ∈ Z− such that n < (−1)(−3)k. Then −3 ≤ n− (−1)(−3)k ≤ −1.

If n−(−1)(−3)k = −1, then denote A = 〈(−1)(−3)k+1〉∪I and B = 〈(−1)(−3)k+2〉∪I.
Now (−3) + ((−1)(−3)k + 1) ≤ (−3) + ((−1)(−3)k + 2) = (−1) + (−1)(−3)k = n. Hence
by Lemma 3.5, A and B are ideals of Z−0 . Since n < (−1)(−3)k, A 6= I and B 6= I. Now
(−1)(−3)k + 1 = n + 2, n ≤ −6 implies (−1)(−2)((−1)(−3)k + 1) = (−1)(−2)(n + 2) =
n + (n + 4) ≤ n. If ((−1)(−3)k + 2) | ((−1)(−3)k + 1), then (−1)(−3)k + 2 = −1.
Hence k = −1 and so n = −4, a contradiction. Now ((−1)(−3)k + 2) does not divide
((−1)(−3)k+1). Hence by Lemma 3.6, I = (〈(−1)(−3)k+1〉∪I)∩ (〈(−1)(−3)k+2〉∪I)
= A ∩B.

If n−(−1)(−3)k = −2, then denote A = 〈(−1)(−3)k−1〉∪I and B = 〈(−1)(−3)k+1〉∪
I. Now (−3)+((−1)(−3)k−1) ≤ (−3)+((−1)(−3)k+1) = (−2)+(−1)(−3)k = n. Hence
by Lemma 3.5, A and B are ideals of Z−0 . Now A 6= I, B 6= I as n < n+1 = (−1)(−3)k−
1 < (−1)(−3)k + 1. Now n − (−1)(−3)k = −2 and n ≤ −6 implies k ≤ −2. Hence
((−1)(−3)k+1) does not divide ((−1)(−3)k−1). Clearly (−1)(−2)((−1)(−3)k−1) ≤ n.
Hence by Lemma 3.6, I = (〈(−1)(−3)k − 1〉 ∪ I) ∩ (〈(−1)(−3)k + 1〉 ∪ I) = A ∩B.
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If n− (−1)(−3)k = −3, then denote A = 〈(−1)(−3)k− 2〉 ∪ I and B = 〈(−1)(−3)k−
1〉∪I. Now (−3)+((−1)(−3)k−2) ≤ (−3)+((−1)(−3)k−1) = ((−3)+(−1)(−3)k)−1 =
n − 1 ≤ n. Hence by Lemma 3.5, A and B are ideals of Z−0 . Now A 6= I and B 6= I
as (−1)(−3)k − 1 > (−1)(−3)k − 2 = n + 1 > n. Clearly (−1)(−2)((−1)(−3)k − 2) ≤
n and ((−1)(−3)k − 1) does not divide ((−1)(−3)k − 2). Hence by Lemma 3.6, I =
(〈(−1)(−3)k − 2〉 ∪ I) ∩ (〈(−1)(−3)k − 1〉 ∪ I) = A ∩ B. Thus in any case, I is not an
irreducible ideal of Z−0 , a contradiction. Hence n > −6.

Conversely, suppose that n > −6. If n ≥ −4, then I = I−1 or I−2 or I−3 which are
irreducible ideals. Suppose that n = −5. If I is not an irreducible ideal, then there exist
ideals A, B of Z−0 such that I = A ∩ B and I 6= A, I 6= B. Choose a ∈ A, b ∈ B such
that a, b /∈ I. Without loss of generality assume that a ≥ b. Clearly a = −1 or −2 or −4
and b = −1 or −2 or −4 and hence b = (−1)at for some t ∈ Z−0 . Now b ∈ A ∩ B = I, a
contradiction. So I is an irreducible ideal.

Theorem 3.8. If a < −3, n < −3 and I = 〈a〉 ∪ In a principal T-ideal in Z−0 , then I is
not an irreducible ideal.

Proof. If a ≤ n, then I = In and so by Theorem 3.2, I is not an irreducible ideal. Suppose
that a > n. Choose smallest k ∈ Z− such that

(3.2) (−1)ak > n.

Then n− (−1)ak ≤ −1. If n− (−1)ak = −1, then denote A = 〈(−1)ak + 1〉 ∪ I and B =
〈(−1)ak+2〉∪I. If a+((−1)ak+2) > n, then a+2 > n−(−1)ak = −1 which is impossible
as a < −3. Hence a + ((−1)ak + 2) ≤ n and so a + ((−1)ak + 1) ≤ n. By Lemma 3.5, A
and B are ideals of Z−0 . Since n < (−1)ak, (−1)ak + 1 /∈ In and (−1)ak + 2 /∈ In. Hence
(−1)ak + 1 /∈ I and (−1)ak + 2 /∈ I. So A 6= I and B 6= I. If (−1)(−2)((−1)ak + 1) > n,
then (−2)ak + 2 > n. Hence (−1)ak + 2 > n − (−1)ak = −1. So (−1)ak = −2
which is impossible as a < −3 and k ∈ Z−. Hence (−1)(−2)((−1)ak + 1) ≤ n. Now
((−1)ak + 2) does not divide ((−1)ak + 1) as a < −3, k ∈ Z−. Hence by Lemma 3.6, I
= (〈(−1)ak + 1〉 ∪ I) ∩ (〈(−1)ak + 2〉 ∪ I) = A ∩B.

If n− (−1)ak = −2, then denote A = 〈(−1)ak − 1〉 ∪ I and B = 〈(−1)ak + 1〉 ∪ I. If
a + ((−1)ak + 1) > n, then a + 1 > n− (−1)ak = −2, a contradiction as a < −3. Hence
a + ((−1)ak + 1) ≤ n and so a + ((−1)ak− 1) ≤ n. By Lemma 3.5, A and B are ideals of
Z−0 . Since n− (−1)ak = −2, (−1)ak−1 /∈ In and (−1)ak +1 /∈ In. Hence (−1)ak−1 /∈ I
and (−1)ak + 1 /∈ I. So A 6= I and B 6= I. By using (3.2), (−1)(−2)((−1)ak + 1) ≤ n.
Now ((−1)ak + 1) does not divide ((−1)ak − 1) as a < −3. Hence by Lemma 3.6, I =
(〈(−1)ak − 1〉 ∪ I) ∩ (〈(−1)ak + 1〉 ∪ I) = A ∩B.

If n − (−1)ak ≤ −3, then denote A = 〈(−1)ak − 2〉 ∪ I and B = 〈(−1)ak − 1〉 ∪ I.
By using (3.2), a + ((−1)ak − 2) ≤ a + ((−1)ak − 1) ≤ n. By Lemma 3.5, A and
B are ideals of Z−0 . Since n − (−1)ak ≤ −3, (−1)ak − 2 /∈ In and (−1)ak − 1 /∈ In.
Hence (−1)ak − 2 /∈ I and (−1)ak − 1 /∈ I. So A 6= I and B 6= I. By using (3.2),
(−1)(−2)((−1)ak − 1) ≤ n. Also ((−1)ak − 1) does not divide ((−1)ak − 2). Hence by
Lemma 3.6, I = (〈(−1)ak − 2〉 ∪ I) ∩ (〈(−1)ak − 1〉 ∪ I) = A ∩ B. Thus, I is not an
irreducible ideal of Z−0 .

The following theorem gives the characterization of irreducible principal T -ideals in the
ternary semiring Z−0 .
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Theorem 3.9. A principal T-ideal I = 〈a〉 ∪ In is irreducible in Z−0 if and only if any
one of the following conditions holds:

1) a = 0, n ≥ −3;
2) a = −1, for any n;
3) a = −2, for any n;
4) a = −3, n > −6;
5) a ≤ −4, n ≥ −3.

Proof. Follows from Theorem 3.2, Theorem 3.4, Theorem 3.7, Theorem 3.8 and Corollary
3.3.

Acknowledgement. The authors are thankful to Prof. V. Ravichandran for his valu-
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thanks to the referees for the helpful suggestions.
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