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Abstract

In this paper, we use the Linex loss function to derive the Bayesian estimate of
the parameter of the exponential distribution based on ranked set sampling (RSS).
Under this setup, we use both conjugate and Jeffreys prior distributions. To assess the
efficiency of the obtained estimates, we compute the bias and mean squared error of
the derived estimates and compare them with those based on the corresponding simple
random sample (SRS) through Monte Carlo simulations.
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1 Introduction

Ranked set sampling enables one to provide more structure to the collected sample items, and
use this structure to develop efficient inferential procedures. This approach to data collection
was first proposed by McIntyre ([11], [12]) for situations where taking the actual measure-
ments for sample observations is difficult (may be costly, destructive, time-consuming), but
mechanisms for either informally or formally ranking a set of sample units is relatively easy
and reliable.

For discussions of some of the settings where ranked set sampling techniques have found
applications, one may refer to Patil [13], Barnett and Moore [6], and Chen et al. [9]. During
the last four decades, a good deal of attention has been devoted to this topic in the statistical
literature. Some of this work has been geared toward specific parametric families. Many
authors have used the ranked set sampling for estimating the unknown parameters of some
distributions; for example, see Adatia [1] for the half-logistic distribution and Shaibu and
Muttlak [16] for normal, exponential and gamma distributions. Al-Hadhrami et al. [2] have
studied the estimator of standard deviation of normal distribution using moving extreme
ranked set sampling, while Al-Odat [3] has suggested a modification of estimating a ratio in
rank set sampling. Sinha et al. [17] have proposed best linear unbiased estimators (BLUEs)
of the parameters of the normal and exponential distributions under RSS. Stokes [18] has
studied the maximum likelihood estimators under RSS of the parameters of the location-
scale family. Sengupta and Mukhuti [15] have presented some unbiased estimators which are
better than the nonparametric minimum variance quadratic unbiased estimator based on a
balanced ranked set sample as well as the uniformly minimum variance unbiased estimator
based on a simple random sample (SRS) of the same size. Jemain et al. [10] have studied
the multistage median ranked set sampling for estimating the population median. Al-Saleh
et al. [4] have obtained the Bayesian estimate of the exponential parameter using squared
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error loss function. In this paper, we use the linex loss function to derive an explicit form
of the Bayesian estimate of the exponential distribution under ranked set sampling.

In Section 2, we present some preliminary details. In Section 3, we derive the Bayesian
estimates of the exponential parameter based on gamma and Jefferys prior distributions. In
Section 4, we develop an alternative procedure for deriving the Bayesian estimates. Finally,
in Section 5, we present some numerical results demonstrate the usefulness of the results
developed here.

2 Preliminaries

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed (iid) random
variables with probability density function f(x; θ) and cumulative distribution function
F (x; θ), where θ has a prior density function Π(θ). This sequence will be referred to here as
a Simple Random Sample (SRS). Let

X11, X12, . . . , X1n; X21, X22, . . . , X2n; . . . ; Xs1, Xs2, . . . , Xsn

be the visual (judgment) order statistics of s sets, each is based on a simple random sample
of size n. This is observed specifically as follows. A set of n items is drawn from the
population, the items of the set are ranked by judgment and only the item ranked the
smallest is quantified. Then another set of size n is drawn, then ranked, and only the item
ranked the second smallest is quantified. The procedure is repeated in this way until the item
ranked the largest in the n-th set is quantified. This completes one cycle of this sampling.
The cycle may be repeated m times until nm units have been quantified and these nm units
form the RSS data.

Let Y1, Y2, ..., Ys be a RSS from this distribution obtained by using a full data of sn
observations. It is assumed through out this paper that the judgmental identification of the
ranks is perfect and at negligible cost. This assumption is made for many developments on
RSS. Under this assumption, Yi has the same distribution as Xi:n which is the ith order
statistic in a random sample of size n with pdf

fi:n(x) =
n!

(i− 1)!(n− i)!
(F (x))i−1(1− F (x))n−if(x).

Now, we assume that we have a RSS from an exponential distribution with parameter θ
with density function

f(x; θ) = θe−θx , x > 0, θ > 0. (2.1)

In the Bayesian setup, the choice of the loss function is an important part and it is well known
that most studies use the squared error loss function (SEL) for measuring an estimators’
performance; see Box and Tiao [8] and Berger [7]. This is due to its simplicity and relevance
to classical procedures. But, the squared error loss function is justified only when losses
are symmetric in nature. The symmetric nature of this function gives equal weight to
over-estimation as well as under-estimation. In the estimation of the survival function
or reliability function, such a symmetric loss function may be inappropriate. A number of
asymmetric loss functions have been discussed in the literature, but among these asymmetric
losses, Linear-exponential (LINEX) loss function is widely used as it is a natural extension
of the squared error loss function (SEL). It was originally introduced by Varian [19] and was
popularized by Zellner [20].

The LINEX loss function for θ can be expressed as

L(∆) ∝ exp(C∆)− C∆− 1, c 6= 0, (2.2)
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where ∆ = (θ∗ − θ), and θ∗ is an estimate of θ. The sign and magnitude of the shape
parameter C represent the direction and degree of symmetry, respectively. When value of
C is less than zero, the LINEX loss function gives more weight to under-estimation against
over-estimation, and the situation is reversed when the value of C is greater than zero. For
C close to zero, the LINEX loss is approximately squared error loss.

In order to develop the Bayesian analysis in the case at hand, the conjugate prior for θ
is considered, i.e., θ ∼ Gamma(α, β), whose probability density function is given by

g(θ) ∝ θα−1exp(−βθ), θ > 0, (2.3)

where α > 0 and β > 0 are the hyperparameters. If α = β = 0, the prior (2.3) becomes the
Jeffreys prior, which is given by

g(θ) ∝ 1/θ, θ ≥ 0. (2.4)

3 Bayes Estimates

In this section, we derive the Bayes estimates of the exponential parameter θ based on both
SRS and RSS. In each case, we use both conjugate prior and the non-informative prior for the
scale parameter. Also, we consider both the symmetric loss function (squared error loss) and
asymmetric loss function (Linear-exponential, LINEX) to derive the corresponding Bayesian
estimates. Throughout the paper, let π(θ|X) and π(θ|Y ) denote the posterior densities of
θ, given SRS (X) and RSS (Y ), respectively.

3.1 Bayes estimate based on SRS

Let x1, x2, · · · , xn be a random sample from the exponential distribution with parameter θ
in (2.1), and g(θ) be the conjugate prior in (2.3). In this case, the posterior density based
on SRS can be written as

π(θ|X) =
θn+α−1 e−θ(nX+β)

Γ(n + α) (nX + β)−(n+α)
. (3.1)

Hence, the Bayesian estimatie of θ based on the squared error loss function is given by

θ̃SEL(X) =
n + α

nX + β
, (3.2)

while the Bayesian estimation of θ based on the LINEX loss function is given by

θ̃LINEX = − 1
C

ln(E[e−Cθ]),

where

E[e−Cθ] =
∫

e−Cθθ(n+α−1) e−θ(nX+β)

Γ(n + α) (nX + β)−(n+α)
dθ

=
∫

θ(n+α−1) e−θ(nX+β+C)

Γ(n + α) (nX + β)−(n+α)
dθ

=
(
1 +

C

nX + β

)−(n+α)

,

and consequently

θ̃LINEX(X) = − 1
C

ln
[(

1 +
C

nX + β

)−(n+α)]
. (3.3)
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3.2 Bayes estimate based on RSS

Now, let y1, y2, · · · , yn be a one-cycle RSS from the exponential distribution in (2.1), and
the prior density of θ be as in (2.3). The density of the jth order statistic Yj is known to be
(Arnold et al. [5] )

g(yj |θ) = j

(
n

j

)
f(yj |θ)[F (yj |θ)]j−1[1− F (yj |θ)]n−j

= j

(
n

j

)
θe−θyj (1− e−θyj )j−1(e−θyj )n−j

=
j−1∑

k=0

j

(
n

j

)(
j − 1

k

)
(−1)k θ (e−θyj )n−j+k+1.

=
j−1∑

k=0

ck(j) hk(yj |θ), yj > 0,

where ck(j) = j
(
n
j

)(
j−1

k

)
(−1)k and hk(yj |θ) = θ (e−θyj )n−j+k+1.

Then, the joint density of the RSS in this case, due to the independence of y′is is given
by

g(y|θ) =
n∏

j=1

g(yj |θ) =
n∏

j=1

j−1∑

k=0

ck(j) hk(yj |θ)

=
0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
]
θn e

−θ
n∑

j=1
yj(n−j+ij+1)

, yj > 0.

Hence, the posterior density can be derived as

π(θ|Y ) =

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
]

θn+α−1 e
−θ

[ n∑
j=1

yj(n−j+ij+1)+β
]

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
]

Γ(n + α)
[ n∑

j=1

yj(n− j + ij + 1) + β
]−(n+α)

, (3.4)

and the Bayesian estimate of θ based on the squared error loss function is then obtained
from (3.4) as

θ̃SEL(Y ) =

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
]
(n + α)

[ n∑

j=1

yj(n− j + ij + 1) + β
]−(n+α+1)

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
] [ n∑

j=1

yj(n− j + ij + 1) + β
]−(n+α)

. (3.5)

Next, in order to derive the Bayesian estimate of θ based on the LINEX loss function,
we need to calculate the posterior expectation of e−Cθ from (3.4) as
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E[e−Cθ] =

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
] ∫

θn+α−1 e−θ
[∑n

j=1 yj(n−j+ij+1)+β+C
]
dθ

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij
(j)

]
Γ(n + α)

[ n∑

j=1

yj(n− j + ij + 1) + β
]−(n+α)

=

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
]
(n + α)

[ n∑

j=1

yj(n− j + ij + 1) + β + C
]−(n+α+1)

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
] [ n∑

j=1

yj(n− j + ij + 1) + β
]−(n+α)

.

(3.6)

Then from (3.6), the Bayesian estimate of θ based on the LINEX loss function is given
by

θ̃LINEX(Y ) = − 1
C

ln
(
E[e−Cθ]

)
, (3.7)

where E[eCθ] is as derived in Eq.(3.6).

3.3 Bayes estimates based on non-informative prior

Let θ have a non-informative Jefferys prior in Eq. (2.4). Then, we obtain the Bayesian
estimates of θ in this case as follows:

1. SRS

θ̃J
SEL(X) =

1
X

(3.8)

and

θ̃J
LINEX(X) = − 1

C
ln

[(
1 +

C

nX

)−n]
. (3.9)

2. RSS

θ̃J
SEL(Y ) =

n

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
][ n∑

j=1

yj(n− j + ij + 1)
]−(n+1)

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
] [ n∑

j=1

yj(n− j + ij + 1)
]−n

(3.10)

and

θ̃J
LINEX(Y ) = − 1

C
ln

[n

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
][ n∑

j=1

yj(n− j + ij + 1) + C
]−(n+1)

0∑

i1=0

1∑

i2=0

· · ·
n−1∑

in=0

[ n∏

j=1

cij (j)
] [ n∑

j=1

yj(n− j + ij + 1)
]−n

]
.

(3.11)
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3.4 Bayes estimates based on m-cycle RSS

Based on m cycles, let

Y11, Y12, · · · , Y1n;Y21, Y22, · · · , Y2n; · · · ; Ym1, Ym2, · · · , Ymn

be the m cycleRSS from the exponential distribution in Eq. (2.1) and the prior of θ be as
in Eq. (2.4). The the joint density in this case is given by

g(y|θ) =
m∏

l=1

0∑

il
1=0

1∑

il
2=0

· · ·
n−1∑

il
n=0

[ n∏

j=1

cil
j
(j)

]
θn e

−θ
n∑

j=1
y

lj
(n−j+il

j+1)

=
[ 0∑

i11=0

1∑

i12=0

· · ·
n−1∑

i1n=0

][ 0∑

i21=0

1∑

i22=0

· · ·
n−1∑

i2n=0

]
· · ·

[ 0∑

im
1 =0

1∑

im
2 =0

· · ·
n−1∑

im
n =0

]
Kil

j
θnm e

−θη
il
j , yij > 0,

where

Kil
j

=
[ m∏

l=1

n∏

j=1

cil
j
(j)

]

and

ηil
j

=
m∑

l=1

n∑

j=1

y
lj
(n− j + ilj + 1).

Hence, the posterior density can be expressed as

π(θ|Y ) =
π(θ)g(y|θ)∫

θ

π(θ)g(y|θ)dθ

=

[ m∏
l=1

0∑
il
1=0

1∑
il
2=0

· · ·
n−1∑
il
n=0

]
Kil

j
θnm+α−1 e

−θη
il
j
+β

[ m∏
l=1

0∑
il
1=0

1∑
il
2=0

· · ·
n−1∑
il
n=0

]
Kil

j
Γ(nm + α)

[
ηil

j
+ β

]−(nm+α)
, yij > 0. (3.12)

From (3.12), the Bayesian estimate of θ based on the squared error loss function is obtained
as

θ̃SEL(Y (m))

=

[ m∏
l=1

0∑
il
1=0

1∑
il
2=0

· · ·
n−1∑
il
n=0

]
Kil

j
(nm + α)

[
ηil

j
+ β

]−(nm+α+1)

[ m∏
l=1

0∑
il
1=0

1∑
il
2=0

· · ·
n−1∑
il
n=0

]
Kil

j

[
ηil

j
+ β

]−(nm+α)
,

while the Bayesian estimate of θ based on the LINEX loss function is obtained to be

θ̃LINEX(Y (m)) = − 1
C

ln




[ m∏
l=1

0∑
il
1=0

1∑
il
2=0

· · ·
n−1∑
il
n=0

]
Kil

j
(nm + α)

[
ηil

j
+ β + C

]−(nm+α+1)

[ m∏
l=1

0∑
il
1=0

1∑
il
2=0

· · ·
n−1∑
il
n=0

]
Kil

j

[
ηil

j
+ β

]−(nm+α)




.

(3.13)
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Upon using the non-informative Jefferys prior in (2.4), we derive the Bayesian estimates
based on the squared error and LINEX loss functions to be

θ̃J
SEL(Y (m)) =

[ m∏
l=1

0∑
il
1=0

1∑
il
2=0

· · ·
n−1∑
il
n=0

]
Kil

j
(nm)

[
ηil

j

]−(nm+1)

[ m∏
l=1

0∑
il
1=0

1∑
il
2=0

· · ·
n−1∑
il
n=0

]
Kil

j

[
ηil

j

]−(nm)
(3.14)

and

θ̃J
LINEX(Y (m)) = − 1

C
ln




[ m∏
l=1

0∑
il
1=0

1∑
il
2=0

· · ·
n−1∑
il
n=0

]
Kil

j
(nm)

[
ηil

j
+ C

]−(nm+1)

[ m∏
l=1

0∑
il
1=0

1∑
il
2=0

· · ·
n−1∑
il
n=0

]
Kil

j

[
ηil

j

]−(nm)




, (3.15)

respectively.

4 Alternative Procedure

In this section, we propose an alternative procedure for deriving the Bayesian estimates,
which is simple in nature and reduces the amount of numerical calculation quite considerably
for finding the estimates. By using the independent spacings property of the exponential
distribution (see Arnold et al. [5]) and then by employing the partial fractions (see Sen and
Balakrishnan [14]), we can rewrite the density of the jth order statistic Yj as

g(yj |θ) =
j∑

k=1

Hk(j) θ k e−θ k yj , yj > 0,

where Hk(j) =
j∏

`=1,` 6=k

`
`−k = (−1)k−1

(
j
k

)
. Then, the joint density for m-cycle RSS can be

expressed as

g(y(m)|θ) =
m∏

l=1

n∏

j=1

g(ylj |θ)

=
∑

mnQil
j

(θ ilj)
mn e

−θ
[ m∑

l=1

n∑
j=1

il
j ylj

]
, ylj > 0,

where we use the notation
∑

mn =
[ 0∑

i11=0

1∑

i12=0

· · ·
n−1∑

i1n=0

][ 0∑

i21=0

1∑

i22=0

· · ·
n−1∑

i2n=0

]
· · ·

[ 0∑

im
1 =0

1∑

im
2 =0

· · ·
n−1∑

im
n =0

]

and

Qil
j
(ilj)

mn =
[ m∏

l=1

n∏

j=1

Hil
j
(j)

]
.

Then, the Bayesian estimates of θ based on the gamma conjugate prior are obtained as
follows:

θ̃SEL(Y (m)) =

∑mn
Qil

j
(ilj)

mn(nm + α)
[[ m∑

l=1

n∑
j=1

ilj ylj

]
+ β

]−(nm+α+1)

∑mn
Qil

j
(ilj)mn

[[ m∑
l=1

n∑
j=1

ilj ylj

]
+ β

]−(nm+α)
(4.1)
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and

θ̃LINEX(Y (m)) = − 1
C

ln




∑mn
Qil

j
(ilj)

mn(nm + α)
[[ m∑

l=1

n∑
j=1

ilj ylj

]
+ β + C

]−(nm+α+1)

∑mn
Qil

j
(ilj)mn

[[ m∑
l=1

n∑
j=1

ilj ylj

]
+ β

]−(nm+α)


 .

(4.2)
Similarly, the Bayesian estimates of θ based on Jefferys prior are obtained as follows:

θ̃J
SEL(Y (m)) =

∑mn
Qil

j
(ilj)

mn(nm)
[ m∑
l=1

n∑
j=1

ilj ylj

]−(nm+1)

∑mn
Qil

j
(ilj)mn

[ m∑
l=1

n∑
j=1

ilj ylj

]−(nm)
, (4.3)

and

θ̃J
LINEX(Y (m)) = − 1

C
ln




∑mn
Qil

j
(ilj)

mn(nm)
[[ m∑

l=1

n∑
j=1

ilj ylj

]
+ C

]−(nm+1)

∑mn
Qil

j
(ilj)mn

[ m∑
l=1

n∑
j=1

ilj ylj

]−(nm)


 . (4.4)

5 Numerical Results

In order to demonstrate the usefulness of the Bayesian estimates based on both SRS and
RSS derived in the preceding sections (for the RSS, we use the alternative procedure as in
Section 4), we carry out Monte Carlo simulations using the following steps:

1. Generate SRS and RSS samples of size n from the exponential distribution for the
case when m = 1 (one cycle is used in many applications).

2. Calculate the Bayesian estimates given derived in in Section 3 by using the SRS and
RSS samples;

3. Repeat Steps 1 and 2 for 1000 runs;

4. Then, calculate the bias and mean squared error (MSE) of all the estimates.

The results so obtained, for the cases n = 3(1)6, θ = 2, α = 1, β = 1 and C = 1,−1, are
all presented in Tables 1 and 2.

Table 1: Bias of the Bayesian estimates based on SRS and RSS when
θ = 2, α = 1, β = 1 for n = 3(1)6

n Bayes (θ̂Se) Bayes (θ̂Lnx)
Jeffrey prior Gamma prior C Jeffrey prior Gamma prior
SRS RSS SRS RSS SRS RSS SRS RSS

3 0.6695 0.3911 0.2259 0.1074 1 0.9139 0.5951 0.5518 0.3499
-1 0.0870 0.0796 -0.5507 -0.2662

4 0.5192 0.2192 0.1490 0.0251 1 0.7569 0.3807 0.4461 0.2063
-1 0.0735 0.0666 -0.4081 -0.1486

5 0.4086 0.1637 0.0903 0.0269 1 0.6324 0.2837 0.3589 0.1573
-1 0.0553 0.0058 -0.3336 -0.1448

6 0.3569 0.0978 0.0830 -0.0050 1 0.5611 0.1920 0.3213 0.0953
-1 0.0212 -0.0131 -0.3086 -0.1290
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Table 2: MSE of the Bayesian estimates based on SRS and RSS when
θ = 2, α = 1, β = 1 for n = 3(1)6

n Bayes (θ̂Se) Bayes (θ̂Lnx)
Jeffrey prior Gamma prior C Jeffrey prior Gamma prior
SRS RSS SRS RSS SRS RSS SRS RSS

3 0.6419 0.4085 0.3955 0.3603 1 0.9249 0.5043 0.4641 0.3264
-1 1.0021 0.5861 2.0713 0.8730

4 0.5292 0.3144 0.4278 0.3249 1 0.7046 0.3277 0.4048 0.2642
-1 0.6815 0.3852 1.2230 0.4901

5 0.4190 0.2311 0.3711 0.2357 1 0.5389 0.2364 0.3289 0.2035
-1 0.6545 0.2991 1.0494 0.3661

6 0.3974 0.1684 0.3744 0.1758 1 0.4730 0.1667 0.3186 0.1524
-1 0.6388 0.2277 0.9641 0.2571

From Table 1, we first of all observe that the Bayesian estimates of θ are all biased. Next,
we observe that the estimates based on the informative gamma prior are less biased than
the corresponding estimates based on Jefferys non-informative prior. Quite importantly, we
finally observe that the Bayesian estimates based on RSS are considerably less biased than
the corresponding Bayesian estimates based on SRS.

From Table 2, we first note that the mean squared error of all estimates decrease when
n increases, as one would expect. Next, we observe that the mean squared error of the
Bayesian estimates based on the informative gamma prior are in general less than the cor-
responding values for the estimates based on Jeffereys non-informative prior. Finally, we
observe that the Bayesian estimates based on RSS have a much smaller mean squared er-
ror than the corresponding Bayesian estimates based on RSS in all cases considered. This
clearly demonstrates the efficiency of inference based on RSS and also the usefulness of the
Bayesian estimates based on RSS developed here for the scale parameter of the exponential
distribution.
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