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SEVERAL INEQUALITIES FOR THE VOLUME OF THE UNIT
BALL IN Rn

LI YIN

Abstract. In the paper, the author establishes several new inequalities in-

volving the volume of the unit ball in Rn.

1. Introduction

In the recent past, inequalities about the Euler gamma function Γ(x) have at-
tracted the attention of many authors. In particular, several researchers established
interesting properties of the volume of the unit ball in Rn,

Ωn =
πn/2

Γ(n/2 + 1)
, n = 1, 2 · · · . (1.1)

In the paper [5], it was proved that the sequence {Ωn}n>1 attains its maximum at
n = 5. In the paper [4], the sequence

{
(Ωn)1/n

}
n>1

is proved to be monotonically
decreased to zero. Other results have been established by Anderson and Qiu[3],
and Klain and Rota[9] who proved that the sequence

{
(Ωn)1/n ln n

}
n>1

decreases

to e−1/2, and the sequence
{

nΩn

Ωn−1

}
n>1

is increasing, respectively. Motivated by

the following inequalities

(Ωn+1)n/(n+1) < Ωn, n = 1, 2 · · · (1.2)

and

1 <
Ω2

n

Ωn−1Ωn+1
< 1 +

1
n

(1.3)

stated in [4] and [9], Alzer proved in [1] that for all n > 1,

a(Ωn+1)n/(n+1) 6 Ωn 6 b(Ωn+1)n/(n+1) (1.4)

with the best possible constants a = 2/
√

π = 1.1283 · · · and b =
√

e = 1.6487 · · · .
An improvement of the double inequality (1.4) was given in [11]: for n > 4,

k
2n
√

2π
6 Ωn

(Ωn+1)n/(n+1)
6

√
e

2n
√

2π
(1.5)

where k = 64·72011/12·21/22

10395π5/11 = 1.5714 · · · . Equality in the left-hand side of (1.5)
occurs if and only if n = 11.
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The following class of inequalities
√

n + a

2π
6 Ωn−1

Ωn
6

√
n + b

2π
(1.6)

was studied by Alzer [1] and Qiu[14] where a, b are real parameters. Later, the
inequality (1.6) was recovered in [6]. Furthermore, Mortici established the following
new sharp bounds

√
n + 1

2

2π
6 Ωn−1

Ωn
6

√
n + 1

2

2π
+

1
16nπ

(1.7)

which improves the previous results of Alzer et in [11]. Therefore, Alzer proved in
[1] that for n > 1,

(
1 +

1
n

)α

<
Ω2

n

Ωn−1Ωn+1
<

(
1 +

1
n

)β

(1.8)

in which the best possible constants α = 2 − log2 π and β = 1
2 . Later, in [11],

Mortici showed that for every n > 4,
(

1 +
1
n

)1/2−1/4n

<
Ω2

n

Ωn−1Ωn+1
<

(
1 +

1
n

)1/2

. (1.9)

Related references see [7][8][13][15].
The aim of this paper is to establish some new inequalities involving the volume

of the unit ball in Rn.

2. Lemmas

In order to prove the main results, following lemmas are useful.

Lemma 2.1. [10, p. 390] Let xi ∈ R+, i = 1, 2 · · ·n and
n∑

i=1

xi = nx, then

n∏

i=1

Γ(xi) > (Γ(x))n. (2.1)

Lemma 2.2. [2, Legendre] For every z 6= −1,−2 · · · , then

22z−1Γ(z)Γ(z + 1/2) = π1/2Γ(2z). (2.2)

Lemma 2.3. [4, p. 131] For every integer n > 1, the sequence
{
(Ωn)1/n

}
n>1

is
monotonically decreasing to zero.

Lemma 2.4. [12, p. 612] For every x ∈ [1,∞), we have

√
π

(x

e

)x√
2x + α < Γ(x + 1) <

√
π

(x

e

)x √
2x + β (2.3)

where α = 1
3 and β = 3

√
391
30 − 2 = 0.3533 · · · .
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3. Main Results

In what follows, we always suppose β = 3

√
391
30 − 2 = 0.3533 · · · .

Theorem 3.1. For all natural number n, we have

Ωn 6 (Ω1Ω2 · · ·Ωn−1)1/(n−1). (3.1)

If n is odd integer, then

(Ω1Ω2 · · ·Ωn)1/n 6 Ω(n+1)/2. (3.2)

Proof. Using Lemma 2.3, we easily prove inequality (3.1). Next, we only prove
inequality (3.2). By virtue of Lemma 2.1, we get

(Ω1Ω2 · · ·Ωn)1/n =
(

π1/2

Γ(1/2 + 1)
π2/2

Γ(2/2 + 1)
· · · πn/2

Γ(n/2 + 1)

)1/n

=
π(n+1)/4

(Γ(1/2 + 1)Γ(2/2 + 1) · · ·Γ(n/2 + 1))1/n
6 π(n+1)/4

Γ((n + 1)/4 + 1)
= Ω(n+1)/2.

¤

Theorem 3.2. For every integer n > 1, we have

(n + 1)
(
n + 1

6

)

(n + β)2
<

Ω2
n

Ωn−1Ωn+1
<

(n + 1)
(
n + β

2

)

(
n + 1

3

)2 . (3.3)

Proof. Easy computation and simplification yield

Ω2
n

Ωn−1Ωn+1
=

Γ((n + 1)/2)Γ((n + 3)/2)
(Γ((n + 2)/2))2

. (3.4)

Setting z = n+1
2 and z = n+3

2 in (2.2) of Lemma 2.2, we obtain

2nΓ((n + 1)/2)Γ((n + 2)/2) = π1/2n! (3.5)

and
2n+2Γ((n + 3)/2)Γ((n + 4)/2) = π1/2Γ(n + 3) = π1/2(n + 2)!. (3.6)

Combining (3.4), (3.5) and (3.6) leads to

Ω2
n

Ωn−1Ωn+1
=

√
π(n + 2)!

√
πn!

2n2n+2Γ((n + 4)/2) (Γ((n + 2)/2))3
=

π(n + 1)!n!
22n+1 (Γ(n/2 + 1))4

(3.7)

where we apply Γ((n + 4)/2) = n+2
2 Γ((n + 2)/2).

Using Lemma 2.4, we have

√
π

( n

2e

)n/2
√

n +
1
3

< Γ(n/2 + 1) <
√

π
( n

2e

)n/2 √
n + β (3.8)

and
√

π
(n

e

)n
√

2n +
1
3

< n! <
√

π
(n

e

)n √
2n + β. (3.9)

Applying (3.8) and (3.9), we have

Ω2
n

Ωn−1Ωn+1
>

π
(√

π
(

n
e

)n
√

2n + 1
3

)2

(n + 1)

22n+1
(√

π
(

n
2e

)n/2√
n + β

)4 =
(n + 1)

(
n + 1

6

)

(n + β)2
(3.10)
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and

Ω2
n

Ωn−1Ωn+1
<

π
(√

π
(

n
e

)n√2n + β
)2

(n + 1)

22n+1
(√

π
(

n
2e

)n/2
√

n + 1
3

)4 =
(n + 1)

(
n + β

2

)

(
n + 1

3

)2 . (3.11)

The proof of Theorem 3.2 is complete. ¤

Noting simple inequalities

(n + 1)
(
n + 1

6

)

(n + β)2
>

n + 1
6

n + β

and

(n + 1)
(
n + β

2

)

(
n + 1

3

)2 <
n + 1
n + 1

3

,

we get the Corollary 3.1.

Corollary 3.1. For every integer n > 1, it holds

n + 1
6

n + β
<

Ω2
n

Ωn−1Ωn+1
<

n + 1
n + 1

3

. (3.12)

Theorem 3.3. For every integer n > 1, it holds

√
e

2n+2
√

2π

(√
n + 4

3

)(2n+1)/(n+1)

√
(n + 1)

(
n + 1 + β

2

) <
Ωn

(Ωn+1)n/(n+1)
<

√
e

2n+2
√

2π

(√
n + 1 + β

)(2n+1)/(n+1)

√
(n + 1)

(
n + 7

6

) .

(3.13)

Proof. Setting z = n+2
2 in (2.2) of Lemma 2.2, we get

2n+1Γ((n + 2)/2)Γ((n + 3)/2) = π1/2Γ(n + 2) = π1/2(n + 1)!. (3.14)

Easy computation and simplification yield

Ωn

(Ωn)n/(n+1)
=

πn/2

Γ(n/2 + 1)
(Γ((n + 1)/2 + 1))n/(n+1)

(
π(n+1)/2

)n/(n+1)

=
2n+1 (Γ((n + 1)/2 + 1))n/(n+1)

√
π (n + 1)!

.

(3.15)

Similarly to proof of Theorem 3.2, we have

Ωn

(Ωn+1)n/(n+1)
>

2n+1
(√

π
(

n+1
2e

)(n+1)/2
√

n + 1 + 1
3

)(2n+1)/(n+1)

√
π

(
n+1

e

)n+1√2n + 2 + β

=
√

e
2n+2
√

2π

(√
n + 4

3

)(2n+1)/(n+1)

√
(n + 1)

(
n + 1 + β

2

)
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and

Ωn

(Ωn+1)n/(n+1)
<

2n+1
(√

π
(

n+1
2e

)(n+1)/2√
n + 1 + β

)(2n+1)/(n+1)

√
π

(
n+1

e

)n+1
√

2n + 2 + 1
3

=
√

e
2n+2
√

2π

(√
n + 1 + β

)(2n+1)/(n+1)

√
(n + 1)

(
n + 7

6

) .

The proof of Theorem 3.3 is complete. ¤
Noting simple inequalities

(√
n + 1 + β

)(2n+1)/(n+1)

√
(n + 1)

(
n + 7

6

) 6 (n + 1 + β)(2n+2)/(2n+2)

√
(n + 1) (n + 1)

=
n + 1 + β

n + 1

and
(√

n + 4
3

)(2n+1)/(n+1)

√
(n + 1)

(
n + 1 + β

2

) >

(√
n + 1 + β

2

)(2n+1)/(n+1)

n + 1 + β
2

>
1

2n+2

√
n + 1 + β

2

,

we easily get the Corollary 3.2.

Corollary 3.2. For every integer n > 1, we have√
e

2n+2
√

2π

1
2n+2

√
n + 1 + β

2

<
Ωn

(Ωn+1)n/(n+1)
<

√
e

2n+2
√

2π

n + 1 + β

n + 1
. (3.16)

Finally, we give a monotone result related to the volume of the unit ball in Rn.

Theorem 3.4. For every integer n > 3, the sequence
{
(Ωn)1/Hn

}
n>3

is monoton-
ically decreasing to zero, where Hn denotes the n-th harmonic number. Further,
the sequence

{
(Ωn)1/Hn

}
n>1

attains its maximum at n = 3.

Proof. By taking the logarithm, we only prove that
lnΩn

Hn
> lnΩn+1

Hn+1
. (3.17)

For n > 5, using (1.7), we have

lnΩn

Hn
− lnΩn+1

Hn+1
>

ln
√

n+ 3
2

2π

Hn+1
> 0.

Direct computation can yield
lnΩ1

H1
<

lnΩ2

H2
<

lnΩ3

H3
>

lnΩ4

H4
>

lnΩ5

H5
.

Furthermore, by Stolz’s theorem, we get

lim
n→∞

(Ωn)
1

Hn = exp{ lim
n→∞

lnΩn

Hn
} =

exp{ lim
n→∞

lnΩn − lnΩn−1

Hn −Hn−1
} = exp{ lim

n→∞
n ln

Ωn

Ωn−1
} = 0.

The proof of Theorem 2.5 is complete. ¤
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Remark 3.1. The sequence (Ωn)1/Hn can be rearranged as
{
[(Ωn)1/n]n/Hn

}
. Since

(Ωn)1/n is decreasing to 0 and n
Hn

can be easily proved to be increasing to ∞, so
lim

n→∞
(Ωn)1/Hn = 0 can be proved easily.

Remark 3.2. By the well-known software MATHEMATICA Version 7.0.0, we can
show that
(1) the double inequality (3.3) is better than (1.9),
(2) the double inequality (3.13) and (1.5) are not included each other.

Acknowledgments. The author appreciate the referee for his helpful and valu-
able comments on this manuscript.
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