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Abstract. In this paper, we characterize the congruence lattice of a symmet-

ric extended de Morgan algebra L. We show that the congruence lattice of the

algebra L is a pseudocomplemented lattice, and that such a congruence lattice
is a Stone lattice if and only if the lattice of the compact congruences on L

forms a complete boolean lattice. In particular, we prove that the congruence

lattice of L is a boolean lattice if and only if, it is a relative Stone lattice,
which is the case, if and only if L is finite.

1. Introduction

The investigation in the structures of congruence lattices has been done in several
special classes of lattice-ordered algebras. For example, Janowitz [12] showed that
the congruence lattice of a boolean algebra B is a Stone lattice if and only if B
is complete. Beazer [1, 2] studied the congruence lattice in the context of pseudo-
complemented algebras and regular double pseudocomplemented algebras, and in
another publication [3], he proved that the congruence lattice ConB of a boolean
algebra B is a relative Stone lattice if and only if every homomorphic image of B is
complete. Years latter, in 1987, Haviar and Katriňák [11] showed that the congru-
ence lattice ConL of a distributive lattice L is a relative Stone lattice if and only
if ConL is a boolean lattice. In [13], Sankappanvar characterized this notion in
the context of de Morgan algebras, and he particularly showed that the congruence
lattice of a de Morgan algebra L is boolean if and only if L is finite. Subsequently,
Blyth and Varlet extended this result to the class of Ockham algebras with de Mor-
gan skeleton (see [4, Theorem 8.15]). In this connection, we mean the wide class of
Ockham algebras as introduced by Urquhart [14]. An Ockham algebra (L; f) is a
bounded distributive lattice L together with a dual endomorphism f (see also [14]).
The special case where f2 = idL gives a de Morgan algebra.

In this paper we shall consider the congruence lattices in a particular subclass of
the class of extended Ockham algebras; namely the class of symmetric extended de
Morgan algebras. We shall show that the congruence lattice ConL of a symmetric
extended de Morgan algebra L is a pseudocomplemented lattice, and that it is a
Stone lattice if and only if the lattice K(L) of the compact congruences on L forms
a complete boolean lattice with ConK(L) ' ConL. In particular, we shall prove
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that the congruence lattice of the algebra L is a boolean lattice if and only if, it is
a relative Stone lattice, which is the case, if and only if L is finite.

2. Preliminary

Definition 2.1. [5] By an extended Ockham algebra L ≡ (L;∧,∨, f, k, 0, 1) we
shall mean a bounded distributive lattice L with two unary operations f and k
such that

(1) f is a dual lattice endomorphism with f(0) = 1 and f(1) = 0;

(2) k is a lattice endomorphism with k(0) = 0 and k(1) = 1;

(3) f and k commute.

An extended de Morgan algebra L ≡ (L;∧,∨, f, k, 0, 1) in which k2 = idL is said
to be symmetric.

The notion of class of extended Ockham algebras is first introduced by Blyth and
Fang in [5]. For more details of extended Ockham algebras and those of symmetric
extended de Morgan algebras, we refer the reader to [5, 6].

Throughout what follows we shall denote by e2M the class of symmetric extend-
ed de Morgan algebras, and for convenience, we shall write x◦ for f(x) and x+ for
k(x). We note that when + = idL we regard an e2M-algebra L ≡ (L;∧,∨,◦ ,+ , 0, 1)
simply as a de Morgan algebra. Clearly, the smallest non-trivial subalgebra of L that
is the case where + = idL is {0, 1}, and the biggest is Fix+ L = {x ∈ L | x+ = x}.

By a congruence on a symmetric extended de Morgan algebra (L; ◦, ∗) we shall
mean a lattice congruence ϑ such that

(x, y) ∈ ϑ =⇒ (x◦, y◦) ∈ ϑ and (x+, y+) ∈ ϑ.

We shall denote by ConL the lattice of congruences on a symmetric extended
de Morgan algebra L, and use throughout the standard notation θ(a, b) for the
principal congruence on L that identifies a and b with a 6 b, and θlat(a, b) for the
corresponding principal lattice congruence.

As a particular case of [5, Theorem 2.1] (or see [9, Theorem 1.11]), a description
of principal congruence on a symmetric extended de Morgan algebra L can be given
as follows

Theorem 2.1. Let L ∈ e2M. If a, b ∈ L are such that a 6 b then

θ(a, b) = θlat(a, b) ∨ θlat(b◦, a◦) ∨ θlat(a+, b+) ∨ θlat(b◦+, a◦+).

3. Congruence lattices

Throughout what follows, we shall use the symbols ω and ι to stand for the equality
and universal relation, respectively. We begin with the following result that shall
be proved to be very useful.

Theorem 3.1. Let L ∈ e2M. If a, b ∈ L are such that a 6 b. Then θ(a, b) is
complemented with the complement θc(a, b) that is described as follows

θc(a, b) = [θlat(0, a) ∨ θlat(b, 1)] ∧ [θlat(0, b
◦) ∨ θlat(a◦, 1)]

∧ [θlat(0, a
+) ∨ θlat(b+, 1)] ∧ [θlat(0, b

◦+) ∨ θlat(a◦+, 1)].
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Proof. If a, b ∈ L are such that a 6 b. Then by Theorem 2.1, we have

θ(a, b) = θlat(a, b) ∨ θlat(b◦, a◦) ∨ θlat(a+, b+) ∨ θlat(b◦+, a◦+).

Let ϕ be the right side of the stated equality. Then we have ϕ ∨ θ(a, b) = ι and
ϕ ∧ θ(a, b) = ω. To see that θ(a, b) is complemented, it suffices to verify that ϕ is
a congruence on L. Now, by the well-known fact that for u, v ∈ L with u 6 v,

(x, y) ∈ θlat(0, u) ∨ θlat(v, 1) ⇐⇒ (x ∨ u) ∧ v = (y ∨ u) ∧ v

we can obtain the following:

(x, y) ∈ θlat(0, a) ∨ θlat(b, 1) =⇒ (x◦, y◦) ∈ θlat(0, b◦) ∨ θlat(a◦, 1);

(x, y) ∈ θlat(0, b◦) ∨ θlat(a◦, 1) =⇒ (x◦, y◦) ∈ θlat(0, a) ∨ θlat(b, 1);

(x, y) ∈ θlat(0, a+) ∨ θlat(b+, 1) =⇒ (x◦, y◦) ∈ θlat(0, b◦+) ∨ θlat(a◦+, 1);

(x, y) ∈ θlat(0, b◦+) ∨ θlat(a◦+, 1) =⇒ (x◦, y◦) ∈ θlat(0, a+) ∨ θlat(b+, 1).

Thus it follows from the above observations that (x, y) ∈ ϕ implies (x◦, y◦) ∈ ϕ.
In a similar way we have also that if (x, y) ∈ ϕ then (x+, y+) ∈ ϕ. Hence ϕ is a
congruence on L, and consequently, θ(a, b) is complemented with the complement
θc(a, b) = ϕ. �

Theorem 3.2. If L ∈ e2M then the lattice ConL of the congruences on L is
pseudocomplemented.

Proof. It is enough to show that every ϕ ∈ ConL is pseudocomplemented. In order
to do so, we observe first that, for αi ∈ ConL (i ∈ I)

(†) ϕ ∧
∨
i∈I

αi =
∨
i∈I

(ϕ ∧ αi).

In fact, we have clearly that ϕ∧
∨
i∈I

αi >
∨
i∈I

(ϕ∧αi). For the reverse inequality, let

x, y ∈ L with x 6 y be such that (x, y) ∈ ϕ ∧
∨
i∈I

αi. Then there exist xj ∈ L with

x 6 xj 6 y (j = 0, 1, 2, · · · , n) and αij such that

x = x0
αi1≡ x1

αi2≡ x2
αi3≡ · · ·

αin≡ xn = y.

Since x 6 xj 6 y and (x, y) ∈ ϕ, we have (xj−1, xj) ∈ ϕ, and so, for each j,
(xj−1, xj) ∈ ϕ ∧ αij , from which it follows that

(x, y) ∈
n∨
j=1

(ϕ ∧ αij ) 6
∨
i∈I

(ϕ ∧ αi).

Thus we have ϕ ∧
∨
i∈I

αi 6
∨
i∈I

(ϕ ∧ αi), whence the equality (†) holds.

Now, we have by Theorem 3.1 that each θ(a, b) is complemented with the com-
plement θc(a, b). Let ϕ =

∨
{θ(a, b) | (a, b) ∈ ϕ with a 6 b}, and let

ϕ∗ =
∧
{θc(a, b) | (a, b) ∈ ϕ with a 6 b}.

Then clearly, for every pair of (a, b) ∈ ϕ with a 6 b, we have θ(a, b)∧ϕ∗ = ω. Thus
it follows by (†) that

ϕ∗ ∧ ϕ = ϕ∗ ∧
∨
{θ(a, b) | (a, b) ∈ ϕ with a 6 b}

=
∨
{ϕ∗ ∧ θ(a, b) | (a, b) ∈ ϕ with a 6 b}

=
∨
ω = ω.
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Suppose now α ∈ ConL is such that α∧ϕ = ω. Then for (a, b) ∈ ϕ with a 6 b, we
have α ∧ θ(a, b) = ω, from which it follows that α 6 θc(a, b), and consequently, we
have

α 6
∧
{θc(a, b) | (a, b) ∈ ϕ with a 6 b} = ϕ∗.

Hence ϕ∗ is the pseudocomplement of ϕ. �

It is shown by Sankappanavar in [13, Theorem 3.8] that the congruence lattice
ConL of a de Morgan algebra L is boolean if and only if L is finite. This result
can be extended to symmetric extended de Morgan algebras. In order to do so, we
require first the following technical result.

Theorem 3.3. Let L ∈ e2M. If ConL is boolean then Fix+ L is finite.

Proof. Since x+ = x for x ∈ Fix+ L, we can regard Fix+ L simply as a de Morgan
algebra. Thus by Sankappanavar’s result [13, Theorem 3.8], we need only show
that Con Fix+ L is boolean. Let ϕ ∈ Con Fix+ L. Then, since L has the congruence
extension property by [9, Corollary 2 to Theorem 1.11], there exists an extension
ϕ of ϕ to L such that ϕ|Fix+ L = ϕ. Since ConL is boolean, there exists the
complement ϕc of ϕ in ConL, namely ϕc∨ϕ = ι and ϕc∧ϕ = ω. Let ψ = ϕc|Fix+ L.
Then we have clearly that ψ∧ϕ = ω. Now, since ϕc∨ϕ = ι, we have (0, 1) ∈ ϕc∨ϕ,
and so, there are xi ∈ L (i = 0, 1, 2, · · · , n) such that

0 = x0 ≡ x1 ≡ x2 ≡ · · · ≡ xn = 1

where (xi, xi+1) ∈ ϕc or (xi, xi+1) ∈ ϕ. Note that for α = ϕc or α = ϕ, (xi, xi+1) ∈
α gives (xi ∧ x+

i , xi+1 ∧ x+

i+1) ∈ α. Thus we have

0 = x0 ∧ x+

0 ≡ x1 ∧ x
+

1 ≡ x2 ∧ x
+

2 ≡ · · · ≡ xn ∧ x+

n = 1

where (xi∧x+

i , xi+1∧x+

i+1) ∈ ϕc or (xi∧x+

i , xi+1∧x+

i+1) ∈ ϕ. Since each xi∧x+

i ∈
Fix+ L, we have

(xi ∧ x+

i , xi+1 ∧ x+

i+1) ∈ ϕc|Fix+ L = ψ or (xi ∧ x+

i , xi+1 ∧ x+

i+1) ∈ ϕ|Fix+ L = ϕ

from which it follows that (0, 1) ∈ ψ ∨ ϕ whence ψ ∨ ϕ = ι. Consequently, ψ is the
complement of ϕ in Fix+ L. Hence Con Fix+ L is boolean. It then follows by [13,
Theorem 3.8] that Fix+ L is finite. �

Theorem 3.4. Let L ∈ e2M. Then ConL is boolean if and only if L is finite.

Proof. (⇐:) The argument is same as that of [4, Theorem 2.17] for a Kn,0-algebra.
We omit it.

(⇒:) Let ConL be boolean. Then by Theorem 3.3, Fix+ L is finite. If, on the
contrary, L is infinite. Then there exists an infinite chain of L being of one of the
following forms:

(1) a1 < a2 < · · · < an < · · · ;

(2) · · · < an < · · · < a2 < a1.

We may assume that L contains a chain of the form (1). Then for each n, we
have an < an+1 and a+

n < a+

n+1. Let xn = an ∧ a+
n and yn = an ∨ a+

n. Then
xn, yn ∈ Fix+ L and

(3) x1 6 x2 6 · · · 6 xn 6 · · · ;
(4) y1 6 y2 6 · · · 6 yn 6 · · · .

Since Fix+ L is finite, the chains (3) and (4) must be finite, and so, there is some
n such that xn = xn+1 and yn = yn+1; namely an ∧ a+

n = an+1 ∧ a+

n+1 and
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an ∨ a+
n = an+1 ∨ a+

n+1. The former equality gives an ∧ a+
n = an+1 ∧ a+

n; and since
an ∨ a+

n 6 an+1 ∨ a+
n 6 an+1 ∨ a+

n+1, the latter equality gives an ∨ a+
n = an+1 ∨ a+

n,
there follows by the distributivity the contradiction that an = an+1. Hence we
must have that L is finite. �

Example 3.1. [7, Example 2] Consider an infinite symmetric extended de Morgan
algebra (L; ◦, +) depicted as follows:

rc−2

ra−2 rb−2

rc−1

ra−1 rb−1

rc0ra1 rb1rc1ra2 rb2rc2
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...
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��
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�
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�

@
@

@
�
�
�

@
@

@
�
��

@
@@

where ◦ : L→ L is described by

0◦ = 1, 1◦ = 0,
z◦i = z−i for zi ∈ {ai, bi, ci};

and + : L→ L is described by

0+ = 0, 1+ = 1,
a+

i = bi, b
+

i = ai, c
+

i = ci.

By a simple observation we can see that for each i > 0, αi = θ(ci, ci+1) is an atom
of ConL, where θ(ci, ci+1) = θ(c−(i+1), c−i) for i > 1, and θ(c0, c1) = θ(c−1, c1).
Let Ψ =

∨
i>0

αi. Then Ψ is the comonolith of ConL (in the sense that Ψ is the

maximum of ConL \ {ι}). Clearly, all Ψ-classes are {0}, {1} and L \ {0, 1}. Thus
Ψ is not complemented, and consequently, ConL is not boolean.

By a congruence α on an algebra L being compact we shall mean that there exist

ai, bi ∈ L with ai 6 bi (i = 1, 2, · · · , n) such that α =
n∨
i=1

θ(ai, bi). Throughout

what follows we shall denote by K(L) the set of compact congruences on L. Clearly,
K(L) forms a distributive lattice.

Theorem 3.5. Let L ∈ e2M and ϕ ∈ ConL. Then ϕ is compact if and only if it
is complemented.

Proof. (⇒:) If ϕ is a compact congruence on L. Then there exist ai, bi ∈ L with

ai 6 bi (i = 1, 2, · · · , n) such that ϕ =
n∨
i=1

θ(ai, bi). By Theorem 3.1, each θ(ai, bi)

is complemented with the complement θc(ai, bi). Let

ψ =
n∧
i=1

θc(ai, bi).
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Then clearly, ϕ ∧ ψ = ω and

ϕ ∨ ψ =
n∨
i=1

θ(ai, bi) ∨
n∧
i=1

θc(ai, bi)

=
n∧
i=1

n∨
j=1

[θ(aj , bj) ∨ θc(ai, bi)]

=
n∧
i=1

ι = ι.

Thus ϕ is complemented with the complement ϕc = ψ.
(⇐:) Suppose that ϕ is complemented with the complement ϕc in ConL. Then

ϕ ∨ ϕc = ι, and so (0, 1) ∈ ϕ ∨ ϕc. Thus there exist xi ∈ L with xi 6 xi+1

(i = 0, 1, 2, · · · , n− 1) such that

0 = x0 ≡ x1 ≡ x2 ≡ · · · ≡ xn = 1

where (xi, xi+1) ∈ ϕ or (xi, xi+1) ∈ ϕc. Then θ(xi, xi+1) 6 ϕ or θ(xi, xi+1)∧ϕ = ω.

Since
n−1∨
i=0

θ(xi, xi+1) = ι, we have

ϕ = ϕ ∧
n−1∨
i=0

θ(xi, xi+1)

=
n−1∨
i=0

[ϕ ∧ θ(xi, xi+1)]

=
∨
j

{θ(xij , xij+1) | (xij , xij+1) ∈ ϕ}

from which it follows that ϕ is compact. Hence (1) holds. �

By Theorem 3.5 the following corollary is immediate.

Corollary 3.1. If L ∈ e2M then the lattice K(L) of the compact congruence on L
is a boolean sublattice of ConL.

In what follows for a lattice L, we shall denote by I(L) the lattice of ideals of L
where the lattice operations ∧ and ∨ are given as follows

I ∧ J = I ∩ J and I ∨ J = {x ∈ L | (∃i ∈ I)(∃j ∈ J) x 6 i ∨ j}.

Theorem 3.6. If L ∈ e2M then ConL ' ConK(L).

Proof. By Corollary 3.1, the lattice K(L) of the compact congruences on L is
boolean, and so by [10, Theorem 9.7], we have I(K(L)) ' ConK(L). Thus, in
order to obtain the stated isomorphism, it is enough to show that ConL ' I(K(L)).
Let ϕ ∈ ConL and define

E(ϕ) = {α ∈ K(L) | α 6 ϕ}.
Then clearly, E(ϕ) is an ideal of K(L). Consider now the mapping E : ConL →
I(K(L)) by the prescription ϕ 7→ E(ϕ). It is readily seen that E(ϕ ∧ ψ) = E(ϕ) ∧
E(ψ) and E(ϕ) ∨ E(ψ) ⊆ E(ϕ ∨ ψ). To see that E is a lattice homomorphism, we
need only show that E(ϕ ∨ ψ) ⊆ E(ϕ) ∨E(ψ). Let ϑ ∈ E(ϕ ∨ ψ). Then ϑ ∈ K(L)
with ϑ 6 ϕ ∨ ψ. If (x, y) ∈ ϑ with x 6 y, then (x, y) ∈ ϕ ∨ ψ, and so there exist
ai ∈ L with ai 6 ai+1 (i = 0, 1, · · · , n− 1) such that

x = a0 ≡ a1 ≡ a2 ≡ · · · ≡ an = y
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where (ai, ai+1) ∈ ϕ or (ai, ai+1) ∈ ψ. Without loss of generality we may assume
that

(a2i, a2i+1) ∈ ϕ and (a2i+1, a2i+2) ∈ ψ (i = 0, 1, · · · ).
Let α =

∨
i

θ(a2i, a2i+1) and β =
∨
i

θ(a2i+1, a2i+2). Then we have that

α ∨ β 6 E(ϕ) ∨ E(ψ) and (x, y) ∈ α ∨ β
from which it follows that θ(x, y) 6 α ∨ β ∈ E(ϕ) ∨ E(ψ), and whence θ(x, y) ∈
E(ϕ) ∨ E(ψ). Note that the compact congruence ϑ is a joint of finitely many
principal congruences θ(x, y) for which (x, y) ∈ ϑ with x 6 y, thus we can see
that ϑ ∈ E(ϕ) ∨ E(ψ). Therefore it follows that E(ϕ ∨ ψ) ⊆ E(ϕ) ∨ E(ψ) whence
E(ϕ ∨ ψ) = E(ϕ) ∨ E(ψ), and consequently, E is a lattice homomorphism.

To see that E is injective, we let ϕ,ψ ∈ ConL be such that E(ϕ) = E(ψ).
Observe that

(x, y) ∈ ϕ ⇐⇒ θ(x, y) 6 ϕ

⇐⇒ θ(x, y) ∈ E(ϕ) = E(ψ)

⇐⇒ θ(x, y) 6 ψ

⇐⇒ (x, y) ∈ ψ
we have ϕ = ψ. Hence E is injective.

Finally, we shall show that E is surjective. Let I ∈ I(K(L)) and ϕ =
∨
I =∨

αi∈I
αi. Then we have clearly I ⊆ E(ϕ). If now α ∈ E(ϕ) then α ∈ K(L) with

α 6 ϕ =
∨
αi∈I

αi. By the compactness of α, there are finitely many of αij ∈ I

(j = 1, 2, · · · ,m) such that α 6
m∨
j=1

αij . Since
m∨
j=1

αij ∈ I, it follows that α ∈ I

whence E(ϕ) ⊆ I, and consequently, E(ϕ) = I. Hence E is surjective.
Therefore, we obtain from the observations above that E is a lattice isomorphism.

Hence we obtain that ConL ' I(K(L)), and consequently, ConL ' ConK(L). �

Corollary 3.2. Let L ∈ e2M. Then K(L) is finite if and only if L is finite.

Proof. (⇐:) It is clear.
(⇒:) Suppose that K(L) is finite. Then by [13, Theorem 3.8], ConK(L) is

boolean, and by Theorem 3.6, so is ConL. Thus it follows by Theorem 3.4 that L
is finite. �

Using the fact established by Janowitz [12, Corollary to Theorem 4] that the
congruence lattice ConB of a boolean algebra B is a Stone lattice if and only if B
is complete, the following theorem can be obtained immediately by Theorem 3.6
and Corollary 3.1.

Theorem 3.7. Let L ∈ e2M. Then ConL is Stone if and only if K(L) is complete.

A lattice L is said to be relative Stone if every interval of L is a Stone lattice.
In [11, Theorem 7], Haviar and Katriňák showed that if L is a distributive lattice
then the congruence lattice ConL is a relative Stone lattice if and only if ConL is
boolean. Here we shall extend this to a symmetric extended de Morgan algebra.
For this purpose, we require the following lemmas.

Lemma 3.1. [3, Corollary 4] If B is a boolean algebra, then ConB is a relative
Stone lattice if and only if every homomorphic image of B is complete.
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Lemma 3.2. [8, Theorem 4.3] Every infinite complete boolean algebra has an in-
complete homomorphic image.

Theorem 3.8. Let L ∈ e2M. Then ConL is a relative Stone lattice if and only if
L is finite.

Proof. (⇐:) It is clear.
(⇒:) If ConL is a relative Stone lattice, then by Theorem 3.6, so is ConK(L).

Since, by Corollary 3.1, K(L) is boolean. It follows by Lemma 3.1 that every
homomorphic image of K(L) is complete. If now, on the contrary, L is infinite,
then by Corollary 3.2, K(L) is an infinite complete boolean algebra, from which it
follows by Lemma 3.2 the contradiction that K(L) has an incomplete homomorphic
image. Therefore, we must have that L is finite. �

By Theorems 3.4 and 3.8, the following corollary is immediate.

Corollary 3.3. If L ∈ e2M then the following statements are equivalent:

(1) ConL is boolean;

(2) ConL is relative Stone;

(3) L is finite.
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