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Abstract

We get in this paper the form of the solutions of the following recursive se-
quences

xn+1 =
xnxn−2xn−4

xn−1xn−3(±1± xnxn−2xn−4)
, n = 0, 1, ...,

where the initial conditions x−4, x−3, x−2, x−1 and x0 are arbitrary non zero
real numbers.
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1 Introduction

In this paper we obtain the solutions of the following difference equations of order
five

xn+1 =
xnxn−2xn−4

xn−1xn−3(±1± xnxn−2xn−4)
, n = 0, 1, ..., (1)

where the initial conditions x−4, x−3, x−2, x−1 and x0 are arbitrary real numbers.
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Recently there has been a great interest in studying the qualitative properties of
rational difference equations. For the systematical studies of rational and nonrational
difference equations, one can refer to the papers [1—40] and references therein.
The study of rational difference equations of order greater than one is quite chal-

lenging and rewarding because some prototypes for the development of the basic
theory of the global behavior of nonlinear difference equations of order greater than
one come from the results for rational difference equations. However, there have not
been any effective general methods to deal with the global behavior of rational dif-
ference equations of order greater than one so far. Therefore, the study of rational
difference equations of order greater than one is worth further consideration.
Recently, Agarwal et al. [2] investigated the global stability, periodicity character
and gave the solution of some special cases of the difference equation

xn+1 = a+
dxn−lxn−k
b− cxn−s

.

Aloqeili [4] has obtained the solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1
.

Cinar [7]-[9] investigated the solutions of the following difference equations

xn+1 =
xn−1

1 + axnxn−1
, xn+1 =

xn−1
−1 + axnxn−1

, xn+1 =
axn−1

1 + bxnxn−1
.

Elabbasy et al. [10], [12] investigated the global stability, periodicity character and
gave the solution of special case of the following recursive sequences

xn+1 = axn −
bxn

cxn − dxn−1
, xn+1 =

αxn−k

β + γ
Qk

i=0 xn−i
.

Elsayed in [18] studied the behavior of the solutions of the third order rational dif-
ference equation

xn+1 = axn−1 +
bxnxn−1

cxn + dxn−2
.

Also, he obtained the expressions of the solutions of four special cases of this equation.
Ibrahim [24] get the solutions of the rational difference equation

xn+1 =
xnxn−2

xn−1(a+ bxnxn−2)
.

Karatas et al. [25] get the form of the solution of the difference equation

xn+1 =
xn−5

1 + xn−2xn−5
.
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Simsek et al. [31]-[32] obtained the solutions of the following difference equations

xn+1 =
xn−3

1 + xn−1
, xn+1 =

xn−5
1 + xn−1xn−3

.

In [39-40] Zayed and A. El-Moneam dealt with the dynamics of the following rational
recursive sequences

xn+1 = axn −
bxn

cxn − dxn−k
,

xn+1 =
αxn + βxn−1 + γxn−2 + δxn−3
Axn +Bxn−1 + Cxn−2 +Dxn−3

.

Here, we recall some notations and results which will be useful in our investigation.
Let I be some interval of real numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions
x−k, x−k+1, ..., x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ..., (2)

has a unique solution {xn}∞n=−k [27].
Definition 1. (Equilibrium Point)
A point x ∈ I is called an equilibrium point of Eq.(2) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq.(2), or equivalently, x is a fixed point
of f .
Definition 2. (Stability)
(i) The equilibrium point x of Eq.(2) is locally stable if for every > 0, there

exists δ > 0 such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < δ,

we have
|xn − x| < for all n ≥ −k.

(ii) The equilibrium point x of Eq.(2) is locally asymptotically stable if x is locally
stable solution of Eq.(2) and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1, x0 ∈
I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,

we have
lim
n→∞

xn = x.
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(iii) The equilibrium point x of Eq.(2) is global attractor if for all x−k, x−k+1, ..., x−1, x0 ∈
I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq.(2) is globally asymptotically stable if x is locally
stable, and x is also a global attractor of Eq.(2).
(v) The equilibrium point x of Eq.(2) is unstable if x is not locally stable.
Definition 3. (Periodicity)
A solution {xn}∞n=−k of Eq.(2) is called periodic with period p if there exists an integer
p ≥ 1 such that

xn+p = xn, for all n ≥ −k.
A solution is called periodic with prime period p if p is the smallest positive integer
for which the previous equation holds.
The linearized equation of Eq.(2) about the equilibrium point x is the linear

difference equation

yn+1 =
kX
i=0

∂f(x, x, ..., x)

∂xn−i
yn−i, (3)

and the equation

λk+1 − q0λ
k − q1λ

k−1 − ...− qk−1λ− qk = 0, (4)

where qi =
∂f(x, x, ..., x)

∂xn−i
, for i = 0, 1, ..., k, is called the characteristic equation of

Eq.(3) about x.
The following result, known as the Linearized Stability Theorem, is very useful in

determining the local stability character of the equilibrium point x of Eq.(2).
Theorem A [6] (The Linearized Stability Theorem)
Assume that the function f is a continuously differentiable function defined on

some open neighborhood of an equilibrium point x. Then the following statements
are true:
1. When all the roots of Eq.(4) have absolute value less than one, then the

equilibrium point x of Eq.(2) is locally asymptotically stable.
2. If at least one root of Eq.(4) has absolute value greater than one, then the

equilibrium point x of Eq.(2) is unstable.
Definition 4. (Hyperbolic)
The equilibrium point x of Eq.(2) is called hyperbolic if no root of Eq.(4) has

absolute value equal to one. If there exists a root of Eq.(4) with absolute value equal
to one, then the equilibrium x is called nonhyperbolic.
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2 The First Equation xn+1 =
xnxn−2xn−4

xn−1xn−3(1 + xnxn−2xn−4)

In this section we give a specific form of the solution of the first equation in the form

xn+1 =
xnxn−2xn−4

xn−1xn−3(1 + xnxn−2xn−4)
, n = 0, 1, ..., (5)

where the initial values are arbitrary non zero real numbers.

Theorem 1 Let {xn}∞n=−4 be a solution of Eq.(5). Then for n = 0, 1, ...

x6n−4 = e
n−1Y
i=0

µ
1 + 6iace

1 + (6i+ 2) ace

¶
, x6n−3 = d

n−1Y
i=0

µ
1 + (6i+ 1)ace

1 + (6i+ 3) ace

¶
,

x6n−2 = c
n−1Y
i=0

µ
1 + (6i+ 2)ace

1 + (6i+ 4) ace

¶
, x6n−1 = b

n−1Y
i=0

µ
1 + (6i+ 3)ace

1 + (6i+ 5) ace

¶
,

x6n = a
n−1Y
i=0

µ
1 + (6i+ 4)ace

1 + (6i+ 6) ace

¶
, x6n+1 =

ace

bd(1 + ace)

n−1Y
i=0

µ
1 + (6i+ 5)ace

1 + (6i+ 7) ace

¶
,

where x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n− 1. That is;

x6n−10 = e
n−2Y
i=0

µ
1 + 6iace

1 + (6i+ 2) ace

¶
, x6n−9 = d

n−2Y
i=0

µ
1 + (6i+ 1)ace

1 + (6i+ 3) ace

¶
,

x6n−8 = c
n−2Y
i=0

µ
1 + (6i+ 2)ace

1 + (6i+ 4) ace

¶
, x6n−7 = b

n−2Y
i=0

µ
1 + (6i+ 3)ace

1 + (6i+ 5) ace

¶
,

x6n−6 = a
n−2Y
i=0

µ
1 + (6i+ 4)ace

1 + (6i+ 6) ace

¶
, x6n−5 =

ace

bd(1 + ace)

n−2Y
i=0

µ
1 + (6i+ 5)ace

1 + (6i+ 7) ace

¶
.

Now, it follows from Eq.(5) that

x6n−4 =
x6n−5x6n−7x6n−9

x6n−6x6n−8(1 + x6n−5x6n−7x6n−9)

=

ace
bd(1+ace)

n−2Y
i=0

³
1+(6i+5)ace
1+(6i+7)ace

´
b
n−2Y
i=0

³
1+(6i+3)ace
1+(6i+5)ace

´
d
n−2Y
i=0

³
1+(6i+1)ace
1+(6i+3)ace

´
Ã
a
n−2Y
i=0

³
1+(6i+4)ace
1+(6i+6)ace

´
c
n−2Y
i=0

³
1+(6i+2)ace
1+(6i+4)ace

´!
Ã
1 + ace

bd(1+ace)

n−2Y
i=0

³
1+(6i+5)ace
1+(6i+7)ace

´
b
n−2Y
i=0

³
1+(6i+3)ace
1+(6i+5)ace

´
d
n−2Y
i=0

³
1+(6i+1)ace
1+(6i+3)ace

´!

5



=

ace

(1 + ace)

n−2Y
i=0

µ
1 + (6i+ 1)ace

1 + (6i+ 7) ace

¶
Ã
ac

n−2Y
i=0

µ
1 + (6i+ 2)ace

1 + (6i+ 6) ace

¶!Ã
1 +

ace

(1 + ace)

n−2Y
i=0

µ
1 + (6i+ 1)ace

1 + (6i+ 7) ace

¶!

=

µ
e

1 + (6n− 5)ace

¶
Ã

n−2Y
i=0

µ
1 + (6i+ 2)ace

1 + (6i+ 6) ace

¶!µ
1 +

ace

1 + (6n− 5)ace

¶
=

eÃ
n−2Y
i=0

µ
1 + (6i+ 2)ace

1 + (6i+ 6) ace

¶!
(1 + (6n− 5)ace+ ace)

= e
n−2Y
i=0

µ
1 + (6i+ 6) ace

1 + (6i+ 2)ace

¶µ
1

1 + (6n− 4)ace

¶
.

Hence, we have

x6n−4 = e
n−1Y
i=0

µ
1 + 6iace

1 + (6i+ 2)ace

¶
.

Similarly
x6n−3 =

x6n−4x6n−6x6n−8
x6n−5x6n−7(1 + x6n−4x6n−6x6n−8)

=

e
n−1Y
i=0

³
1+6iace

1+(6i+2)ace

´
a
n−2Y
i=0

³
1+(6i+4)ace
1+(6i+6)ace

´
c
n−2Y
i=0

³
1+(6i+2)ace
1+(6i+4)ace

´
Ã

ace
bd(1+ace)

n−2Y
i=0

³
1+(6i+5)ace
1+(6i+7)ace

´
b
n−2Y
i=0

³
1+(6i+3)ace
1+(6i+5)ace

´!
Ã
1 + e

n−1Y
i=0

³
1+6iace

1+(6i+2)ace

´
a
n−2Y
i=0

³
1+(6i+4)ace
1+(6i+6)ace

´
c
n−2Y
i=0

³
1+(6i+2)ace
1+(6i+4)ace

´!

=

ace

µ
1

1 + (6n− 4) ace

¶
Ã

ace

d(1 + ace)

n−2Y
i=0

µ
1 + (6i+ 3)ace

1 + (6i+ 7) ace

¶!µ
1 + ace

µ
1

1 + (6n− 4) ace

¶¶

= d
n−2Y
i=0

µ
1 + (6i+ 7) ace

1 + (6i+ 3)ace

¶
(1 + ace)

(1 + (6n− 3) ace) .
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Hence, we have

x6n−3 = d
n−1Y
i=0

µ
1 + (6i+ 1) ace

1 + (6i+ 3)ace

¶
.

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 2 Eq.(5) has a unique equilibrium point which is the number zero and this
equilibrium point is nonhyperbolic.

Proof: For the equilibrium points of Eq.(5), we can write

x =
x3

x2 (1 + x3)
.

Then we have

x3
¡
1 + x3

¢
= x3,

x3
¡
1 + x3 − 1

¢
= 0,

or,
x6 = 0.

Thus the equilibrium point of Eq.(5) is x = 0.
Let f : (0,∞)5 −→ (0,∞) be a function defined by

f(u, v, w, t, p) =
uwp

vt (1 + uwp)
.

Therefore it follows that

fu(u, v, w, t, p) =
wp

vt (1 + uwp)2
, fv(u, v, w, t, p) = −

uwp

v2t (1 + uwp)
,

fw(u, v, w, t, p) =
up

vt (1 + uwp)2
, ft(u, v, w, t, p) = −

uwp

vt2 (1 + uwp)
,

fp(u, v, w, t, p) =
uw

vt (1 + uwp)2
,

we see that

fu(x, x, x, x, x) = 1, fv(x, x, x, x, x) = −1, fw(x, x, x, x, x) = 1,

ft(x, x, x, x, x) = −1, fp(x, x, x, x, x) = 1,

and the characteristic equation about the equilibrium point x = 0 is given by

λ5 − λ4 + λ3 − λ2 + λ− 1 = 0,
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then we obtain that λ = 1, is one of the roots of the previous equation, then the
equilibrium point x = 0 is nonhyperbolic.
Numerical examples
For confirming the results of this section, we consider numerical examples which

represent different types of solutions to Eq. (5).
Example 1. We assume the initial condition as follows: x−4 = 5, x−3 = 13, x−2 =
7, x−1 = 3, x0 = 9. See Fig. 1.
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Figure 1.

Example 2. See Fig. 2, since x−4 = 11, x−3 = 3, x−2 = 9, x−1 = 3, x0 = 2.
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Figure 2.

3 The Second Equation xn+1 =
xnxn−2xn−4

xn−1xn−3(−1 + xnxn−2xn−4)

In this section we obtain the solution of the second equation in the form

xn+1 =
xnxn−2xn−4

xn−1xn−3(−1 + xnxn−2xn−4)
, n = 0, 1, ..., (6)
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where the initial values are arbitrary non zero real numbers with x0x−2x−4 6= 1.

Theorem 3 Let {xn}∞n=−4 be a solution of Eq.(6). Then every solution of Eq.(6) is
periodic with period 6 and for n = 0, 1, ...

x6n−4 = e, x6n−3 = d, x6n−2 = c,

x6n−1 = b, x6n = a, x6n+1 =
ace

bd(−1 + ace)
,

where x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n− 1. That is;

x6n−10 = e, x6n−9 = d, x6n−8 = c,

x6n−7 = b, x6n−6 = a, x6n−5 =
ace

bd(−1 + ace)
.

Now, it follows from Eq.(6) that

x6n−4 =
x6n−5x6n−7x6n−9

x6n−6x6n−8(−1 + x6n−5x6n−7x6n−9)
=

acebd

bd(−1 + ace)ac

µ
−1 + acebd

bd(−1 + ace)

¶
=

e

(−1 + ace)

µ
−1 + ace

(−1 + ace)

¶ = e

(1− ace+ ace)
= e,

x6n−3 =
x6n−4x6n−6x6n−8

x6n−5x6n−7(−1 + x6n−4x6n−6x6n−8)
=

eacµ
ace

bd(−1 + ace)

¶
b(−1 + ace)

= d,

x6n−2 =
x6n−3x6n−5x6n−7

x6n−4x6n−6(−1 + x6n−3x6n−5x6n−7)
=

d

µ
ace

bd(−1 + ace)

¶
b

ea

µ
−1 + d

µ
ace

bd(−1 + ace)

¶
b

¶ = c,

x6n−1 =
x6n−2x6n−4x6n−6

x6n−3x6n−5(−1 + x6n−2x6n−4x6n−6)
=

cea

d

µ
ace

bd(−1 + ace)

¶
(−1 + cea)

= b,

x6n =
x6n−1x6n−3x6n−5

x6n−2x6n−4(−1 + x6n−1x6n−3x6n−5)
=

bd

µ
ace

bd(−1 + ace)

¶
ce

µ
−1 + bd

µ
ace

bd(−1 + ace)

¶¶ = a.

Finally,
x6n+1 =

x6nx6n−2x6n−4
x6n−1x6n−3(−1 + x6nx6n−2x6n−4)

=
ace

db (−1 + ace)
.

Thus, the proof is completed.
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Theorem 4 Eq. (6) has a periodic solution of period three iff e = b, d = a, ace =
2 and it will be taken the following form {xn} = {b, a, c, b, a, ...} .

Proof: First suppose that there exists a prime period three solution {xn} = {b, a, c, b, a, ...}
of Eq. (6), we see from the form of the solution of Eq. (6) that

x6n−4 = e = b, x6n−3 = d = a, x6n−2 = c,

x6n−1 = b, x6n = a, x6n+1 =
ace

bd(−1 + ace)
= c,

Then we get
e = b, d = a, ace = 2.

Second assume that e = b, d = a, ace = 2. Then we see that

x6n−4 = b, x6n−3 = a, x6n−2 = c,

x6n−1 = b, x6n = a, x6n+1 = c,

Thus we have a periodic solution of period three and the proof is complete.

Theorem 5 Eq.(6) has two equilibrium points which are 0, 3
√
2 and the equilibrium

point x = 3
√
2 is nonhyperbolic.

Proof: For the equilibrium points of Eq.(6), we can write

x =
x3

x2 (−1 + x3)
.

Then we have
x3
¡
−1 + x3

¢
= x3,

or
x3
¡
x3 − 2

¢
= 0,

Thus the equilibrium points of Eq.(6) are 0, 3
√
2.

Let f : (0,∞)5 −→ (0,∞) be a function defined by

f(u, v, w, t, p) =
uwp

vt (−1 + uwp)
.

Therefore it follows that

fu(u, v, w, t, p) = − wp

vt (−1 + uwp)2
, fv(u, v, w, t, p) = −

uwp

v2t (−1 + uwp)
,

fw(u, v, w, t, p) = − up

vt (−1 + uwp)2
, ft(u, v, w, t, p) = −

uwp

vt2 (−1 + uwp)
,

fp(u, v, w, t, p) = − uw

vt (−1 + uwp)2
,
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we see that ( at x = 3
√
2 )

fu(x, x, x, x, x) = −1, fv(x, x, x, x, x) = −1, fw(x, x, x, x, x) = −1,
ft(x, x, x, x, x) = −1, fp(x, x, x, x, x) = −1.

Thus the characteristic equation about the equilibrium point x = 3
√
2 is given by

λ5 + λ4 + λ3 + λ2 + λ+ 1 = 0.

Also, we see that λ = −1, one of the roots of this equation, then the equilibrium
point x = 3

√
2 is nonhyperbolic.

Numerical examples
Here we will represent different types of solutions of Eq. (6).

Example 3. We consider Eq.(6) with x−4 = 11, x−3 = 3, x−2 = 9, x−1 = 3, x0 = 2
See Fig. 3.
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Figure 3.

Example 4. Figure 4 shows the behavior of the solutions of Eq.(6) with the initial
conditions: x−4 = 5, x−3 = −3, x−2 = −2/15, x−1 = 5, x0 = −3.
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Figure 4.
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The following cases can be proved similarly.

4 The Third Equation xn+1 =
xnxn−2xn−4

xn−1xn−3(1− xnxn−2xn−4)

In this section, we get the expressions of the solution of the third equation which in
the following form

xn+1 =
xnxn−2xn−4

xn−1xn−3(1− xnxn−2xn−4)
, n = 0, 1, ..., (7)

where the initial values are arbitrary non zero real numbers.

Theorem 6 Let {xn}∞n=−4 be a solution of Eq.(7). Then the solutions of Eq.(7) takes
the following form for n = 0, 1, ...

x6n−4 = e
n−1Y
i=0

µ
1− 6iace

1− (6i+ 2) ace

¶
, x6n−3 = d

n−1Y
i=0

µ
1− (6i+ 1)ace
1− (6i+ 3) ace

¶
,

x6n−2 = c
n−1Y
i=0

µ
1− (6i+ 2)ace
1− (6i+ 4) ace

¶
, x6n−1 = b

n−1Y
i=0

µ
1− (6i+ 3)ace
1− (6i+ 5) ace

¶
,

x6n = a
n−1Y
i=0

µ
1− (6i+ 4)ace
1− (6i+ 6) ace

¶
, x6n+1 =

ace

bd(1− ace)

n−1Y
i=0

µ
1− (6i+ 5)ace
1− (6i+ 7) ace

¶
,

where x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.

Theorem 7 Eq.(7) has a unique equilibrium point which is the number zero and this
equilibrium point is nonhyperbolic.

Example 5. Assume that the initial values for Eq.(7) x−4 = 10, x−3 = 4, x−2 =
9, x−1 = 6, x0 = 2 see Fig. 5
Example 6. See Fig. 6 since x−4 = 2, x−3 = 7, x−2 = 5, x−1 = 8, x0 = 12.
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Figure 5.
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Figure 6.

5 The Fourth Equation xn+1 =
xnxn−2xn−4

xn−1xn−3(−1− xnxn−2xn−4)

Here we obtain a form of the solutions of the equation

xn+1 =
xnxn−2xn−4

xn−1xn−3(−1− xnxn−2xn−4)
, n = 0, 1, ..., (8)

where the initial values are arbitrary non zero real numbers with x−4x−2x0 6= −1.

Theorem 8 Let {xn}∞n=−4 be a solution of Eq.(8). Then every solution of Eq.(8) is
periodic with period 6 and for n = 0, 1, ...

x6n−4 = e, x6n−3 = d, x6n−2 = c,

x6n−1 = b, x6n = a, x6n+1 =
ace

bd(−1− ace)
,

where x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.

Theorem 9 Eq. (8) has a periodic solution of period three iff e = b, d = a, ace =
−2 and it will be taken the following form {xn} = {b, a, c, b, a, ...} .

Theorem 10 Eq.(8) has two equilibrium points which are 0, 3
√
−2 and the equilibrium

point x = 3
√
−2 is nonhyperbolic.

Example 7. Consider x−4 = −2, x−3 = 7, x−2 = 1/7, x−1 = −2, x0 = 7 see Fig. 7.

13



Example 8. Fig. 8 shows the solution of Eq.(8) with the initial conditions x−4 =
11, x−3 = −7, x−2 = 13, x−1 = 8, x0 = −3.
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Figure 7.
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