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Abstract. Using variational techniques, we study the nonexistence and multiplicity of solu-

tions for the degenerate nonlocal problem −M
( ∫

Ω
|x|−ap|∇u|pdx

)
div

(
|x|−ap|∇u|p−2∇u

)
= λ|x|−p(a+1)+cf(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain, 0 ∈ Ω, 0 ≤ a < N−p
p

, 1 < p < N , c > 0,

M : R+ → R+ is a continuous function that may be degenerate at zero, f : Ω × R → R is a

sign-changing Carathéodory function and λ is a parameter.

1. Introduction and Preliminaries

In this paper, we are concerned with the problem −M
( ∫

Ω |x|
−ap|∇u|pdx

)
div

(
|x|−ap|∇u|p−2∇u

)
= λ|x|−p(a+1)+cf(x, u) in Ω,

u = 0 in ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain, 0 ∈ Ω, 0 ≤ a < N−p
p , 1 < p < N ,

c > 0, M : R+ → R+ is a continuous function, f : Ω×R → R is a sign-changing Carathéodory

function, and λ is a parameter. It should be noticed that if a = 0 and c = p then problem

(1.1) becomes  −M
( ∫

Ω |∇u|
pdx

)
∆pu = λf(x, u) in Ω,

u = 0 on ∂Ω.
(1.2)

Since the first equation in (1.2) contains an integral over Ω, it is no longer a pointwise iden-

tity; therefore it is often called nonlocal problem. This problem models several physical and

biological systems, where u describes a process which depends on the average of itself, such as

the population density, see [5]. Moreover, problem (1.2) is related to the stationary version of
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the Kirchhoff equation

ρ
∂2u

∂t2
−

(P0

h
+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2
= 0 (1.3)

presented by Kirchhoff in 1883, see [11]. This equation is an extension of the classical d’Alembert’s

wave equation by considering the effects of the changes in the length of the string during the

vibrations. The parameters in (1.3) have the following meanings: L is the length of the string,

h is the area of the cross-section, E is the Young modulus of thematerial, ρ is themass density,

and P0 is the initial tension.

In recent years, problems involving Kirchhoff type operators have been studied in many

papers, we refer to [2, 7, 8, 10, 12, 13, 16, 17, 19], in which the authors have used different

methods to get the existence of solutions for (1.2). In [15, 21], Z. Zhang et al. studied the

existence of nontrivial solutions and sign-changing solutions for (1.2). One of the important

hypotheses in these papers is that the Kirchhoff function M is non-degenerate, i.e.,

M(t) ≥ m0 > 0 for all t ∈ R+. (1.4)

Motivated by the ideas introduced in [6, 9, 14, 20], the goal of this paper is to study the

existence of solutions for problem (1.1) without condition (1.4). More exactly, we consider

problem (1.1) in the case when f is a sign-changing Carathéodory function and the Kirchhoff

function M is allowed to take the value 0 at 0. Using the minimum principle combined with

the mountain pass theorem, we show that problem (1.1) has at least two distinct, non-negative

nontrivial weak solutions for λ large enough. We also prove that (1.1) has no nontrivial solution

if λ is small enough. Our results supplement the previous ones in the non-degenerate case.

Moreover, we consider problem (1.1) in the general case 0 ≤ a < N−p
p , 1 < p < N , c > 0. To

our best knowledge, the present paper is the first contribution related to a Kirchhoff equation

in this direction.

In order to state the main results, let us introduce the following conditions:

(M0) M : R+ → R+ is a continuous function and satisfies

M(t) ≥ m0t
α−1 for all t ∈ R+,

where m0 > 0 and 1 < α < min
{

N
N−p ,

N−p(a+1)+c
N−p(a+1)

}
;

(F1) f : Ω× [0,+∞) → R is a Carathéodory function, such that

|f(x, t)| ≤ Ctαp−1 for all t ∈ [0,+∞) and x ∈ Ω,

where α is given in (M0);
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(F2) There exist t0, t1 > 0 such that F (x, t) ≤ 0 for all 0 ≤ t ≤ t0 and F (x, t1) > 0 for all

x ∈ Ω, where F (x, t) =
∫ t
0 f(x, s)ds;

(F3) It holds that

lim sup
t→∞

F (x, t)
tαp

≤ 0 uniformly in x ∈ Ω.

We point out that if a = 0, c = p and M(t) ≡ 1, problem (1.1) has been studied by K. Perera

[14]. We emphasize that the main difference between the local case (M ≡ 1) and the present

paper (M 6≡ 1) is that the operator appears in problem (1.1) is not homogeneous. Moreover,

from the physical point of view, nonlocal coefficient M
( ∫

Ω |x|
−ap|∇u|pdx

)
of the divergence

term in (1.1) is a function (may be degenerate at zero) depending on the average of the kinetic

energy. It should be noticed that since 0 ≤ a < N−p
p , 1 < p < N , c > 0, our results are better

than those in [14] even in the case M ≡ 1. Finally, with the same arguments used in this work,

we can deal with the case α = 1. Thus, our paper is a natural extension from [14] and recent

results on p-Kirchhoff type problems.

We start by recalling some useful results in [3, 4, 20]. We have known that for all u ∈

C∞
0 (RN ), there exists a constant Ca,b > 0 such that( ∫

RN

|x|−bq|u|qdx
) p

q ≤ Ca,b

∫
RN

|x|−ap|∇u|pdx, (1.5)

where −∞ < a < N−p
p , a ≤ b ≤ a+ 1, q = p∗(a, b) = Np

N−dp , d = 1 + a− b.

Let W 1,p
0 (Ω, |x|−ap) be the completion of C∞

0 (Ω) with respect to the norm

‖u‖a,p =
( ∫

Ω
|x|−ap|∇u|pdx

) 1
p
.

Then W 1,p
0 (Ω, |x|−ap) is a reflexive Banach space. From the boundedness of Ω and the standard

approximation argument, it is easy to see that (1.5) holds for any u ∈ W 1,p
0 (Ω, |x|−ap) in the

sense that ( ∫
RN

|x|−α|u|rdx
) p

r ≤ Ca,b

∫
RN

|x|−ap|∇u|pdx, (1.6)

for 1 ≤ r ≤ p∗ = Np
N−p , α ≤ (1 + a)r + N

(
1 − r

p

)
, that is, the embedding W 1,p

0 (Ω, |x|−ap) ↪→

Lr(Ω, |x|−α) is continuous, where Lr(Ω, |x|−α) is the weighted Lr(Ω) space with the norm

|u|r,α := |u|Lr(Ω,|x|−α) =
( ∫

Ω
|x|−α|u|rdx

) 1
r
.

In fact, we have the following compact embedding result which is an extension of the classical

Rellich-Kondrachov compactness theorem (see [20]).
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Lemma 1.1 (Compact embedding theorem). Suppose that Ω ⊂ RN is an open bounded domain

with C1 boundary and that 0 ∈ Ω, and 1 < p < N , −∞ < a < N−p
p , 1 ≤ r < Np

N−p and

α < (1 + a)r +N
(
1− r

p

)
. Then the embedding W 1,p

0 (Ω, |x|−ap) ↪→ Lr(Ω, |x|−α) is compact.

From Lemma 1.1, B. Xuan proved in [20] that the first eigenvalue λ1 of the singular quasi-

linear equation −div
(
|x|−ap|∇u|p−2∇u

)
= λ|x|−p(a+1)+c|u|p−2u in Ω,

u = 0 in ∂Ω,

is isolated, unique (up to a multiplicative constant), that is, the first eigenvalue is simple and

it is given by

λ1 = inf
u∈W 1,p

0 (Ω,|x|−ap)\{0}

∫
Ω |x|

−ap|∇u|pdx∫
Ω |x|−p(a+1)+c|u|pdx

> 0.

This is a natural extension from the previous results on the case a = 0 and c = p relying

esstentially on the Caffarelli-Kohn-Nirenberg inequalities.

Definition 1.2. We say that u ∈ X = W 1,p
0 (Ω, |x|−ap) is a weak solution of problem (1.1) if

for all ϕ ∈ X, it holds that

M
( ∫

Ω
|x|−ap|∇u|pdx

) ∫
Ω
|x|−ap|∇u|p−2∇u · ∇ϕdx− λ

∫
Ω
|x|−p(a+1)+cf(x, u)ϕdx = 0.

Our main results of this paper can be described as follows.

Theorem 1.3. Assume that the conditions (M0) and (F1) hold. Then there exists a positive

constant λ∗ such that for any λ < λ∗, problem (1.1) has no nontrivial weak solution.

Theorem 1.4. Assume that the conditions (M0) and (F1)-(F3) hold. Then there exists a pos-

itive constant λ∗ such that for any λ ≥ λ∗, problem (1.1) has at least two distinct nonnegative,

nontrivial weak solutions.

2. Proof of the main results

For simplicity, we denote X = W 1,p
0 (Ω, |x|−ap). In the following, when there is no misunder-

standing, we always use Ci to denote positive constants.

Proof of Theorem 1.3. First, since 1 < α < min
{

N
N−p ,

N−p(a+1)+c
N−p(a+1)

}
, the embedding X ↪→

Lαp(Ω, |x|−p(a+1)+c) is compact, see Lemma 1.1. Then there exists C1 > 0 such that

C1‖u‖Lαp(Ω,|x|−p(a+1)+c) ≤ ‖u‖a,p for all u ∈ X
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or

Cαp
1

∫
Ω
|x|−p(a+1)+c|u|αpdx ≤

( ∫
Ω
|x|−ap|∇u|pdx

)α
for all u ∈ X.

It follows that the number

λα := inf
u∈X\{0}

( ∫
Ω |x|

−ap|∇u|pdx
)α∫

Ω |x|−p(a+1)+c|u|αpdx
> 0. (2.1)

If u ∈ X is a nontrivial weak solution, then multiplying (1.1) by u, integrating by parts and

using (M0), (F1) gives

m0

( ∫
Ω
|x|−ap|∇u|pdx

)α
≤M

( ∫
Ω
|x|−ap|∇u|pdx

) ∫
Ω
|x|−ap|∇u|pdx

= λ

∫
Ω
|x|−p(a+1)+cf(x, u)udx

≤ Cλ

∫
Ω
|x|−p(a+1)+c|u|αpdx.

(2.2)

From (2.2), choosing λ∗ = λαm0
C , where λα is given by (2.1), we conclude the proof of Theorem

1.3. �

We will prove Theorem 1.4 using critical point theory. Set f(x, t) = 0 for t < 0. For all

λ ∈ R, we consider the functional Tλ : X → R given by

Tλ(w) =
1
p
M̂

( ∫
Ω
|x|−ap|∇u|pdx

)
− λ

∫
Ω
|x|−p(a+1)+cF (x, u)dx

= J(u)− λI(u),
(2.3)

where

J(u) =
1
p
M̂

( ∫
Ω
|x|−ap|∇u|pdx

)
,

I(u) =
∫

Ω
|x|−p(a+1)+cF (x, u)dx, u ∈ X.

(2.4)

By Lemma 1.1 and the condition (F1), a simple computation implies that Tλ is well-defined

and of C1 class in X. Thus, weak solutions of problem (1.1) correspond to the critical points

of the functional Tλ.

Lemma 2.1. The functional Tλ given by (2.3) is weakly lower semicontinuous X.

Proof. Let {um} be a sequence that converges weakly to u in X. Then, by the continuity of

norm, we have

lim inf
m→∞

∫
Ω
|x|−ap|∇um|p dx ≥

∫
Ω
|x|−ap|∇u|p dx.
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Combining this with the continuity and monotonicity of the function ψ : R+ → R, t 7→ ψ(t) =
1
pM̂(t), we get

lim inf
m→∞

J(um) = lim inf
m→∞

1
p
M̂

( ∫
Ω
|x|−ap|∇um|p dx

)
= lim inf

m→∞
ψ

( ∫
Ω
|x|−ap|∇um|p dx

)
≥ ψ

(
lim inf
m→∞

∫
Ω
|x|−ap|∇um|p dx

)
≥ ψ

( ∫
Ω
|x|−ap|∇u|p dx

)
=

1
p
M̂

( ∫
Ω
|x|−ap|∇u|p dx

)
= J(u).

(2.5)

We shall show that

lim
m→∞

∫
Ω
F (x, um)dx =

∫
Ω
F (x, u)dx. (2.6)

Using (F1) and Hölder’s inequality, it follows that∣∣∣ ∫
Ω
|x|−p(a+1)+c[F (x, um)− F (x, u)]dx

∣∣∣
≤

∫
Ω
|x|−p(a+1)+c|f(x, u+ θm(um − u))||um − u|dx

≤ C

∫
Ω
|x|−p(a+1)+c|u+ θm(um − u)|αp−1|um − u|dx

≤ C‖u+ θm(um − u)‖αp−1

Lαp(Ω,|x|−p(a+1)+c)
‖um − u‖Lαp(Ω,|x|−p(a+1)+c),

(2.7)

where 0 ≤ θm(x) ≤ 1 for all x ∈ Ω.

On the other hand, since 1 < α < min
{

N
N−p ,

N−p(a+1)+c
N−p(a+1)

}
, X ↪→ Lαp(Ω, |x|−p(a+1)+c) is

compact, the sequence {um} converges strongly to u in the space Lαp(Ω, |x|−p(a+1)+c). It is

easy to see that the sequence {‖u+θm(um−u)‖Lαp(Ω,|x|−p(a+1)+c)} is bounded. Thus, it follows

from (2.7) that relation (2.6) holds true. The proof of Lemma 2.1 is proved. �

Lemma 2.2. The functional Tλ is coercive and bounded from below.

Proof. By the conditions (F1) and (F3), there exists Cλ > 0 such that for all t ∈ R and a.e.

x ∈ Ω, one has

λF (x, t) ≤ m0λα

2αp
|t|αp + Cλ, (2.8)

where λα is given by (2.1). Hence, using (M0) and the fact that

0 <
∫

Ω
|x|−p(a+1)+cdx <∞
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we get

Tλ(u) ≥ m0

αp

( ∫
Ω
|x|−ap|∇u|pdx

)α
− λ

∫
Ω
|x|−p(a+1)+cF (x, u)dx

≥ m0

αp

( ∫
Ω
|x|−ap|∇u|pdx

)α
−

∫
Ω
|x|−p(a+1)+c

(m0λα

2αp
|u|αp + Cλ

)
dx

≥ m0

2αp
‖u‖αp

a,p − Cλ,

(2.9)

where Cλ > 0 is a constant. So, Tλ is coercive and bounded from below. �

Lemma 2.3. If u ∈ X is a weak solution of problem (1.1) then u ≥ 0 in Ω.

Proof. Indeed, if u ∈ X is a weak solution of problem (1.1), then we have

0 = 〈T ′λ(u), u−〉

= M
( ∫

Ω
|x|−ap|∇u|pdx

) ∫
Ω
|x|−ap|∇u|p−2∇u · ∇u−dx− λ

∫
Ω
|x|−p(a+1)+cf(x, u)u−dx

≥ m0

( ∫
Ω
|x|−ap|∇u−|pdx

)α
,

where u− = min{u(x), 0} is the negative part of u. It follows that u ≥ 0 in Ω. �

By Lemmas 2.1-2.3, applying the minimum principle (see [18, p. 4, Theorem 1.2]), the func-

tional Tλ has a global minimum and thus problem (1.1) admits a non-negative weak solution

u1 ∈ X. The following lemma shows that the solution u1 is not trivial provided that λ is large

enough.

Lemma 2.4. There exists λ∗ > 0 such that for all λ ≥ λ∗, infu∈X Tλ(u) < 0 and hence the

solution u1 6≡ 0.

Proof. Indeed, let Ω′ be a sufficiently large compact subset of Ω and a function u0 ∈ C∞
0 (Ω),

such that u0(x) = t0 on Ω′, 0 ≤ u0(x) ≤ t0 on Ω\Ω′, where t0 is as in (F2). Then we have∫
Ω
|x|−p(a+1)+cF (x, u0)dx =

∫
Ω′
|x|−p(a+1)+cF (x, u0)dx+

∫
Ω\Ω′

|x|−p(a+1)+cF (x, u0)dx

≥
∫

Ω′
|x|−p(a+1)+cF (x, t0)dx− C

∫
Ω\Ω′

|x|−p(a+1)+c|u0|pdx

≥
∫

Ω′
|x|−p(a+1)+cF (x, t0)dx− Ctp0

∫
Ω\Ω′

|x|−p(a+1)+cdx > 0,

provided that |Ω\Ω′| > 0 is small enough. So, we deduce that

Tλ(u0) =
1
p
M̂

( ∫
Ω
|x|−ap|∇u0|pdx

)
− λ

∫
Ω
|x|−p(a+1)+cF (x, u0)dx

≤ 1
p
M̂

( ∫
Ω
|x|−ap|∇u0|pdx

)
− λ

( ∫
Ω′
|x|−p(a+1)+cF (x, t0)dx− Ctp0

∫
Ω\Ω′

|x|−p(a+1)+cdx
)
.
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Hence, if Ω′ is large enough, there exists λ∗ such that for all λ ≥ λ∗ we have Tλ(u0) < 0 and

thus u1 6≡ 0. Moreover, Tλ(u1) < 0 for all λ ≥ λ∗. �

Our idea is to obtain the second weak solution u2 ∈ X by applying the mountain pass

theorem in [1]. To this purpose, we first show that for all λ ≥ λ∗, the functional Tλ has the

geometry of the mountain pass theorem.

Lemma 2.5. There exist a constant ρ ∈ (0, ‖u1‖a,p) and a constant r > 0 such that Tλ(u) ≥ r

for all u ∈ X with ‖u‖a,p = ρ.

Proof. For each u ∈ X, we set

Ωu := {x ∈ Ω : u(x) > t0} , (2.10)

where t0 is given by (F2). Then, we have F (x, u(x)) ≤ 0 on Ω\Ωu, so

Tλ(u) ≥ m0

αp

( ∫
Ω
|x|−ap|∇u|pdx

)α
−

∫
Ωu

F (x, u)dx

=
m0

αp
‖u‖αp

a,p −
∫

Ωu

F (x, u)dx.
(2.11)

Using the Hölder inequality and Lemma 1.1, we get∫
Ωu

|x|−p(a+1)+cF (x, u)dx ≤ C

∫
Ωu

|x|−p(a+1)+c|u|αpdx

≤ C
( ∫

Ωu

|x|−p(a+1)+c|u|qdx
)αp

q
( ∫

Ωu

|x|−p(a+1)+cdx
)1−αp

q

≤ C2‖u‖αp
a,p

( ∫
Ωu

|x|−p(a+1)+cdx
)1−αp

q
,

(2.12)

where αp < q < min
{

Np
N−p ,

p(N−p(a+1)+c)
N−p(a+1)

}
.

From (2.11) and (2.12), it implies that

Tλ(u) ≥ ‖u‖αp
a,p

[m0

αp
− C2

( ∫
Ωu

|x|−p(a+1)+cdx
)1−αp

q
]
. (2.13)

From (2.13), in order to prove Lemma 2.5, it is enough to show that∫
Ωu

|x|−p(a+1)+cdx→ 0 as ‖u‖a,p → 0.

Given ε > 0, take a compact subset Ωε of Ω such that∫
Ω\Ωε

|x|−p(a+1)+cdx < ε

and let Ωu,ε = Ωu ∩ Ωε. Then∫
Ω
|x|−ap|∇u|p ≥ C3

∫
Ωu,ε

|x|−p(a+1)+c|u|pdx ≥ C3t
p
0

∫
Ωu,ε

|x|−p(a+1)+cdx, (2.14)
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so ∫
Ωu,ε

|x|−p(a+1)+cdx→ 0 as ‖u‖a,p → 0.

But since Ωu ⊂ Ωu,ε ∪ (Ω\Ωε), we have∫
Ωu

|x|−p(a+1)+cdx <

∫
Ωu,ε

|x|−p(a+1)+cdx+ ε,

and ε is arbitrary. This shows that∫
Ωu

|x|−p(a+1)+cdx→ 0 as ‖u‖a,p → 0

and thus, Lemma 2.5 is proved. �

Lemma 2.6. The functional Tλ satisfies the Palais-Smale condition in X.

Proof. By Lemma 2.2, we deduce that Tλ is coercive on X. Let {um} be a sequence such that

Tλ(um) → c <∞, T ′λ(um) → 0 in X∗ as m→∞, (2.15)

where X∗ is the dual space of X.

Since Tλ is coercive on X, relation (2.15) implies that the sequence {um} is bounded in X.

Since X is reflexive, there exists u ∈ X such that, passing to a subsequence, still denoted by

{um}, it converges weakly to u in X. Hence, {‖um − u‖} is bounded. This and (2.15) imply

that T ′λ(um)(um − u) converges to 0 as m → ∞. Using the condition (F1) combined with

Hölder’s inequality, we conclude that∫
Ω
|x|−p(a+1)+c|f(x, um)||um − u|dx ≤ C

∫
Ω
|x|−p(a+1)+c|um|αp|um − u|dx

≤ C4‖um‖αp

Lαp(Ω,|x|−p(a+1)+c)
‖um − u‖Lαp(Ω,|x|−p(a+1)+c),

which shows that

lim
m→∞

〈
I ′(um), um − u

〉
= 0. (2.16)

Combining this with (2.15) and the fact that〈
J ′(um), um − u

〉
=

〈
T ′λ(um), um − u

〉
+ λ

〈
I ′(um), um − u

〉
imply that

lim
m→∞

M
( ∫

Ω
|x|−ap|∇um|pdx

) ∫
Ω
|x|−ap|∇um|p−2∇um · (∇um −∇u)dx = 0. (2.17)

Since {um} is bounded in X, passing to a subsequence, if necessary, we may assume that∫
Ω
|x|−ap|∇um|pdx→ t0 ≥ 0 as m→∞.
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If t0 = 0 then {um} converges strongly to u = 0 in X and the proof is finished. If t0 > 0 then

by (M0) and the continuity of M , we get

M
( ∫

Ω
|x|−ap|∇um|pdx

)
→M(t0) > 0 as m→∞.

Thus, for m sufficiently large, we have

0 < C5 ≤M
( ∫

Ω
|x|−ap|∇um|pdx

)
≤ C6. (2.18)

From (2.17) and (2.18), we have

lim
m→∞

∫
Ω
|x|−ap|∇um|p−2∇um · (∇um −∇u)dx = 0. (2.19)

On the other hand, since {um} converges weakly to u in X, we have

lim
m→∞

∫
Ω
|x|−ap|∇u|p−2∇u · (∇um −∇u)dx = 0. (2.20)

By (2.19) and (2.20),

lim
m→∞

∫
Ω
|x|−ap

(
|∇um|p−2∇um − |∇u|p−2∇u

)
· (∇um −∇u)dx = 0.

or

lim
m→∞

∫
Ω

(
|∇vm|p−2∇vm − |∇v|p−2∇v

)
· (∇vm −∇v)dx = 0, (2.21)

where ∇vm = |x|−a∇um, ∇v = |x|−a∇u.

We recall that the following inequalities hold〈
|ξ|p−2ξ − |η|p−2η, ξ − η

〉
≥ C7(|ξ|+ |η|)p−2|ξ − η|2 if 1 < p < 2,〈

|ξ|p−2ξ − |η|p−2η, ξ − η
〉
≥ C8|ξ − η|p if p ≥ 2,

(2.22)

for all ξ, η ∈ RN , where 〈., .〉 denotes the usual product in RN .

If 1 < p < 2, using the Hölder inequality, by (2.21), (2.22) we have

0 ≤ ‖um − u‖p
a,p = ‖|∇vm −∇v|‖p

Lp(Ω)

≤
∫

Ω
|∇vm −∇v|p(|∇vm|+ |∇v|)

p(p−2)
2 (|∇vm|+ |∇v|)

p(2−p)
2 dx

≤
( ∫

Ω
|∇vm −∇v|2(|∇vm|+ |∇v|)p−2dx

) p
2
( ∫

Ω
(|∇vm|+ |∇v|)pdx

) 2−p
2

≤ C9

( ∫
Ω

〈
|∇vm|p−2∇vm − |∇v|p−2∇v,∇vm −∇v

〉
dx

) p
2 ×

( ∫
Ω
(|∇vm|+ |∇v|)pdx

) 2−p
2

≤ C10

( ∫
Ω

〈
|∇vm|p−2∇vm − |∇v|p−2∇v,∇vm −∇v

〉
dx

) p
2
,
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which converges to 0 as m→∞. If p ≥ 2, one has

0 ≤ ‖um − u‖p
a,p = ‖|∇vm −∇v|‖p

Lp(Ω)

≤ C11

∫
Ω

〈
|∇vm|p−2∇vm − |∇v|p−2∇v,∇vm −∇v

〉
dx,

which converges to 0 as m→∞. So we conclude that {um} converges strongly to u in X and

the functional Tλ satisfies the Palais-Smale condition. �

Proof of Theorem 1.4. By Lemmas 2.1-2.4, problem (1.1) admits a non-negative, nontrivial

weak solution u1 as the global minimizer of Tλ. Setting

c := inf
χ∈Γ

max
u∈χ([0,1])

Tλ(u), (2.23)

where Γ := {χ ∈ C([0, 1], X) : χ(0) = 0, χ(1) = u1}.

Lemmas 2.5, 2.6 show that all assumptions of the mountain pass theorem in [1] are satisfied,

Tλ(u1) < 0 and ‖u1‖a,p > ρ. Then, c is a critical value of Tλ, i.e. there exists u2 ∈ X such

that T ′λ(u2)(ϕ) = 0 for all ϕ ∈ X or u2 is a weak solution of (1.1). Moreover, u2 is not trivial

and u2 6≡ u1 since Tλ(u2) = c > 0 > Tλ(u1). Theorem 1.4 is completely proved. �
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