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1 Introduction

In recent years, the study of fractional ODEs and PDEs has attracted much attention due to an exact

description of nonlinear phenomena in fluid mechanics, viscoelasticity, biology, physics, engineering and

other areas of science [2, 20, 36, 37]. On this kind of equations the derivatives of fractional order

are involved. The interest of the study of fractional-order differential equations lies in the fact that

fractional-order models are more accurate than integer-order models, that is, there are more degrees

of freedom in the fractional-order models. Furthermore, fractional derivatives provide an excellent

instrument for the description of memory and hereditary properties of various materials and processes

due to the existence of a memory term in a model. This memory term insures the history and its impact

to the present and future, see [23]. In consequence, the subject of fractional differential equations is

gaining much importance and attention. For details, see [2, 21, 40] and the references therein. Recent

results on fractional differential equations can be seen in [17, 18, 25, 30, 28].

It is well known that the spectral methods have gained increasing popularity for several decades,

especially in solving differential equations and in the field of computational fluid dynamics (see, e.g.,

[7, 34, 39, 9, 13] and the references therein). The main advantage of these methods lies in their accuracy

for a given number of unknowns. For smooth problems in simple geometries, they offer exponential rates

of convergence/spectral accuracy. In contrast, finite difference and finite-element methods yield only

algebraic convergence rates. The three most widely used spectral versions are the Galerkin, collocation,

and tau methods. In the Lanczos tau-method [22], the auxiliary conditions imposed on the problem,

such as initial, boundary or more general conditions may be imposed as constraints on the expansions

coefficients.
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A number of algorithms have been proposed to solve the multi-term fractional differential equations.

Some recent techniques are spectral methods [11, 14, 16], Haar wavelet [24, 6], Legendre wavelet method

[29, 19] and Piecewise polynomial collocation [33]. Moreover, the authors in [11, 12, 15] constructed an

efficient spectral methods for the numerical approximation of the FDEs and fractional integro-differential

equations based on tau and pseudo-spectral methods. Bhrawy et al. [1] introduced a quadrature shifted

Legendre tau method based on Gauss-Lobatto interpolation for solving the multi-order FDEs with

variable coefficients and in [4], the shifted Legendre spectral methods have been developed for solving

the fractional-order multi-point boundary value problems.

For spectral and pseudospectral methods; explicit formulae for operational matrices of fractional

derivatives for classical orthogonal polynomials are needed. The operational matrices of fractional

derivatives have been determined for Chebyshev polynomials [12] and Legendre polynomials [1], and

are applied together with tau and pseudospectral methods to solve some types of FDEs.

The operational matrix of integration has been determined for several types of orthogonal polyno-

mials, such as Chebyshev polynomials of the first kind [31], Chebyshev polynomials of third and fourth

kinds [10] and Legendre polynomials [32]. Recently, Singh et al. [38] derived the Bernstein operational

matrix of integration. The Bernstein operational matrix approach is developed for solving a system of

high order linear Volterra-Fredholm integro-differential equations in [26]. The Haar wavelet operational

matrix of fractional order integration has been developed for solving FDEs [24]. In [5], the authors

derived a new explicit formula for the integrals of shifted Chebyshev polynomials of any degree for

any fractional-order in terms of shifted Chebyshev polynomials themselves. In their article, and as an

important application, they described how to use these formulae to solve multi-term FDEs. However in

[3], the authors introduced a shifted Chebyshev operational matrix of fractional integration and applied

it together with spectral tau method for the same FDEs.

The Jacobi polynomials have become increasingly important in numerical analysis, from both the-

oretical and practical points of view. Recently, Doha et al. [14] derived the shifted Jacobi operational

matrix of fractional derivatives which is applied together with spectral tau method for numerical solu-

tion of general linear multi-term fractional differential equations. In this paper, we derive an operational

matrix of fractional integration of the shifted Jacobi polynomials; in the Riemann-Liouville sense. Sub-

sequently, we use this operational matrix for Jacobi polynomials to introduce a direct solution technique

for solving the FDEs. We note that the shifted Chebyshev operational matrix of fractional integration

has been introduced by Bhrawy and Alofi [3], and some other very interesting cases, can be obtained

directly as special cases from the shifted Jacobi operational matrix of fractional integration. Finally,

the accuracy of the proposed algorithm is demonstrated by test problems.

The paper is organized as follows. In Section 2 we introduce some necessary definitions and give

some relevant properties of Jacobi polynomials. In Section 3 the SJOM of fractional integration is

introduced. In Section 4 we apply SJOM of fractional integration for solving linear multi-order FDEs.

In Section 5 the proposed method is applied to several examples. Also a conclusion is given in Section

6.
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2 Preliminaries and notation

2.1 The fractional integration in the Riemann-Liouville sense

There are several definitions of a fractional integration of order ν > 0, and not necessarily equivalent

to each other, see [27]. The most used definition is due to Riemann-Liouville, which is defined as

Iνf(x) =
1

Γ(ν)

∫ x

0

(x− t)ν−1f(t)dt, ν > 0, x > 0,

I0f(x) = f(x).

(2.1)

One of the basic property of the operator Iν is

Iνxβ =
Γ(β + 1)

Γ(β + 1 + ν)
xβ+ν . (2.2)

The Riemann-Liouville fractional derivative of order ν will be denoted by Dν . The next equation define

Riemann-Liouville fractional derivative of order ν

Dνf(x) =
dm

dxm
(Im−νf(x)), (2.3)

where m− 1 < ν ≤ m, m ∈ N and m is the smallest integer greater than ν.

Lemma 2.1. If m− 1 < ν ≤ m, m ∈ N, then

DνIνf(x) = f(x), IνDνf(x) = f(x)−
m−1∑
i=0

f (i)(0+)
xi

i!
, x > 0. (2.4)

2.2 Properties of shifted Jacobi polynomials

The well-known Jacobi polynomials P
(α,β)
i (x) are defined on the interval (−1, 1). In order to use these

polynomials on the interval x ∈ (0, t) we defined the so-called shifted Jacobi polynomials by introducing

the change of variable x =
2x

t
− 1. Let the shifted Jacobi polynomials P

(α,β)
i (

2x

t
− 1) be denoted by

P
(α,β)
t,i (x). The analytic form of the shifted Jacobi polynomials P

(α,β)
t,i (x) of degree i is given by

P
(α,β)
t,i (x) =

i∑
k=0

(−1)i−kΓ(i+ β + 1)Γ(i+ k + α + β + 1)

Γ(k + β + 1)Γ(i+ α+ β + 1) (i− k)! k! tk
xk, (2.5)

where P
(α,β)
t,i (0) = (−1)i

Γ(i+ β + 1)

Γ(β + 1) i!
. The orthogonality condition is

∫ t

0

P
(α,β)
t,j (x)P

(α,β)
t,k (x)w

(α,β)
t (x)dx = h

(α,β)
t,k δjk, (2.6)

where w
(α,β)
t (x) = (t−x)αxβ and h

(α,β)
t,k =

tα+β+1Γ(k + α + 1)Γ(k + β + 1)

(2k + α + β + 1)Γ(k + 1)Γ(k + α + β + 1)
. The special values

DqP
(α,β)
t,i (0) =

(−1)i−qΓ(i+ β + 1)(i+ α + β + 1)q
tqΓ(i− q + 1)Γ(q + β + 1)

, (2.7)
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will be of important use later. A function u(x), square integrable in (0, t), may be expressed in terms

of shifted Jacobi polynomials as

u(x) =
∞∑
j=0

cjP
(α,β)
t,j (x),

where the coefficients cj are given by

cj =
1

h
(α,β)
t,j

∫ t

0

u(x)P
(α,β)
t,j (x)w

(α,β)
t (x)dx, j = 0, 1, 2, · · · . (2.8)

In practice, only the first (N + 1)-terms shifted Jacobi polynomials are considered. Hence u(x) can be

expanded in the form

uN(x) ≃
N∑
j=0

cjP
(α,β)
t,j (x) = CTϕ(x), (2.9)

where the shifted Jacobi coefficient vector C and the shifted Jacobi vector ϕ(x) are given by

CT = [c0, c1, · · · , cN ],
ϕ(x) = [P

(α,β)
t,0 (x), P

(α,β)
t,1 (x), · · · , P (α,β)

t,N (x)]T .
(2.10)

If we define the q times repeated integration of Jacobi vector ϕ(x) by Jqϕ(x).

Jqϕ(x) ≃ P(q)ϕ(x), (2.11)

where q is an integer value and P(q) is the operational matrix of integration of ϕ(x).

3 Operational matrix of fractional integration

The main objective of this section is to generalize the SJOM of integration (2.11) for fractional calculus.

Theorem 3.1. Let ϕ(x) be the shifted Jacobi vector and ν > 0 then

Jνϕ(x) ≃ P(ν)ϕ(x), (3.1)

where P(ν) is the (N + 1) × (N + 1) operational matrix of fractional integration of order ν in the

Riemann-Liouville sense and is defined as follows:

P(ν) =



Ων(0, 0, α, β) Ων(0, 1, α, β) · · · Ων(0, N, α, β)

Ων(1, 0, α, β) Ων(1, 1, α, β) · · · Ων(1, N, α, β)
...

... · · · ...

Ων(i, 0, α, β) Ων(i, 1, α, β) · · · Ων(i, N, α, β)
...

... · · · ...

Ων(N, 0, α, β) Ων(N, 1, α, β) · · · Ων(N,N, α, β)


(3.2)

where

Ων(i, j, α, β) =
i∑

k=0

(−1)i−k Γ(i+ β + 1) Γ(i+ k + α + β + 1)

Γ(k + β + 1) Γ(i+ α+ β + 1)(i− k)! Γ(k + ν + 1)

×
j∑

f=0

(−1)j−f Γ(j + f + α + β + 1) Γ(α + 1)Γ(f + k + ν + β + 1) (2j + α + β + 1) j! tν

Γ(j + α + 1) Γ(f + β + 1)(j − f)! f !Γ(f + k + α + β + ν + 2)
.

(3.3)
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Proof. The analytic form of the shifted Jacobi polynomials P
(α,β)
t,i (x) of degree i is given by (2.5).

Using (2.1) and (2.2), and since the Riemann-Liouville’s fractional integration is a linear operation, we

get

JνP
(α,β)
t,i (x) =

i∑
k=0

(−1)i−kΓ(i+ β + 1)Γ(i+ k + α + β + 1)

Γ(k + β + 1)Γ(i+ α+ β + 1) (i− k)! k! tk
Jνxk

=
i∑

k=0

(−1)i−kΓ(i+ β + 1)Γ(i+ k + α + β + 1)

Γ(k + β + 1)Γ(i+ α + β + 1) (i− k)!Γ(k + ν + 1) tk
xk+ν , i = 0, 1, · · · , N.

(3.4)

Now, approximate xk+ν by N + 1 terms of shifted Jacobi series, yields

xk+ν =
N∑
j=0

ckjP
(α,β)
t,j (x), (3.5)

where ckj is given from (2.8) with u(x) = xk+ν , that is

ckj =
(2j + α + β + 1)Γ(j + 1)

Γ(j + α + 1)
tk+ν

×
j∑

f=0

(−1)j−f Γ(j + f + α + β + 1) Γ(α + 1) Γ(f + k + β + ν + 1)

Γ(f + β + 1) (j − f)! f ! Γ(f + k + α + β + ν + 2)
, j = 1, 2, · · · , N.

(3.6)

In virtue of (3.4) and (3.5), we get

JνP
(α,β)
t,i (x) =

N∑
j=0

Ων(i, j)P
(α,β)
t,j (x), i = 0, 1, · · · , N, (3.7)

where Ων(i, j) =
i∑

k=0

ζijk, and

ζijk =
(−1)i−k Γ(i+ β + 1) Γ(i+ k + α+ β + 1)

Γ(k + β + 1) Γ(i+ α + β + 1)(i− k)! Γ(k + ν + 1)

×
j∑

f=0

(−1)j−f Γ(j + f + α+ β + 1) Γ(α + 1)Γ(f + k + ν + β + 1) (2j + α + β + 1) j! tν

Γ(j + α+ 1) Γ(f + β + 1)(j − f)! f !Γ(f + k + α + β + ν + 2)
,

j = 1, 2, · · ·N.

Accordingly, Eq. (3.7) can be written in a vector form as follows:

JνP
(α,β)
t,i (x) ≃

[
Ων(i, 0, α, β),Ων(i, 1, α, β),Ων(i, 2, α, β), · · · ,Ων(i, N, α, β)

]
ϕ(x), i = 0, 1, · · · , N.

(3.8)

Eq. (3.8) leads to the desired result.

4 Fractional SJOM for solving Linear multi-order FDEs

In this section, the proposed multi-order FDE is integrated ν times, in the Riemann-Liouville sense,

where ν is the highest fractional-order and making use of the formula relating the expansion coefficients
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of fractional integration appearing in this integrated form of the proposed multi-order FDE to shifted

Jacobi polynomials themselves, and then we apply tau approximations based on operational matrix.

In order to show the fundamental importance of SJOM of fractional integration, we apply it to solve

the following multi-order FDE:

Dνu(x) =
k∑

i=1

γjD
βiu(x) + γk+1u(x) + f(x), in I = (0, t), (4.1)

with initial conditions

u(i)(0) = di, i = 0, · · · ,m− 1, (4.2)

where γi (i = 1, 2, · · · , k + 1) are real constant coefficients and also m − 1 < ν ≤ m, 0 < β1 < β2 <

· · · < βk < ν. Moreover Dνu(x) ≡ u(ν)(x) denotes the Riemann-Liouville fractional derivative of order

ν for u(x) and the values of di (i = 0, · · · ,m− 1) describe the initial state of u(x) and g(x) is a given

source function. For the existence and uniqueness and continuous dependence of the solution to the

problem, see [8].

If we apply the Riemann-Liouville integral of order ν on (4.1) and after making use of (2.4), we get

the integrated form of (4.1), namely

u(x)−
m−1∑
j=0

u(j)(0+)
xj

j!
=

k∑
i=1

γiI
ν−βi

[
u(x)−

mi−1∑
j=0

u(j)(0+)
xj

j!

]
+ γk+1I

νu(x) + Iνf(x),

u(i)(0) = di, i = 0, · · · ,m− 1,

(4.3)

where mi − 1 < βi ≤ mi, mi ∈ N, this implies that

u(x) =
k∑

i=1

γiI
ν−βiu(x) + γk+1I

νu(x) + g(x),

u(i)(0) = di, i = 0, · · · ,m− 1,

(4.4)

where

g(x) = Iνf(x) +
m−1∑
j=0

dj
xj

j!
+

k∑
i=1

γiI
ν−βi

(mi−1∑
j=0

dj
xj

j!

)
.

In order to use the tau method with SJOM for solving the fully integrated problem (4.4) with initial

conditions (4.2). We approximate u(x) and g(x) by the shifted Jacobi polynomials as

uN(x) ≃
N∑
i=0

ciP
(α,β)
t,i (x) = CTϕ(x), (4.5)

g(x) ≃
N∑
i=0

giP
(α,β)
t,i (x) = GTϕ(x), (4.6)

where the vector G = [g0, g1, · · · , gN ]T is given but C = [c0, c1, · · · , cN ]T is an unknown vector.

Now, the Riemann-Liouville integral of orders ν- and (ν − βj) of the approximate solution (4.5), after

making use of Theorem 3.1 (relation (3.1)), can be written as

IνuN(x) ≃ CT Iνϕ(x) ≃ CTP(ν)ϕ(x), (4.7)
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and

Iν−βjuN(x) ≃ CT Iν−βjϕ(x) ≃ CTP(ν−βj)ϕ(x), j = 1, · · · , k, (4.8)

respectively, where P(ν) is the (N +1)× (N +1) operational matrix of fractional integration of order ν.

Employing Eqs. (4.5)-(4.8) the residual RN(x) for Eq. (4.4) can be written as

RN(x) = (CT − CT

k∑
j=1

γjP
(ν−βj) − γk+1C

TP(ν) −GT )ϕ(x). (4.9)

As in a typical tau method, see [7, 12], we generate N −m+ 1 linear algebraic equations by applying

⟨RN(x), P
(α,β)
t,j (x)⟩ =

∫ t

0

RN(x)P
(α,β)
t,j (x)dx = 0, j = 0, 1, · · · , N −m. (4.10)

Also by substituting Eqs. (2.7) and (4.5) in Eq (4.2), we get

u(i)(0) =
N∑
i=0

ciD
(i)P

(α,β)
t,i (0) = di, i = 0, 1, · · · ,m− 1. (4.11)

Eqs. (4.10) and (4.11) generate N − m + 1 and m set of linear equations, respectively. These linear

equations can be solved for unknown coefficients of the vector C. Consequently, uN(x) given in Eq.

(4.5) can be calculated, which give a solution of Eq. (4.1) with the initial conditions (4.2).

5 Illustrative examples

To illustrate the effectiveness of the proposed method in the present paper, some test examples are

carried out in this section. The results obtained by the present methods reveal that the present method

is very effective and convenient for linear FDEs.

Example 1. As the first example, we consider the following initial value problem,

D
3
2u(x) + 3u(x) = 3x3 +

8

Γ(0.5)
x1.5, u(0) = 0, u′(0) = 0, x ∈ [0, t], (5.1)

whose exact solution is given by u(x) = x3.

By applying the technique described in Section 4 with N = 3, we may write the approximate solution

and the right hand side in the forms

u(x) =
3∑

i=0

ciP
(α,β)
t,i (x) = CTϕ(x), and g(x) ≃

3∑
i=0

giP
(α,β)
t,i (x) = GTϕ(x).

From Eq. (3.2) one can write

P( 3
2
) =


Ω 3

2
(0, 0, α, β) Ω 3

2
(0, 1, α, β) Ω 3

2
(0, 2, α, β) Ω 3

2
(0, 3, α, β)

Ω 3
2
(1, 0, α, β) Ω 3

2
(1, 1, α, β) Ω 3

2
(1, 2, α, β) Ω 3

2
(1, 3, α, β)

Ω 3
2
(2, 0, α, β) Ω 3

2
(2, 1, α, β) Ω 3

2
(2, 2, α, β) Ω 3

2
(2, 3, α, β)

Ω 3
2
(3, 0, α, β) Ω 3

2
(3, 1, α, β) Ω 3

2
(3, 2, α, β) Ω 3

2
(3, 3, α, β)

 , G =


g0

g1

g2

g3

 ,
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where Ω 3
2
(i, j, α, β) is given in Eq. (3.3) and

gj =
(2j + α+ β + 1)j!

tα+β+1Γ(j + α + 1)

j∑
f=0

(−1)j−fΓ(f + j + α + β + 1)

tff !(j − f)!Γ(f + β + 1)

×
∫ t

0

(
64x9/2

105
√
π
+ x3)xβ+f (t− x)αdx.

Making use of (4.8) and (4.10) yields

3Ω 3
2
(0, 2, α, β)c0 + 3Ω 3

2
(1, 2, α, β)c1 + 3Ω 3

2
(2, 2, α, β)c2 + 3Ω 3

2
(3, 2, α, β)c3 + c2 − g2 = 0, (5.2)

3Ω 3
2
(0, 3, α, β)c0 + 3Ω 3

2
(1, 3, α, β)c1 + 3Ω 3

2
(2, 3, α, β)c2 + 3Ω 3

2
(3, 3, α, β)c3 + c3 − g3 = 0. (5.3)

Applying Eq. (4.11) for the initial conditions gives

CTϕ(0) = c0 − (β + 1)c1 +
(β + 1)(β + 2)

2
c2 −

(β + 1)(β + 2)(β + 3)

6
c3 = 0,

CTD(1)ϕ(0) =
(α + β + 2)

t
c1 −

(β + 2)(α+ β + 3)

t
c2 +

(β + 2)(β + 3)(α+ β + 4)

2t
c3 = 0.

(5.4)

Finally by solving Eqs. ((5.2)-(5.6)) we get the approximate solution.

In particular, the special cases for ultraspherical basis (α = β and each is replaced by (α − 1
2
)) and

for Chebyshev basis of the first, second, third and fourth kinds may be obtained directly by taking

α = β = ∓1
2
, α = −β = ±1

2
, respectively, and for the Legendre basis by taking α = β = 0.

If α = β = 0, then

c0 =
t3

4
, c1 =

9t3

20
, c2 =

t3

4
, c3 =

t3

20
.

and the approximate solution is given by

uN(x) =
3∑

i=0

ciP
(0,0)
t,i (x) = x3,

which is the exact solution.

Also if we choose α = −1
2
, β = 1

2
, then

c0 =
35t3

64
, c1 =

21t3

32
, c2 =

7t3

24
, c3 =

t3

20
,

and

uN(x) =
3∑

i=0

ciP
(− 1

2
, 1
2
)

t,i (x) = x3,

which is the exact solution.

In the case of α = 1
2
, β = −1

2
, we have

c0 =
5t3

64
, c1 =

9t3

32
, c2 =

5t3

24
, c3 =

t3

20
,

and

uN(x) =
3∑

i=0

ciP
( 1
2
,− 1

2
)

t,i (x) = x3,

which is the exact solution.
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Example 2. Consider the equation

D2u(x)−2Du(x)+D
1
2u(x)+u(x) = x3−6x2+6x+

16

5
√
π
x2.5, u(0) = 0, u′(0) = 0, x ∈ [0, t], (5.5)

whose exact solution is given by u(x) = x3.

Now, we can apply the technique described in Example 1 with N = 3

The approximate solution obtained by using the proposed method for some special cases of α and β

are listed in the following cases

Case 1. If α = β = 0, then

c0 =
t3

4
, c1 =

9t3

20
, c2 =

t3

4
, c3 =

t3

20
,

and

uN(x) =
3∑

i=0

ciP
(0,0)
t,i (x) = x3,

which is the exact solution.

Case 2. If α = −1
2
, β = 1

2
, then

c0 =
35t3

64
, c1 =

21t3

32
, c2 =

7t3

24
, c3 =

t3

20
,

and

uN(x) =
3∑

i=0

ciP
(− 1

2
, 1
2
)

t,i (x) = x3,

which is the exact solution.

Case 3. If α = 1
2
, β = −1

2
, then

c0 =
5t3

64
, c1 =

9t3

32
, c2 =

5t3

24
, c3 =

t3

20
,

and

uN(x) =
3∑

i=0

ciP
( 1
2
,− 1

2
)

t,i (x) = x3,

which is the exact solution.

Case 4. If α = β = −1
2
, then

c0 =
5t3

16
, c1 =

15t3

32
, c2 =

3t3

16
, c3 =

t3

32
,

and

uN(x) =
3∑

i=0

ciP
(− 1

2
,− 1

2
)

t,i (x) = x3,

which is the exact solution.
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Example 3. Consider the equation

D2u(x)− 2Du(x) +D
1
2u(x) + u(x) = x7 +

2048

429
√
π
x6.5 − 14x6 + 42x5 − x2 − 8

3
√
π
x1.5 + 4x− 2,

u(0) = 0, u′(0) = 0, x ∈ [0, t],

(5.6)

whose exact solution is given by u(x) = x7 − x2.

Now, applying the technique described in Example 1 with N = 9 for some special choices of α and β,

gives the following cases

Case 1. If α = β = 0, then

c0 =
t2

24
(3t5 − 8), c1 =

t2

24
(7t5 − 12), c2 =

t2

24
(7t5 − 4), c3 =

49t7

264
,

c4 =
7t7

88
, c5 =

7t7

312
, c6 =

t7

264
, c7 =

t7

3432
, c8 = 0, c9 = 0,

and

uN(x) =
9∑

i=0

ciP
(0,0)
t,i (x) = x7 − x2,

which is the exact solution.

Case 2. If α = β = 1
2
, then

c0 =
5t2

8192
(143t5 − 512), c1 =

t2

6144
(1001t5 − 2048), c2 =

t2

5120
(819t5 − 512), c3 =

13t7

128
,

c4 =
25t7

576
, c5 =

15t7

1232
, c6 =

7t7

3432
, c7 =

t7

6435
, c8 = 0, c9 = 0,

and

uN(x) =
9∑

i=0

ciP
( 1
2
, 1
2
)

t,i (x) = x7 − x2,

which is the exact solution.

Case 3. If α = −1
2
, β = 1

2
,

c0 =
t2(6435t5 − 10240)

16384
, c1 =

t2(5005t5 − 5120)

8192
, c2 =

t2(3003t5 − 1024)

6144
, c3 =

273t7

1024
,

c4 =
13t7

128
, c5 =

5t7

192
, c6 =

5t7

1232
, c7 =

t7

3432
, c8 = 0, c9 = 0,

and

uN(x) =
9∑

i=0

ciP
(− 1

2
, 1
2
)

t,i (x) = x7 − x2,

which is the exact solution.

Case 4. If α = 1
2
, β = −1

2
, then

c0 =
t2(429t5 − 2048)

16384
, c1 =

t2(1001t5 − 3072)

8192
, c2 =

t2(1001t5 − 1024)

6144
, c3 =

637t7

5120
,

c4 =
39t7

640
, c5 =

11t7

576
, c6 =

13t7

3696
, c7 =

t7

3432
, c8 = 0, c9 = 0,
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and

uN(x) =
9∑

i=0

ciP
( 1
2
,− 1

2
)

t,i (x) = x7 − x2,

which is the exact solution.

6 Concluding remarks

In this article, we have presented the operational matrix of fractional integration of the shifted Jacobi

polynomials, and as an important application, we describe how to use the operational tau technique to

numerically solve the FDEs. The basic idea of this technique is as follows:

(i) The FDE is converted to an fully integrated form via multiple integration in the Riemann-Liouville

sense.

(ii) Subsequently, the various signals involved in the integrated form equation are approximated by

representing them as linear combinations of shifted Jacobi polynomials.

(iii) Finally, the integrated form equation is converted to an algebraic equation by introducing the

operational matrix of fractional integration of the shifted Jacobi polynomials.

To the best of our knowledge, the presented theoretical formula for SJOM is completely new and we

do believe that this formula may be used to solve some other kinds of fractional-order initial value

problems
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