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Abstract. Let R be an arbitrary ring with identity and M a right R-module.

In this paper, we introduce a class of modules which is an analogous to δ-

supplemented modules and principally ⊕-supplemented modules. The module

M is called principally ⊕-δ-supplemented if for any m ∈ M there exists a

direct summand A of M such that M = mR + A and mR ∩ A is δ-small in

A. We prove that some results of principally ⊕-supplemented modules can be

extended to principally ⊕-δ-supplemented modules for this general settings.

Several properties of these modules are given and it is shown that the class of

principally ⊕-δ-supplemented modules lies strictly between classes of princi-

pally ⊕-supplemented modules and principally δ-supplemented modules. We

investigate conditions which ensure that any factor modules, direct summands

and direct sums of principally ⊕-δ-supplemented modules are also principally

⊕-δ-supplemented. We give a characterization of principally⊕-δ-supplemented

modules over a semisimple ring and a new characterization of principally δ-

semiperfect rings is obtained by using principally ⊕-δ-supplemented modules.
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1. Introduction

Throughout this paper all rings have an identity and all modules are unitary

right modules. N ≤ M will mean N is a submodule of M . A submodule N of a

module M is called small in M if for every K ≤M the equality M = N+K implies

M = K. Let N and P be submodules of M . We call P a supplement of N in M if

M = P +N and P ∩N is small in P . A module M is called supplemented if every

submodule of M has a supplement in M ([10]). In [18], Zhou introduced the concept

of δ-small submodules as a generalization of small submodules. A submodule N

of M is said to be δ-small in M if whenever M = N + K and M/K is singular,

we have M = K. Let N be a submodule of M . A submodule L of M is called a

δ-supplement of N in M if M = N +L and N ∩L is δ-small in L (therefore in M),

and M is called δ-supplemented in case every submodule of M has a δ-supplement
1
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in M (see [8] in detail). Note that every supplemented module is δ-supplemented.

Following [10], the module M is called ⊕-supplemented if for any submodule N of

M , there exists a direct summand K of M with M = N + K and N ∩ K small

in K, i.e., every submodule of M has a direct summand supplement in M , while

in [14] M is called principally ⊕-supplemented if every cyclic submodule of M has

a direct summand supplement in M . Let M be a module, K and L submodules

of M . K is called a ⊕-δ-supplement of N in M if M = K + N , K is a direct

summand of M and K ∩ N is δ-small in K. Also M is called ⊕-δ-supplemented

if every submodule of M has a ⊕-δ-supplement in M . Clearly, ⊕-δ-supplemented

modules are δ-supplemented and ⊕-supplemented modules are ⊕-δ-supplemented.

In what follows, by Z, Q, Zn and Z/nZ we denote, respectively, integers, rational

numbers, the ring of integers and the Z-module of integers modulo n. Mn(R) stands

for the ring of all n× n matrices over R. For unexplained concepts and notations,

we refer the reader to [1] and [10].

2. δ-Small Submodules and δ-Supplement Submodules

We collect basic properties of δ-small submodules in the following lemma which

is contained in [18].

Lemma 2.1. Let M be a module. Then we have the following.

(1) If N is δ-small in M and M = X + N , then M = X ⊕ Y for a projective

semisimple submodule Y with Y ⊆ N .

(2) If K is δ-small in M and f : M → N is a homomorphism, then f(K) is

δ-small in N . In particular, if K is δ-small in M ⊆ N , then K is δ-small

in N .

(3) Let K1 ⊆M1 ⊆M , K2 ⊆M2 ⊆M and M = M1 ⊕M2. Then K1 ⊕K2 is

δ-small in M1 ⊕M2 if and only if K1 is δ-small in M1 and K2 is δ-small

in M2.

(4) Let N , K be submodules of M with K δ-small in M and N ≤ K. Then N

is also δ-small in M .

The next lemma is clear from definitions.

Lemma 2.2. Let M be a module and m ∈M . Then the following are equivalent.

(1) mR is not δ-small in M .

(2) There is a maximal submodule N of M such that m 6∈ N and M/N is

singular.
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Lemma 2.3. Let M be a module and K,L,H submodules of M . If L is a δ-

supplement of K in M and K is a δ-supplement of H in M , then K is a δ-

supplement of L in M .

Proof. By assumption M = K+L = K+H, K ∩L is δ-small in L and K ∩H is δ-

small in K. We prove K∩L is δ-small in K. Let X be a submodule of M such that

(K ∩L) +X = K and K/X is singular. Then M = (K ∩L) +X +H. Since K ∩L
is δ-small in M , by Lemma 2.1(1), there exists a projective semisimple submodule

Y in K ∩ L such that M = Y ⊕ (X +H). Hence K = (Y ⊕X) + (K ∩H). Since

K/(X+Y ) is singular as a homomorphic image of K/X and K∩H is δ-small in K,

K = X ⊕ Y . Thus Y = 0 as K/X is singular and Y is projective semisimple. �

Lemma 2.4. Let M be a module and K,N, T submodules of M . If K is a ⊕-

δ-supplement of N in M and T is δ-small in M , then K is a ⊕-δ-supplement of

N + T in M .

Proof. Let K be a ⊕-δ-supplement of N in M . Then K is a direct summand of

M such that M = N + K and N ∩K is δ-small in K. We prove (N + T ) ∩K is

δ-small in K. For if [(N + T ) ∩K] + L = K and K/L is singular for some L ≤ K,

then M = L+N + T and M/(L+N) = (K +N)/(L+N) ∼= K/(K + (L ∩N)) is

singular as a homomorphic image of K/L. Since T is δ-small in M , M = L + N .

Hence K = L + (K ∩ N). Since K ∩ N is δ-small in K and K/L is singular, we

have K = L. �

3. Principally ⊕-δ-Supplemented Modules

In this section we define principally ⊕-δ-supplemented modules. We study

properties, characterizations and decompositions of principally ⊕-δ-supplemented

modules. We investigate the conditions under which any factor modules, direct

summands and direct sums of a principally ⊕-δ-supplemented module are princi-

pally ⊕-δ-supplemented. For modules over a semisimple ring R we obtain that

every R-module is principally ⊕-δ-supplemented if and only if every R-module is

principally δ-semiperfect. Principally ⊕-supplemented modules are investigated

in [14] and principally δ-lifting modules are studied in [6]. Recently, principally

δ-supplemented modules are done in [7]. In this vein we introduce principally ⊕-

δ-supplemented modules generalizing principally ⊕-supplemented modules, princi-

pally δ-lifting modules and strengthening principally δ-supplemented modules.

Now we define principally ⊕-δ-supplemented modules with the next lemma.

Lemma 3.1. Let M be a module, m ∈ M and L a direct summand of M . Then

the following are equivalent.
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(1) M = mR+ L and mR ∩ L is δ-small in L.

(2) M = mR + L and for any proper submodule K of L with L/K singular,

M 6= mR+K.

Proof. (1) ⇒ (2) Let K ≤ L and M = mR + K where L/K is singular. Then

L = (L ∩mR) +K. Since L ∩mR is δ-small in L, we have L = K.

(2)⇒ (1) Let M = mR+L and K ≤ L and L/K singular with L = (mR∩L) +K.

Then M = mR+ L = mR+K. By (2), K = L. So mR ∩ L is δ-small in L. �

Let M be a module and m ∈ M . A submodule L is called a principally ⊕-δ-

supplement of mR in M if mR and L satisfy Lemma 3.1 and the module M is called

principally ⊕-δ-supplemented if every cyclic submodule of M has a principally ⊕-

δ-supplement in M , that is, for each m ∈ M there exists a submodule A of M

such that M = mR + A = B ⊕ A for some B ≤ M with mR ∩ A δ-small in

A, therefore in M . In [6], a module M is called principally δ-lifting if for each

m ∈ M , M has a decomposition M = A ⊕ B with A ≤ mR and mR ∩ B δ-small

in B (equivalently, in M). Every principally δ-lifting module is a principally ⊕-

δ-supplemented module. Principally ⊕-supplemented modules are introduced and

investigated in [14]. The module M is called principally ⊕-supplemented if every

cyclic submodule has a supplement which is a direct summand of M . Hence every

principally ⊕-supplemented module is also principally ⊕-δ-supplemented. In [7],

M is said to be a principally δ-supplemented module if for every cyclic submodule

of M has a δ-supplement in M . Note that, every principally ⊕-δ-supplemented

module is principally δ-supplemented. We show that the class of principally ⊕-δ-

supplemented modules lies strictly between classes of principally ⊕-supplemented

modules (principally δ-lifting modules) and principally δ-supplemented modules.

In the same direction as preceding paragraph one may define principally δ-⊕-

supplemented modules. A module M is called principally δ-⊕-supplemented if for

every cyclic submodule mR of M , M has a direct summand which is a δ-supplement

of mR in M , that is, for any m ∈ M there exists a direct summand A of M such

that M = mR+A and mR∩A is δ-small in A. So a principally δ-⊕-supplemented

module is the same as a principally ⊕-δ-supplemented module.

Examples 3.2. (1) Let R be an incomplete rank one discrete valuation ring, with

quotient field K. By [10, Lemma A.5], the module M = K ⊕K is principally ⊕-δ-

supplemented but not lifting.

(2) Consider the Z-module M = Q ⊕ (Z/2Z). We prove M is a principally ⊕-δ-

supplemented module but neither supplemented nor lifting. It is routine to show

that M = (1, 1)Z+(Q⊕(0)). Let (u, v) ∈M . Assume that v = 1 and u 6= 1. In this

case we prove M = (u, v)Z + (Q⊕ (0)). Let (x, y) ∈M . We have two possibilities.
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(i) y = 1. Then (x, y) = (x, 1) = (u, 1) + (x− u, 0) ∈ (u, 1)Z + (Q⊕ (0)).

(ii) y = 0. Then (x, y) = (x, 0) = (u, 1)0 + (x, 0) ∈ (u, 1)Z + (Q ⊕ (0)). Hence

M = (u, 1)Z + (Q ⊕ (0)). Since ((u, v)Z) ∩ (Q ⊕ (0)) is either zero or isomorphic

to Z⊕ (0) which is small in Q⊕ (0), M is principally ⊕-δ-supplemented Z-module.

If M were supplemented Z-module, its direct summand Q would be supplemented

Z-module. A contradiction. So M is neither supplemented nor lifting.

Recall that a submodule N of a module of M is called fully invariant if f(N) ≤ N
for all endomorphisms f of M , and M is said to be a duo module (or weak-duo)

if every submodule (or direct summand) of M is fully invariant (see for detail

[12]). The module M is called distributive if for all submodules K, L and N of M ,

N ∩ (K +L) = (N ∩K) + (N ∩L) or N + (K ∩L) = (N +K) ∩ (N +L). Lemma

3.3 is well known and it is obvious from definitions.

Lemma 3.3. Let M = M1 ⊕M2 = K +N and K ≤M1. If M is distributive and

K ∩N is δ-small in N , then K ∩N is δ-small in M1 ∩N .

Recall the definitions for some of the terms to be used in the sequel. An R-

module M is said to be π-projective if for every two submodules U , V of M with

U + V = M there exists f ∈ EndR(M) with Im(f) ≤ U and Im(1 − f) ≤ V and

M is called refinable if for any submodules U and V of M with M = U + V there

is a direct summand U ′ of M such that U ′ ⊆ U and M = U ′ + V (see, namely

[16]). The module M has the summand intersection property if the intersection of

two direct summands of M is again a direct summand of M .

Theorem 3.4. Every principally δ-lifting module is principally ⊕-δ-supplemented.

The converse holds if M satisfies any of the following conditions.

(1) M is a distributive module.

(2) M is a π-projective module.

(3) M is a duo module.

(4) M is a refinable module with the summand intersection property.

(5) M is an indecomposable module.

Proof. Let M be a principally δ-lifting module and m ∈ M . Then M has a de-

composition M = A ⊕ B such that B ≤ mR and mR ∩ A is δ-small in A. Since

M = mR+A, M is principally ⊕-δ-supplemented. Conversely,

(1) Let M be a distributive principally ⊕-δ-supplemented module and m ∈ M .

There exists a direct summand A of M such that M = mR + A with mR ∩ A
δ-small in A. Let M = A⊕B for some submodule B of M . Then by distributivity

of M , we have mR = (mR ∩ A) ⊕ (mR ∩ B). Hence M = (mR ∩ B) ⊕ A. Thus

B = mR ∩B ≤ mR. Therefore M is principally δ-lifting.
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(2) Let M be a π-projective principally ⊕-δ-supplemented module and m ∈ M .

Then we have M = mR+A and mR∩A is δ-small in A for some direct summand

A of M . Since M is π-projective, by [15, 41.14], there exists N ≤ mR with

M = A⊕N . Therefore M is principally δ-lifting.

(3) Similar to the case (1).

(4) Let M be a refinable principally ⊕-δ-supplemented module with the summand

intersection property and m ∈ M . Then there exists a direct summand A of M

such that M = mR + A and mR ∩ A is δ-small in A. Since M is refinable, there

exists a direct summand U of M such that U is contained in mR and M = U +A.

By the summand intersection property of M , U ∩A is a direct summand of M . Let

M = (U ∩A)⊕K for some submodule K of M . Then A = (U ∩A)⊕ (K ∩A), and

so M = U ⊕ (K ∩ A). On the other hand, mR ∩ (K ∩ A) is δ-small in A. Since

K ∩ A is a direct summand of A, mR ∩ (K ∩ A) is also δ-small in K ∩ A. This

completes the proof.

(5) Let M be an indecomposable module and m ∈M . Since M is principally ⊕-δ-

supplemented, there exist submodules A and B of M such that mR ∩A is δ-small

in A and M = A ⊕ B = mR + A. By hypothesis, A = M and B = 0. So that

mR ∩ A = mR is δ-small in M . Note that in this case, every cyclic submodule of

M is δ-small in M . �

Next example shows that there exists a principally ⊕-δ-supplemented module

which is not principally δ-lifting.

Example 3.5. Consider the Z-module M = (Z/2Z)⊕ (Z/8Z). Then N1 = (1, 2)Z,

N2 = (1, 1)Z, N3 = (0, 2)Z, N4 = (0, 4)Z, N5 = (1, 4)Z, N6 = Z/2Z and N7 = Z/8Z
are nonzero cyclic submodules of M . Hence M = N6 ⊕N7 = N2 ⊕N5 and N3, N4

are small submodules of M . Thus M is a principally ⊕-supplemented module and

so principally ⊕-δ-supplemented. On the other hand, M is not principally δ-lifting,

by [6].

Every principally⊕-δ-supplemented module need not be principally⊕-supplemented,

as Example 3.43 shows. But in some cases these modules coincide.

Proposition 3.6. Let M be a singular module. Then M is principally ⊕-supplemented

if and only if it is principally ⊕-δ-supplemented.

Proof. The necessity is clear. For the sufficiency, let m ∈ M . Then there exists a

direct summand A of M with M = mR + A and mR ∩ A δ-small in A. Assume

that A = (mR ∩A) +K for some submodule K of A. Since M is singular, A/K is

also singular. Hence we have A = K. Thus mR ∩A is small in A. Therefore M is

principally ⊕-supplemented. �
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Proposition 3.7. Let M be a principally ⊕-δ-supplemented module. If every cyclic

submodule of M has a uniform principally ⊕-δ-supplement, then M is principally

⊕-supplemented.

Proof. Let m ∈M . By hypothesis, there exists a uniform direct summand A of M

with M = mR+A and mR∩A δ-small in A. Assume that (mR∩A) +K = A for

some submodule K of A. If K = 0, then there is nothing to do. Let K 6= 0. Since

K is essential in A, A/K is singular. Then we have K = A. Hence mR∩A is small

in A. Thus M is principally ⊕-supplemented. �

Proposition 3.8. Every principally ⊕-δ-supplemented module is principally δ-

supplemented. The converse is true for refinable modules.

Proof. The first assertion is clear. Let M be a principally δ-supplemented module

and m ∈M . Let A be a submodule of M with M = mR+A and mR ∩A δ-small

in A. Since M is refinable, there is a direct summand U of M such that U ⊆ A

and M = U +mR. Also U is a direct summand of A. This implies that mR∩U is

δ-small in A. Hence mR ∩ U is δ-small in U . �

Next example shows that there exists a principally δ-supplemented module which

is not principally ⊕-δ-supplemented.

Example 3.9. Let F be a field and x and y commuting indeterminates over F .

Consider the polynomial ring R = F [x, y], the ideals I1 = (x2) and I2 = (y2) of R,

and the ring S = R/(x2, y2). Let M = xS + yS. Then M is an indecomposable

S-module, principally supplemented but not principally ⊕-supplemented. Hence

M is principally δ-supplemented. On the other hand, since M is singular, it is not

principally ⊕-δ-supplemented by Proposition 3.6.

Because of the following example it can be said that any submodule of a princi-

pally ⊕-δ-supplemented module may not be principally ⊕-δ-supplemented.

Example 3.10. Consider Q as a Z-module. Since every cyclic submodule of Q is

small and so δ-small in Q, Q is principally ⊕-δ-supplemented. But the submodule

Z of Q is not principally ⊕-δ-supplemented as a Z-module since 2Z does not have

any principally ⊕-δ-supplement in Z.

Now we investigate conditions which ensure that a homomorphic image and so

a direct summand of a principally ⊕-δ-supplemented module is principally ⊕-δ-

supplemented.

Theorem 3.11. Let M be a distributive principally ⊕-δ-supplemented module.

Then every homomorphic image of M is principally ⊕-δ-supplemented.
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Proof. Let L be a submodule of M and (mR + L)/L a cyclic submodule of M/L.

Then there exists a direct summand A of M such that M = A⊕B = mR + A for

some B ≤M and mR ∩A is δ-small in A. Now M/L = (mR+ L)/L+ (A+ L)/L

and, since M is distributive, (mR+L)∩(A+L) = L+(mR∩A). So ((mR+L)/L)∩
((A+L)/L) = (L+ (mR∩A))/L is δ-small in (A+L)/L as a homomorphic image

of δ-small mR∩A in A under the natural map π from A onto (A+L)/L by Lemma

2.1(2). Again by distributivity of M and A∩B = 0, we have (A+L)∩(B+L) = L.

Hence (A+ L)/L is a direct summand of M/L. �

Corollary 3.12. Every direct summand of a distributive principally ⊕-δ-supplemented

module is principally ⊕-δ-supplemented.

Proposition 3.13. Let M be a module and N a submodule of M . If every cyclic

submodule of M has a principally ⊕-δ-supplement which contains N , then M/N is

principally ⊕-δ-supplemented.

Proof. Let m ∈M and consider the submodule mR of M/N . By hypothesis, there

exists a direct summand L of M such that N ≤ L, M = mR + L and mR ∩ L is

δ-small in L. Let M = K⊕L for some submodule K of M and π denote the natural

epimorphism from M onto M/N . Then we have M/N = (K + N)/N ⊕ (L/N) =

mR + (L/N). On the other hand, π(mR ∩ L) = π(mR) ∩ π(L) = mR ∩ (L/N) is

δ-small in π(L) = L/N . Hence the proof is completed. �

Lemma 3.14. Let M be a module and N a fully invariant submodule of M . If

M = M1⊕M2 for some submodules M1 and M2 of M , then M/N = (M1+N)/N⊕
(M2 +N)/N .

Proof. Clearly, M/N = (M1 + N)/N + (M2 + N)/N . If m1 + N = m2 + N with

mi ∈Mi (i = 1, 2), then m1 −m2 ∈ N . As N is a fully invariant submodule of M ,

we see that m1,m2 ∈ N . Hence (M1 +N)/N ∩ (M2 +N)/N = 0, as required. �

Proposition 3.15. Let M be a principally ⊕-δ-supplemented module. Then M/N

is principally ⊕-δ-supplemented for every fully invariant submodule N of M .

Proof. Let N be a fully invariant submodule of M and mR a submodule of M/N ,

where m ∈ M . Since M is principally ⊕-δ-supplemented, there exists a direct

summand A of M such that M = mR + A and mR ∩ A is δ-small in A. Let

M = A ⊕ B for some submodule B of M . By Lemma 3.14, we have M/N =

(A + N)/N ⊕ (B + N)/N . Also M/N = (A + N)/N + mR. It is clear that

(A+N)/N ∩mR is δ-small in (A+N)/N . This completes the proof. �

As an immediate consequence of Proposition 3.15, we deduce that if M is prin-

cipally ⊕-δ-supplemented, then so are M/Rad(M) and M/Soc(M).
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Corollary 3.16. Let M be a weak-duo and principally ⊕-δ-supplemented module.

Then every direct summand of M is principally ⊕-δ-supplemented.

Recall that a module M has D3 if whenever M1 and M2 are direct summands

of M with M = M1 +M2, M1 ∩M2 is also a direct summand of M ([10]).

Proposition 3.17. Let M be a principally ⊕-δ-supplemented module. If M has

D3, then every direct summand of M is also principally ⊕-δ-supplemented.

Proof. Let N be a direct summand of M and n ∈ N . Since M is principally ⊕-

δ-supplemented, there exists a direct summand A of M with M = A + nR and

A ∩ nR δ-small in A. Hence M = A + N and N = (A ∩ N) + nR. Due to D3,

A ∩ N is a direct summand of M , N and A. By Lemma 2.1(3), (A ∩ N) ∩ nR is

δ-small in A ∩N because A ∩N is a direct summand of A. Thus N is principally

⊕-δ-supplemented. �

Due to Proposition 3.17 and [5, Lemma 2.4] we obtain the following result.

Corollary 3.18. Let M be a principally ⊕-δ-supplemented and UC extending mod-

ule. Then every direct summand of M is principally ⊕-δ-supplemented.

It is obvious that every module with the summand intersection property has D3.

Then the following result is an immediate consequence of Proposition 3.17 and [4,

Theorem 4.6].

Corollary 3.19. Let R be a right semihereditary ring and F a principally ⊕-δ-

supplemented finitely generated free R-module. Then R is principally ⊕-δ-supplemented

as an R-module.

Next example shows that for a module M and a submodule N , if M/N is prin-

cipally ⊕-δ-supplemented, then M need not be principally ⊕-δ-supplemented.

Example 3.20. Consider the Z-module Z/pnZ, where p is a prime number and

n is a positive integer. Then Z/pnZ is principally δ-lifting and so principally ⊕-δ-

supplemented, but Z is not principally ⊕-δ-supplemented.

Proposition 3.21. Let M = M1⊕M2 be a distributive module. Then M is princi-

pally ⊕-δ-supplemented if and only if M1 and M2 are principally ⊕-δ-supplemented.

Proof. Let M be a principally ⊕-δ-supplemented module. Due to Corollary 3.12,

M1 and M2 are principally ⊕-δ-supplemented. Assume that M1 and M2 are prin-

cipally ⊕-δ-supplemented modules and m ∈ M . By distributivity of M , we have

mR = (mR∩M1)⊕(mR∩M2). Since mR∩M1 and mR∩M2 are cyclic submodules

of M1 and M2 respectively, there exist direct summands A of M1 and B of M2 such



10 BURCU UNGOR, SAIT HALICIOGLU, AND ABDULLAH HARMANCI

that M1 = (mR ∩M1) + A = A′ ⊕ A and A ∩ (mR ∩M1) = A ∩mR is δ-small in

A, and M2 = (mR ∩M2) +B = B′ ⊕B and B ∩ (mR ∩M2) = B ∩mR is δ-small

in B. Then M = mR + A + B = (A′ ⊕ B′) ⊕ (A ⊕ B). Again by distributivity,

mR∩ (A+B) = (mR∩A) + (mR∩B) is δ-small in A+B by Lemma 2.1(3). This

completes the proof. �

Proposition 3.22. Let M = M1 ⊕M2 be a duo module. Then M is principally

⊕-δ-supplemented if and only if M1 and M2 are principally ⊕-δ-supplemented.

Proof. Necessity is clear from Proposition 3.17 because duo modules satisfy the

summand intersection property. Sufficiency is resemble to the proof of Proposition

3.21. �

Corollary 3.23. Let M be a principally ⊕-δ-supplemented module and every finite

direct sum of M a distributive (or duo) module. Then every finitely M -generated

module is principally ⊕-δ-supplemented.

Recall that a module M is called regular (in the sense of Zelmanowitz) [17] if

for any m ∈ M there exists a map α ∈ HomR(M,R) such that m = mα(m) and

it is known that every cyclic submodule of a regular module is a direct summand.

Hence any regular module is principally ⊕-δ-supplemented. We give an example to

show that principally ⊕-δ-supplemented modules need not be a regular module.

Example 3.24. Any cyclic submodule of Q as a Z-module is a small submodule of

Q. Therefore Q is a principally ⊕-δ-supplemented Z-module. On the other hand,

Q can not be a regular Z-module since HomZ(Q,Z) = 0.

A module M is said to be principally semisimple if every cyclic submodule is

a direct summand of M . Tuganbaev calls a principally semisimple module as a

regular module in [13], and lifting modules are named as semiregular modules.

Every semisimple module is principally semisimple. Every principally semisimple

module is principally δ-lifting and so principally ⊕-δ-supplemented. A ring R is

called principally semisimple if the right R-module R is principally semisimple. It

is clear that every principally semisimple ring is von Neumann regular and vice

versa. For a module M , we write Radδ(M) =
∑
{L | L is a δ-small submodule of

M}. Since every small submodule of M is δ-small, Rad(M) ≤ Radδ(M). In the

ring case, we shall denote Radδ(M) by Jδ(R) and usually Rad(M) by J(R) for a

ring R. It is shown that Jδ(R) is an ideal of R, and there are cases for a ring R such

that Jδ(R) strictly contains J(R) (see namely [18]). Also note that for any module

M , Radδ(M) is a δ-small submodule of M provided every proper submodule of M

is contained in a maximal submodule of M , therefore Jδ(R) is a δ-small right and

δ-small left ideal of R.
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Lemma 3.25. [10, Lemma 4.47] Let M = S⊕T = N +T where S is T -projective.

Then M = S′ ⊕ T where S′ ≤ N .

Lemma 3.26. Let M be a principally ⊕-δ-supplemented module. Then M/Radδ(M)

is a principally semisimple module if M has one of the following conditions.

(1) M is a distributive module.

(2) M is a projective module.

Proof. (1) For any m ∈M , there exists a direct summand A of M such that M =

mR+A and mR∩A is δ-small in A. So mR∩A is δ-small in M . By distributivity of

M , we have (mR+ Radδ(M))∩(A+Radδ(M)) = Radδ(M)+(mR∩A) = Radδ(M)

since mR ∩A is δ-small in M . Then

M/Radδ(M) = [(mR+ Radδ(M))/Radδ(M)]⊕ [(A+ Radδ(M))/Radδ(M)].

(2) Let m ∈ M . There exists a direct summand A of M such that M = mR + A

and mR ∩ A is δ-small in A. So mR ∩ A is δ-small in M . By projectivity of M ,

there exists a direct summand N of M such that M = N ⊕ A with N ≤ mR by

Lemma 3.25. Then (mR+ Radδ(M))/Radδ(M) = (N+ Radδ(M))/Radδ(M) and

Radδ(M) = Radδ(N)⊕Radδ(A) imply

M/Radδ(M) = [(mR+ Radδ(M))/Radδ(M)]⊕ [(A+ Radδ(M))/Radδ(M)].

Hence every principal submodule of M/Radδ(M) is a direct summand in either

case. Therefore M/Radδ(M) is principally semisimple. �

Proposition 3.27. Let M be a principally ⊕-δ-supplemented module and N a

submodule of M . If N∩Radδ(M) = 0, then N is principally semisimple.

Proof. Let x ∈ N . By hypothesis, there exists a direct summand A of M with M =

A+xR and A∩xR δ-small in A. Hence N = (A∩N)+xR and A∩xR ≤Radδ(M).

Since (A∩N)∩ xR ≤ N∩Radδ(M) = 0, we have N = (A∩N)⊕ xR. Therefore N

is principally semisimple. �

Theorem 3.28 may be proved easily by making use of Lemma 3.26 for distributive

modules. But we prove it in another way.

Theorem 3.28. Let M be a principally ⊕-δ-supplemented module. Then M has

a principally semisimple submodule M1 such that M1 has an essential socle and

Radδ(M)⊕M1 is essential in M .

Proof. By Zorn’s Lemma we may find a submodule M1 of M such that Radδ(M)⊕
M1 is essential in M . By Proposition 3.27, M1 is principally semisimple. Next we

show that M1 has an essential socle. For this we prove for any m ∈ M1, mR has
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a simple submodule. If mR is simple, we have done. Otherwise let m1 ∈ mR such

that m1R 6= mR. By hypothesis there exists a direct summand C of M such that

M = m1R+C with m1R ∩C δ-small in C. Then m1R ∩C ≤M1∩ Radδ(M) = 0.

So M = m1R⊕ C and then mR = m1R⊕ (mR ∩ C). Clearly, mR ∩ C = m′1R for

some m′1 ∈ mR and mR = m1R⊕m′1R. If m1R and m′1R are simple, then we stop.

Otherwise let m2 ∈ m1R such that m2R 6= m1R. Similarly, there is m′2 ∈ m1R such

that m1R = m2R⊕m′2R. Hence mR = m2R⊕m′2R⊕m′1R. If m2R is simple, then

we stop. Otherwise we continue in this way. Since mR is cyclic, this process must

terminate at a finite step, say n. At this step all direct summands of mR should

be simple. This completes the proof. �

Theorem 3.29. Let M be a principally ⊕-δ-supplemented module. Assume that

M satisfies ascending chain condition on direct summands. Then M has a decom-

position M = M1⊕M2, where M1 is a semisimple module and M2 is a module with

Radδ(M2) essential in M2.

Proof. Let M1 be a submodule of M such that Radδ(M) ⊕M1 is essential in M

and m1 ∈ M1. By Proposition 3.27, M1 is principally semisimple. Since M is

principally ⊕-δ-supplemented, there exists a direct summand A1 of M such that

M = m1R+A1 and m1R∩A1 is δ-small in both A1 and M . Hence m1R∩A1 = 0

and M = m1R ⊕ A1. Then M1 = m1R ⊕ (M1 ∩ A1). If M1 ∩ A1 6= 0, let

0 6= m2 ∈ M1 ∩ A1. There exists a direct summand A2 of M such that M =

m2R + A2 and m2R ∩ A2 is δ-small in both A2 and M . Hence m2R ∩ A2 = 0,

M = m2R⊕A2 = m1R⊕m2R⊕ (A1 ∩A2). So M1 ∩A1 = m2R⊕ (M1 ∩A1 ∩A2)

and M1 = m1R⊕ (M1 ∩A1) = m1R⊕m2R⊕ (M1 ∩A1 ∩A2). If M1 ∩A1 ∩A2 6= 0,

let 0 6= m3 ∈ M1 ∩ A1 ∩ A2. There exists a direct summand A3 of M such that

M = m3R ⊕ A3 = m1R ⊕ m2R ⊕ m3R ⊕ (A1 ∩ A2 ∩ A3) and M1 ∩ A1 ∩ A2 =

m3R⊕ (M1 ∩A1 ∩A2 ∩A3) and M1 = m1R⊕m2R⊕m3R⊕ (M1 ∩A1 ∩A2 ∩A3).

By hypothesis this procedure stops at a finite number of steps, say t. At this stage

we may haveM = mtR⊕At = m1R⊕m2R⊕m3R⊕· · ·⊕mtR⊕(A1∩A2∩A3∩· · ·∩At)
and M1 = m1R⊕m2R⊕m3R⊕· · ·⊕mtR. Let M2 = A1∩A2∩A3∩· · ·∩At. Then

M = M1 ⊕M2 with Radδ(M) = Radδ(M2). Since M1⊕ Radδ(M) is essential in

M , it follows that Radδ(M2) is essential in M2. Since M has the ascending chain

condition on direct summands, without loss of generality, we may assume that all

cyclic submodules m1R, m2R, m3R, ..., mtR to be simple. This completes the

proof. �

Theorem 3.30. Let M be a module with Radδ(M) = 0. Then the following con-

ditions are equivalent.

(1) M is principally ⊕-δ-supplemented.
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(2) M is principally ⊕-supplemented

(3) M is principally semisimple.

Proof. We prove only (1) ⇒ (3) since (2) ⇔ (3) is proved in [14] and (3) ⇒ (1) is

clear. Let M be a principally ⊕-δ-supplemented module and m ∈M . There exists

a direct summand A of M such that M = mR + A and mR ∩ A is δ-small in A.

Since mR ∩A is also δ-small in M and Radδ(M) = 0, mR is a direct summand of

M . Therefore M is principally semisimple. �

It is known that every von Neumann regular ring has zero Jacobson radical. But

there are von Neumann regular rings R with Jδ(R) 6= 0 as the following example

shows.

Example 3.31. Let Q =
∞∏
i=1

Fi, where each Fi = Z2. Let R be the subring of Q

generated by
∞⊕
i=1

Fi and 1Q. Then R is von Neumann regular and
∞⊕
i=1

Fi = Soc(R) =

Jδ(R).

Corollary 3.32. Let R be a ring. If R a is von Neumann regular ring, then R is

a principally ⊕-δ-supplemented R-module. The converse holds if Jδ(R) = 0.

Definition 3.33. Let M be a module. M is called a δ-hollow module (or a princi-

pally δ-hollow module) if every proper submodule (or cyclic submodule) is δ-small

in M .

Note that each hollow module is δ-hollow, and each δ-hollow module is principally

δ-hollow and so principally ⊕-δ-supplemented. Let M be a module. Clearly, if

M = xR for every x ∈M\Radδ(M), then M is principally δ-hollow.

Theorem 3.34. Let M be a projective module having Radδ(M) finite uniform

dimension. Consider the following statements.

(1) M is a direct sum of principally ⊕-δ-supplemented modules.

(2) M has a decomposition M = M1 ⊕M2 where M1 is a direct sum of prin-

cipally semisimple modules and M2 is a finite direct sum of principally

δ-hollow modules.

Then (2) ⇒ (1). (1) ⇒ (2) in case M satisfies ascending chain condition on direct

summands.

Proof. (2) ⇒ (1) Assume that M has a decomposition M = M1 ⊕M2 with sub-

modules M1 and M2 satisfying stated conditions in (2). Both M1 and M2 are direct

sums of principally ⊕-δ-supplemented modules as M1 is a direct sum of principally

semisimple modules, and M2 is a direct sum of principally δ-hollow modules and
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each principally δ-hollow module is principally ⊕-δ-supplemented.

(1)⇒ (2) Assume thatM =
⊕
i∈I

Mi, where eachMi is a principally⊕-δ-supplemented

module and Radδ(M) has finite uniform dimension. Since Radδ(M) =
⊕
i∈I

Radδ(Mi),

there is a finite subset J of I with Radδ(Mi) = 0 for all i ∈ I \J . Therefore, by The-

orem 3.30, Mi is principally semisimple for all i ∈ I \J . Hence M = M1⊕(
⊕
j∈J

Mj),

where M1 is a direct sum of principally semisimple modules. Due to Theorem 3.29,

without loss of generality, we may assume that Radδ(Mj) is essential in Mj , where

j ∈ J . Then for j ∈ J , Mj has finite uniform dimension by [3, Proposition 3.20].

Now we prove each Mj is principally δ-hollow or a finite direct sum of principally

δ-hollow modules, for j ∈ J . Let j ∈ J . Since M is projective, Mj is also pro-

jective. Then Radδ(Mj) 6= Mj by [18, Lemma 1.9]. We complete the proof by

induction on the uniform dimension. Suppose that Mj has uniform dimension 1,

and let x ∈Mj\Radδ(Mj). Since Mj is principally ⊕-δ-supplemented, there exists

a direct summand K of Mj such that Mj = xR +K and xR ∩K is δ-small in K.

Let Mj = K⊕K1 for some submodule K1 of Mj . Since Mj has uniform dimension

1, we have K = 0 or K1 = 0. If K1 = 0, then xR is a submodule of Radδ(Mj).

This is a contradiction. Hence K = 0 and so Mj = xR. It follows that Mj is prin-

cipally δ-hollow. Now suppose that n > 1 be a positive integer and assume each

Mj having uniform dimension k(1 ≤ k < n) is principally δ-hollow or a finite direct

sum of principally δ-hollow submodules. Let j ∈ J and assume Mj has uniform

dimension n. Suppose Mj is not principally δ-hollow. Let x ∈Mj\Radδ(Mj) such

that Mj 6= xR. Since Mj is principally ⊕-δ-supplemented, there exist submodules

K,K1 of Mj with Mj = xR + K = K ⊕K1 and xR ∩K δ-small in K. Note that

K1 6= 0 and K 6= 0. Since projective modules have D3 and then by Proposition

3.17, K and K1 are principally ⊕-δ-supplemented modules by induction, K and K1

are principally δ-hollow or a finite direct sum of principally δ-hollow submodules.

So (1) ⇒ (2) holds and this completes the proof. �

One may ask what happens to Theorem 3.30 in which the condition “Radδ(M) =

0” changes to “Radδ(M) is δ-small in M”.

Theorem 3.35. Let M be a projective module with Radδ(M) δ-small in M and

consider the following conditions.

(1) M is principally ⊕-δ-supplemented.

(2) M/Radδ(M) is principally semisimple.

Then (1) ⇒ (2). If M is a refinable module, then (2) ⇒ (1).

Proof. (1) ⇒ (2) Since M is a principally ⊕-δ-supplemented module, M/Radδ(M)

is principally semisimple by Lemma 3.26.
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(2)⇒ (1) Let mR be any cyclic submodule of M . By (2), there exists a submodule

U of M such that M/Radδ(M) = [(mR+Radδ(M))/Radδ(M)] ⊕ [U/Radδ(M)].

Then M = mR+U and (mR+Radδ(M))∩U = (mR∩U)+ Radδ(M) = Radδ(M).

Hence mR∩U ≤ Radδ(M) and it is δ-small in M . Since M = mR+U and being M

refinable, there exists a direct summand A of M such that A ≤ U and M = mR+A.

Since mR ∩ A ≤ mR ∩ U is δ-small in M and A is a direct summand of M , by

Lemma 2.1(3), mR ∩ A is δ-small in A. Hence A is a principally ⊕-δ-supplement

of mR in M . This completes the proof. �

Recall that R is called a right V-ring if every simple right R-module is injective,

equivalently, by [9, Theorem 3.75], for any right R-module M , Rad(M) = 0. In

this note we shall call the ring R is a right δ-V-ring if for any right R-module M ,

Radδ(M) = 0. Since every small submodule is δ-small, Rad(M) ≤ Radδ(M) for

any module M .

We adopt the definition of a small projective module in [15, 19.10(8)] and we say

an R-module M δ-small projective if Hom(M,−) is exact with respect to the exact

sequences of right R-modules 0→ K
i→ L→ N → 0 with i(K) a δ-small submodule

of L. If R is a δ-V-ring, then every module is δ-small projective. In a subsequent

paper the present authors study δ-small projective modules in detail. As is usual,

to study δ-V-rings it is convenient to deal with an injective notion. A module M is

called δ-small injective if Hom(−,M) is exact with respect to the exact sequences

of right R-modules 0 → K
i→ L → N → 0 with i(K) a δ-small submodule of L.

Clearly for a R right δ-V-ring, every right R-module is both δ-small projective and

δ-small injective.

Lemma 3.36. Let R be a ring and consider the following conditions.

(1) R is a right δ-V-ring.

(2) Every right R-module is δ-small projective.

(3) Every right R-module is δ-small injective.

Then (1) ⇒ (2) ⇔ (3).

Proof. (1)⇒ (2) Clear. (2)⇒ (3) Let M be a right R-module and an exact sequence

of right R-modules with i(K) a δ-small submodule of L

0→ K
i→ L

f→ N → 0 (*)

Applying Hom(N,−) to that sequence, by (2) we have an exact sequence

0→ Hom(N,K)
i∗→ Hom(N,L)

f∗

→ Hom(N,N)→ 0
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For the identity map 1 ∈ Hom(N,N) we have a map g ∈ Hom(N,L) such that

1 = f∗g. Hence the sequence (*) splits and so any map from K to M extends from

L to M . (3) ⇒ (2) Dual to (2) ⇒ (3). �

Theorem 3.37. Let R be a right V-ring. If every right R-module is δ-small projec-

tive, then every principally ⊕-δ-supplemented module is a direct sum of a projective

semisimple module and a principally semisimple module.

Proof. Let R be a right V-ring and M any right R-module. We have Rad(M) = 0.

By [2, Proposition 3.1] or [9, Theorem 3.75] every submodule of M is contained

in a maximal submodule, and [18, Lemma 1.5(4)] implies Radδ(M) is δ-small

in M . Since every right R-module is δ-small projective, we apply the functor

Hom(M/Radδ(M),−) to the sequence 0 → Radδ(M) → M → M/Radδ(M) → 0

we have M = Radδ(M)⊕K for some submodule K of M . By Lemma 2.1(1), there

exists a projective semisimple submodule Y of Radδ(M) such that M = Y ⊕ K.

Hence Y = Radδ(M). Due to Proposition 3.27, K is principally semisimple and

this completes the proof. �

A ring R is called δ-semiregular if every cyclically presented R-module has a

projective δ-cover. By combining Lemma 3.26, Theorem 3.30 and Theorem 3.37 we

obtain the next result.

Theorem 3.38. Let R be a right δ-V-ring and consider the following conditions.

(1) Every right R-module is principally ⊕-δ-supplemented.

(2) Every right R-module is principally ⊕-supplemented.

(3) Every right R-module is principally semisimple.

(4) R is von Neumann regular.

(5) Every projective R-module is principally ⊕-δ-supplemented.

(6) R is δ-semiregular.

Then (1) ⇔ (2) ⇔ (3) and (3) ⇒ (4) ⇔ (5) ⇔ (6).

Proof. (4) ⇒ (5) Let M be a projective right R-module. By [13, Proposition 1.25],

M is principally semisimple. This implies that M is principally ⊕-δ-supplemented.

(5)⇒ (4) SinceR is projective as a rightR-module, R is principally⊕-δ-supplemented.

Being Jδ(R) = 0, R is principally semisimple by Theorem 3.30. Hence R is von

Neumann regular.

(4) ⇔ (6) Clear by [18, Theorem 3.5] since Jδ(R) = 0. �

Theorem 3.39. Let R be a ring with Jδ(R) = 0. Then the following are equivalent.

(1) Every projective R-module is principally ⊕-δ-supplemented.

(2) Every free R-module is principally ⊕-δ-supplemented.
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(3) Every projective R-module is principally semisimple.

(4) Every free R-module is principally semisimple.

Proof. (2) ⇒ (1) Let every free R-module be principally ⊕-δ-supplemented and P

a projective module. Then there exists a free module F such that P is a direct

summand of F . By (2), F is principally ⊕-δ-supplemented with Radδ(F ) = 0

since Jδ(R) = 0. Lemma 3.26 implies F is principally semisimple and then P is

principally semisimple, therefore P is principally ⊕-δ-supplemented. The rest is

clear. �

At the moment we have the following conjecture.

Conjecture. Every right V-ring is right δ-V-ring.

By [18], a projective module P is called a projective δ-cover of a module M

if there exists an epimorphism f : P −→ M with Kerf δ-small in P , and a ring

R is called δ-perfect (δ-semiperfect) if every R-module (simple R-module) has a

projective δ-cover. Clearly, every δ-perfect ring is δ-semiperfect. A module M

is said to be principally δ-semiperfect if every factor module of M by a cyclic

submodule has a projective δ-cover. A ring R is called principally δ-semiperfect

in case the right R-module R is principally δ-semiperfect. Every δ-semiperfect

module is principally δ-semiperfect. Next we characterize projective principally

⊕-δ-supplemented modules.

Theorem 3.40. Let M be a projective module. Then the following are equivalent.

(1) M is principally δ-semiperfect.

(2) M is principally ⊕-δ-supplemented.

Proof. (1) ⇒ (2) Let m ∈ M and P
f→ M/mR be a projective δ-cover and M

π→
M/mR the natural epimorphism.

M

P M/mR 0

ppppppppppp	
g

?

π

-f -

Then there exists a map M
g→ P such that fg = π. Hence P = g(M)+Kerf . Since

Kerf is δ-small, by Lemma 2.1(1), there exists a projective semisimple submodule

Y of Kerf such that P = g(M)⊕ Y . So g(M) is projective. Thus M = K⊕ Kerg

for some submodule K of M . Let x ∈ Kerg. Then fg = π implies π(x) = 0.

Hence Kerg ≤ mR. Next we show g(K)∩ Kerf = g(K ∩mR). Let x ∈ K ∩mR.

Then 0 = π(x) = fg(x). So x ∈ g−1(Kerf) and K ∩ mR ≤ g−1(Kerf) and

K ∩mR ≤ g−1(Kerf)∩K. Then g(K ∩mR) ≤ g(g−1(Kerf)∩K) = Kerf ∩ g(K).
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Let x ∈ Kerf ∩ g(K). There is y ∈ K such that g(y) = x and f(x) = 0. Then

π(y) = f(g(y)) = f(x) = 0. So y ∈ mR and x = g(y) ∈ g(K ∩ mR). Hence

g(K)∩ Kerf = g(K ∩mR) and it is δ-small in P and therefore in g(K). Since g is

an isomorphism between K and g(K), g−1(g(K)∩Kerf) is δ-small in K. Because

K ∩mR ≤ g−1(g(K)∩Kerf), K ∩mR is δ-small in K by Lemma 2.1(4).

(2) ⇒ (1) Assume that M is a principally ⊕-δ-supplemented module. Let m ∈M .

There exists a direct summand A of M such that M = mR + A with mR ∩ A δ-

small in A. Consider the maps A
π→ A/(mR∩A)

h→M/mR where π is the natural

epimorphism and h is the isomorphism A/(mR ∩ A) ∼= M/mR. Since Ker(hπ) =

Kerπ = mR ∩ A is δ-small in A, A is a projective δ-cover of M/mR. So M is

principally δ-semiperfect. �

Now we can give a characterization of principally δ-semiperfect rings by using

the notion of principally ⊕-δ-supplemented.

Corollary 3.41. Let R be a ring. Then the following are equivalent.

(1) R is principally δ-semiperfect.

(2) R is principally ⊕-δ-supplemented.

Proof. Clear by Theorem 3.40. �

It is known that a ring R is semisimple if and only if every R-module is projective.

As a consequence of Theorem 3.40, we have the next result.

Corollary 3.42. Let R be a semisimple ring. Then every R-module is principally

⊕-δ-supplemented if and only if every R-module is principally δ-semiperfect.

We conclude this paper by giving the aforementioned example which shows that

every principally⊕-δ-supplemented module need not be principally⊕-supplemented.

Example 3.43. Let F be a field, I =

[
F F

0 F

]
, and consider the ring

R = {(x1, . . . , xn, x, x, . . . ) : n ∈ N, xi ∈M2(F ), x ∈ I}

with component-wise operations. By [11, Example 2.15], J(R) = 0 and R is not

a von Neumann regular ring. Then R is not principally ⊕-supplemented as an

R-module due to [14, Theorem 3.30]. On the other hand, it is known that, from

[18, Example 4.3], Jδ(R) = {(x1, . . . , xn, x, x, . . . ) : n ∈ N, xi ∈ M2(F ), x ∈ K},

where K =

[
0 F

0 0

]
and R is δ-perfect. Hence R is principally δ-semiperfect. By

Corollary 3.41, R is principally ⊕-δ-supplemented.
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