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Abstract

In this paper we extend the well-known Frostman lemma by showing that for any subset

E of [0, 1] and α > 0, if the α-Hausdorff measure of E is positive then there exist a non-zero

Borel measure μ on [0, 1], a constant C > 0 and a subset E0 of E such that μ(I) ≤ C|I|α for

any interval I and E0 is dense in the support of μ. Under an additional condition on E0, we

show that μ(B) = μ[0, 1] for any Borel subset B containing E. Using the notion of Choquet

integral, we extend the notion of capacitarian dimension to arbitrary subset of [0, 1] and prove

a generalisation of Frostman’s theorem.
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1 Introduction

Given a subset E of the real line, and real numbers α ∈ [0, 1] and ε > 0, consider all

coverings of E by intervals (In : n = 1, 2, . . .) of diameter |In| ≤ ε and the associated

sums
∑

n≥1 |In|α. The infimum of these sums over all such coverings increases to a limit

(possibly infinite) when ε decreases to zero. The limit is called the Hausdorff measure of

A in dimension α or the α-Hausdorff measure of E and denoted HαE. The α-Hausdorff

content of E (denoted H∞
α (E)) is defined as the infimum of the sums

∑
n≥1 |An|α over

all coverings (An) of E by arbitrary subsets of [0, 1]. It is well-known that H∞
α (E) > 0

is equivalent to Hα(E) > 0 [15, p 100]. The Hausdorff dimension of E is defined as

dim E = sup{α : Hα(E) = ∞} which turns out to be the same as inf{β : Hβ(E) = 0}.
General properties of Hausdorff measures and dimensions can be found in [3, 8, 12, 16].

Frostman [6] proved that for any compact E ⊂ R and any 0 < α ≤ 1, Hα(E) > 0 if

and only if E carries a probability measure μ such that μ(I) ≤ C|I|α, for every interval

I and some constant C. This result called Frostman’s lemma is very important. Many

key results of fractal geometry are based on it. In studying the Hausdorff dimension of
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a set it is often easier to construct a probability measure and apply Frostman’s lemma

than calculating the Hausdorff measure directly. This is a general procedure to study

dimensions of images of compact sets by some functions, in particular, stochastic processes

[8, 10, 11].

Frostman’s lemma has been extended to analytic subsets of Rn [7] but it is now known

that it cannot hold for all subsets. A separable metric space X is called universally

measure zero if μ(X) = 0 for each finite Borel measure μ on X which is non-atomic

(vanishes on singleton) or equivalently, each Borel non-atomic measure on X is degenerate,

in the sense that, for each Borel set B ⊂ X, μ(B) = 0 or μ(B) = ∞. Zindulka [18]

proved the existence of universally measure zero subsets of Rn with positive Hausdorff

dimension (the case of n = 2 is also given in [5, p 439G]). He also proved in [19] that any

analytic subset of Rn contains a universally measure zero subset with the same Hausdorff

dimension. In particular there exit subsets E of Rn such that Hα(E) > 0 for some α > 0

but Hβ(K) = 0 for every compact subset K ⊂ E and 0 < β ≤ α. Obviously for such sets,

the Frostman lemma is not valid, making it difficult to study fractal properties of such

sets. For example, it is well known that if E is a compact subset of [0, 1] then its image by

a one-dimensional Brownian motion has Hausdorff dimension min(1, 2 dimE) [13] but it

is not known whether this property holds for more general subsets. (Kaufman [9] proved

that this property is true for Brownian motion in dimension ≥ 2 simultaneously for all

subsets of [0, 1]). Many interesting Fourier analytical properties of sets generated by some

stochastic processes are explored using Frostman’s lemma and it is therefore not known

if these properties still hold for sets for which the lemma is not valid [8, 17].

In this paper we study a possible extension of Frostman’s lemma to all subsets of

[0, 1]. Given a subset E of [0, 1], and α ≥ 0, we consider the class D of all dyadic intervals

Dj
n = [j2−n, (j + 1)2−n), (j = 0, 1, . . . , 2n − 2, n = 0, 1, 2, . . .) and for j = 2n − 1, we let

Dj
n = [j2−n, (j + 1)2−n], for all positive integers n.

Definition 1.1 The restricted α-Hausdorff content on the set E is the set function

h(A) = inf{
∑
n≥0

|In|α : E ∩ A ⊂ ∪n≥0In, and In ∈ D for all n}, for A ⊂ R. (1)

This function is such that h(∅) = 0, is monotone, h(A) ≤ h(B) for A ⊂ B and is countably

sub-additive, h(∪n≥1An) ≤ ∑
n≥1 h(An). (See for example Lemma 1.5.4 in [2, p 17] for

general results on outer-measures.)

We shall prove the following result:

Theorem 1.2 For any subset E of [0, 1] and α > 0, if HαE > 0 then there exists a

non-zero Borel measure μ on [0, 1], and a non-empty subset E0 of E such that

(i) μ(I) ≤ 3|I|α for any interval I,

(ii) for every open interval I, μ(I) > 0 if and only if I ∩ E0 �= ∅.
(iii) for any open interval I of [0, 1], if I ∩ supp(μ) �= ∅, then Hα(I ∩ E) > 0.
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iv) if h(E0) = h(E) then μ(B) = μ[0, 1] for every Borel set B containing E.

We observe that the property (iii) extends the requirement, in the original Frostman’s

lemma, that the support of μ is contained in E (for closed subset E) in the sense that

any interval that intercepts the support of μ contains a large number of points of E. We

conjecture that the condition h(E0) = h(E) is always true for all sets E. If this is the

case, then the measure μ should be an important tool to analyse the fractal geometry of

E in the same way Frostman’s measure is used for compact sets.

We further explore the notion of restricted Hausdorff content to extend the notion of

capacitarian dimension to non-compact sets. Consider a compact subset E of [0, 1] and

0 < α ≤ 1. For a probability Borel measure μ supported by E, the energy integral of μ

with respect to the kernel k(x) = |x|−α is given by

Iα(μ) =

∫ ∫
dμ(x)dμ(y)

|x − y|α .

The measure μ is said to have finite energy with respect to k if Iα(μ) < ∞. The set E

has positive capacity with respect to k (Capα(E) > 0) if E carries a probability Borel

measure of finite energy with respect to k. If there is no such measure E has capacity

zero with respect to the kernel k and we write Capα(E) = 0. The capacitarian dimension

of E, as introduced by Polya and Szegö, is defined by

sup{α : Capα(E) > 0} = inf{α : Capα(E) = 0}.

(See [8, p 133].) The following result is the well-known Frostman theorem: For any

compact subset E of R and 0 < α < β < 1, (1) if Hβ(E) > 0 then Capα(E) > 0 and

if Capα(E) > 0 then Hα(E) > 0, (2) sup{α : Capα(E) > 0} = inf{β : Capβ(E) = 0} =

dim E. This theorem implies in particular that for a compact set E, the Hausdorff and

capacitarian dimensions coincide (see for example [8, p 133].) It also creates a relationship

between fractal geometry and potential theory. We now discuss a possible extension to

all subsets of R.

Definition 1.3 A set function μ defined on all subsets of R is called a capacity if μ(∅) =

0, it is monotone, countably sub-additive, and satisfies μ(R) = 1. A subset E of R is of

positive capacity with respect to the kernel k(x) = |x|−α if there exists a capacity μ defined

on R such that μ(E) = 1 and

Iα(μ) =

∫ (∫
dμ(x)

|x − y|α
)

dμ(y) < ∞

where the involved integrals are Choquet integrals.

We shall prove the following extension of Frostman’s theorem to arbitrary subsets of R.

Theorem 1.4 For any subset E of R and 0 < α < β < 1,

(1) if Hβ(E) > 0 then Capα(E) > 0,
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(2) if Capα(E) > 0 then Hα(E) > 0,

(3) sup{α : Capα(E) > 0} = inf{β : Capβ(E) = 0} = dim E.

One can canonically define the notion of Fourier transform for a capacity. We ask the

question whether the Fourier transform form of the energy integral

Iα(μ) = C

∫
R

|μ̂(u)|2|u|α−1du

remains valid in the general case of capacities. This formula is critical in studying the

fractal geometry of images of compacts subsets by stochastic processes.

In the next section, we prove the extended version of Frostman’s lemma (Theorem

1.2) and in section 3, we discuss the notion of Choquet integrals and prove Theorem 1.4.

2 Generalisation of Frostman’s lemma

The proof of Theorem 1.2 is inspired by a beautiful proof of Frostman’s lemma given

by Mörters and Peres [15, pp 111-113] which is based on the so-called max-flow min-cut

theorem of Ford and Fulkerson [4] from graph theory. They considered the canonical

graph associated to a closed set and showed that if HαE > 0, then the maximum flow

of the graph is positive. The measure is generated by that flow using the Caratheodory

extension theorem. We will show how one can modify the construction to obtain a measure

on general sets using different results of measure theory. Before proving the theorem, we

give some simple properties of the restricted Hausdorff content that will be useful in the

sequel.

Lemma 2.1 If A and B are subsets of [0, 1] and J is an interval of D such that A ⊂ J1

and B ⊂ J2 where J1 and J2 are the two direct sub-intervals of J of length |J |/2, then

h(A ∪ B) = |J |α or h(A ∪ B) = h(A) + h(B).

Proof The only intervals of D that intercept both A and B are those containing J . Hence

if hα(A ∪ B) < |J |α then

h(A ∪ B) = inf{
∑
n≥0

|In|α : E ∩ A ⊂ ∪n≥0In, In ⊂ J1}

+ inf{
∑
n≥0

|In|α : E ∩ B ⊂ ∪n≥0In, In ⊂ J2}

= h(A) + h(B)

Lemma 2.2 Hα(E) > 0 if and only if h(E) > 0.

Proof Since in the definition of h(E), we only use dyadic intervals to cover E, while for

H∞
α (E), arbitrary subsets are used, it is clear that h(E) ≥ H∞

α (E). Suppose H∞
α (E) = 0.

Then for any δ > 0, there exists a covering of E by sets (An) with
∑

n≥1 |An|α < δ. We
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can cover each An by three dyadic subintervals Jn,1, Jn,2, Jn,3 each of length ≤ |An|. The

resulting covering (Jn,k) is such that
∑

n,k |Jn,k|α ≤ 3αδ. It follows that h(E) ≤ 3αδ and

hence h(E) = 0. The lemma follows the fact that H∞
α (A) > 0 is equivalent to Hα(A) > 0

(see [15, p 100]).

Lemma 2.3 If h(A) > 0 and G is the subset of A defined by, x ∈ G if and only if

h(I) > 0 for every I ∈ D containing x, then h(G) = h(A).

Proof If x /∈ G then there exists Jx ∈ D containing x such that h(Jx) = 0. Then Gc, the

complement of G, is contained in the union ∪xJx. Since the class D is countable, there

exists a countable sub-class (Jn) of (Jx) that covers Gc. Therefore, h(Gc) ≤ h(∪nJn) ≤∑
n h(Jn) = 0. Then h(A) ≤ h(G∪Gc) ≤ h(G)+h(Gc) = h(G) implies that h(G) = h(A)

by the monotonicity of h.

Proof of Theorem 1.2

Let f = h(E). By Lemma 2.2, f > 0. We will define a set function ν : D → [0,∞)

by a recursive procedure. The procedure will also yield a sequence (xn) of non-dyadic

elements of E that will be contained in the support of the measure to be constructed.

We let ν(∅) = 0 and ν[0, 1] = f . For any interval I ∈ D, if ν(I) = 0, then ν(J) = 0

for any sub-interval J of I. By Lemma 2.3, we fix a (non-dyadic) x1 of E such that for

any interval I ∈ D containing x1 it is the case that h(I) > 0. Let X1 = {x1}. By the

sub-additivity of h, we have that, f = h[0, 1] ≤ h[0, 1/2) + h[1/2, 1], and therefore there

exist 0 ≤ f1 ≤ h[0, 1/2) and 0 ≤ f2 ≤ h[1/2, 1] such that f = f1 + f2.

If X1 ∩ [0, 1/2) �= ∅ then take f1 = h[0, 1/2), f2 = f − f1 and if f2 > 0, then fix a

non-dyadic real number x2 of E ∩ [1/2, 1] such that any interval I containing x2 is such

that h(I) > 0. Otherwise, if X1 ∩ [0, 1/2) = ∅ then by definition of x1, X1 ∩ [1/2, 1]) �= ∅.
Take f2 = h[1/2, 1], f1 = f − f2 and the point x2 is be taken in [0, 1/2) in case where

f1 > 0. Now we take X2 = X1 ∪ {x2}. (Note that if one of the numbers f1, f2 is zero,

then the set X2 = X1.) We let ν[0, 1/2) = f1 and ν[1/2, 1] = f2 and hence ν[0, 1] =

ν[0, 1/2) + ν[1/2, 1].

If f1 > 0, then we define f11 = ν[0, 1/4) and f12 = ν[1/4, 1/2) as follows. We start

with f1 ≤ h[0, 1/2) ≤ h[0, 1/4) + h[1/4, 1/2). If X2 ∩ [0, 1/4) �= ∅, then take f11 =

min{f1, h[0, 1/4)} and f12 = f1 − f11 and fix x3 ∈ [1/4, 1/2) if f12 > 0. Otherwise if

X2 ∩ [1/4, 1/2) �= ∅ take f12 = min{f1, h[1/4, 1/2)}, f11 = f1 − f12 and fix x3 ∈ [0, 1/4)

if f11 > 0. We take ν[0, 1/4) = f11 and ν[1/4, 1/2) = f12. The same procedure applies to

define ν[1/2, 3/4) and ν[3/4, 1].

In general, assume that we have defined ν on all dyadic intervals I such that |I| = 2−n

and Xk = {x1, x2, . . . , xm} is the set of fixed points obtained up to now. Then for any

such interval I such that ν(I) > 0, it is the case that I ∩Xk �= ∅. If I1 and I2 are the two

disjoint subintervals of I of length 2−n−1, then one of the intersections Xk ∩ I1, Xk ∩ I2

is empty while the other is non-empty. If Xk ∩ I1 �= ∅, then set ν(I1) = min{ν(I), h(I1)},
ν(I2) = ν(I) − ν(I1) and fix a point in I2 if ν(I2) > 0. Otherwise if Xk ∩ I2 �= ∅ set
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ν(I2) = min{ν(I), h(I2)}, ν(I1) = ν(I) − ν(I2) and fix a point in I1 if ν(I1) > 0 and

update the set Xk accordingly.

The sequence (xn) of fixed elements, is such that ν(I) > 0 if and only if I contains

some xn. We denote by E0 the subset of E defined by

x ∈ E0 if and only if ν(I) > 0 for any I ∈ D and x ∈ I.

Then E0 contains in particular the sequence (xn). It is also clear that the recursive

procedure yields for any interval I with ν(I) > 0 a sequence (In) of sub-intervals such

ν(I) =
∑

n ν(In) and ν(In) = h(In) > 0 for any n. In particular, we have that x ∈ E0 if

and only if for any interval I containing x, it is the case that there exists a sub-interval

J of I containing x such that ν(J) = h(J) > 0. Such intervals J will be called “optimal”

intervals. From any covering (In) of E0 we can extract another covering of E0 by optimal

intervals (Jn,i) such that Jn,i ⊂ In for any n, i and
∑

n ν(In) =
∑

n,i ν(Jn,i).

Using the structure of D, it is clear that ν is countably additive on D in the sense

that, if (In) is any sequence of pairwise disjoint intervals of D such that ∪nIn ∈ D, then

ν(∪nIn) =
∑

n ν(In). We extend ν to the algebra a(D) spanned by D by

ν(I1 ∪ I2 ∪ . . . ∪ In) = ν(I1) + ν(I2) + . . . + ν(In)

for every finite family (I1, . . . , In) of pairwise disjoint elements of D. Because ν is count-

ably additive on D, then it is also countably additive on a(D) (see for example, proposition

1.3.10 of [2, p 12]).

Consider the outer measure defined by ν:

ν∗(A) = inf{
∑
n≥0

ν(In) : A ⊂ ∪n≥0In, and In ∈ a(D) for all n}

We first prove that ν∗ can be obtained by using the semi-algebra D instead of a(D), that

is, if

k(A) = inf{
∑
n≥0

ν(In) : A ⊂ ∪n≥0In, and In ∈ D for all n}

then ν∗(A) = k(A). Let C be the class of all coverings (In) of A by intervals In ∈ D and

B be the class of such coverings by elements of a(D). Then

ν∗(A) = inf{
∑
n≥0

ν(In) : (In) ∈ B} and k(A) = inf{
∑
n≥0

ν(An) : (An) ∈ C}.

Clearly, C is contained in B and hence ν∗(A) ≤ k(A). Let (An) ∈ B. Then An ∈ a(D)

for all n and therefore it is a union of a finite sequence of pairwise disjoint elements of

D. By replacing every An by the corresponding class, we obtain a covering (Hm) of A

by elements of D. By definition,
∑

n≥0 ν(An) =
∑

m≥0 ν(Hm). Then k(A) ≤ ν∗(A) and
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hence

ν∗(A) = inf{
∑
n≥0

ν(In) : A ⊂ ∪n≥0In, and In ∈ D for all n}.

We now apply the Carathéodory extension theorem to ν∗ to obtain a measure μ on

the σ-algebra Dν of all ν∗-measurable subsets of [0, 1]. (See for example, Theorem 1.5.6

in [2, p 18]). The σ-algebra Dν contains a(D) and hence in particular the Borel σ-algebra

of [0, 1]. Also ν∗ coincides with ν on a(D).

Let us show that the measure μ satisfies all the conditions of the theorem.

(i) For any I ∈ D, we have by construction of ν that ν∗(I) = ν(I) ≤ h(I) ≤ |I|α. For

a general interval I, assume that 2−n < |I| ≤ 2−n+1. Then I can be covered by at most

three pairwise disjoint intervals I1, I2, I3 of D of length 2−n. Then

μ(I) = ν∗(I) ≤ ν∗(I1 ∪ I2 ∪ I3)

≤ ν∗(I1) + ν∗(I2) + ν∗(I3)

= ν(I1) + ν(I2) + ν(I3)

≤ h(I1) + h(I2) + h(I3)

≤ |I1|α + |I2|α + |I3|α
≤ 3|I|α.

(ii) The second condition is obvious by definition of E0. Indeed, if μ(I) > 0 for an open

interval I, then there exists a dyadic sub-interval J of I such that μ(J) > 0. This implies

that J ∩ E0 �= ∅. Conversely if x ∈ I ∩ E0, then there exists J ∈ D such that x ∈ J ⊂ I.

Hence μ(I) ≥ μ(J) > 0 by definition of E0.

(iii) If I is an open interval such that I ∩ supp(μ) �= ∅ then μ(I) > 0. There exists J ∈ D
contained in I such that μ(J) > 0. Hence h(J ∩ E) = h(J) > 0 since μ(J) ≤ h(J). By

Lemma 2.2, this is equivalent to Hα(E ∩ J) > 0.

(iv) Let us show that if h(E0) = f , then ν∗(E0) = f . This will imply that for any Borel

subset B containing E, μ(B) = ν∗(B) ≥ ν∗(E) ≥ ν∗(E0) = f = μ[0, 1]. Consider any

covering (In) of E0 by elements of D. As already discussed, we may assume that all the

intervals In are optimal. Then
∑

n ν(In) =
∑

n h(In) ≥ h(∪nIn) = h(E0) = f. Hence in

particular ν∗(E0) ≥ f and it follows that ν∗(E0) = ν[0, 1].

Remark. One can observe that if for any decreasing sequence (Kn) of compact subsets

of [0, 1],

h(∩nKn) = lim
n→∞

h(Kn), (2)

then the condition (iv) in Theorem 1.2 is satisfied, that is, h(E0) = h(E). Indeed, if we

denote by Fn the closure of the union of intervals I ∈ D of length 2−n such that ν(I) > 0,

then by definition of E0, we have that E0 = ∩n≥1Fn ∩ E. Clearly, ν(Fn) = h(Fn) = h(E)

for any n ≥ 1. Then h(E0) = h(∩n≥1Fn ∩ E) = h(∩n≥1Fn) = limn→∞ h(Fn) = h(E).
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It is well known condition (2) holds for Choquet capacities (see for example [1]). An

open question is to determine for which class of sets E, the set function h is a Choquet

capacity.

3 Choquet integrals and sets of positive capacity

Definition 3.1 Let μ be a capacity on R and let f : R → R be a function. The Choquet

integral of f with respect to μ is defined as

∫
fdμ =

∫ 0

−∞
[μ (x ∈ R : f(x) ≥ t) − 1]dt +

∫ ∞

0

μ (x ∈ R : f(x) ≥ t) dt.

(Here the integrals on the right-hand side are classical Riemann integrals.) If f is a

nonnegative function, then

∫
fdμ =

∫ ∞

0

μ (x ∈ R : f(x) ≥ t) dt.

For any subset A of R and f ≥ 0,

∫
A

fdμ =

∫
f1Adμ =

∫ ∞

0

μ (x ∈ A : f(x) ≥ t) dt.

The Choquet integral has the following elementary properties (see for example [14, p 71]):

For any non-negative functions f and g and a positive constant c,

1.
∫

(cf)dμ = c
∫

fdμ,

2.
∫

(f + c)dμ = c +
∫

fdμ,

3.
∫

(f + g)dμ ≤ ∫ fdμ +
∫

gdμ,

4. if f ≤ g, then
∫

fdμ ≤ ∫ gdμ,

5. if A ⊂ R, then
∫

A
dμ = μ(A).

We can now prove Theorem 1.4.

Proof of Theorem 1.4

Our argument is inspired by a proof of Frostman’s theorem given in [8, p 133].

(1) Assume that Hβ(E) > 0 and consider the restricted β-Hausdorff content h on E (see

relation (1)). Let μ(A) = h(A)/c where c = h(E). (Here in the definition of h, α is

replaced by β.) It is clear that μ is a capacity on R and μ(E) = 1. Let us show that

Iα(μ) < ∞. For any fixed real number y, we can partition the reals into the subsets

Aj =

{
x ∈ R :

1

2j+1
< |x − y| ≤ 1

2j

}
, j = 1, 2, . . .

A0 =

{
x ∈ R : |x − y| >

1

2

}
.
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Then

∫
dμ(x)

|x − y|α =

∫ (∑
j≥0

1Aj
(x)

1

|x − y|α
)

dμ(x)

≤
∑
j≥0

∫
1Aj

(x)
1

|x − y|αdμ(x)

=

∫
A0

dμ(x)

|x − y|α +

∞∑
j=1

∫
Aj

dμ(x)

|x − y|α .

The first integral on the right-hand side is bounded by 2αμ(A0) ≤ 2α. For any j ≥ 1,

Aj = [y − 2−j, y− 2−j−1)∪ (y + 2−j−1, y + 2−j]. As discussed in the proof of Theorem 1.2,

h(I) ≤ 3|I|β for any interval I. Then h(Aj) ≤ h[y−2−j, y−2−j−1)+h(y+2−j−1, y+2−j] ≤
6 × 2−(j+1)β. Therefore μ(Aj) ≤ 2−(j+1)βc1 where c1 = 6/c and c = h(E).

Then ∫
Aj

dμ(x)

|x − y|α ≤
∫

Aj

2(j+1)αdμ(x) = 2(j+1)αμ(Aj) ≤ 2−(j+1)(β−α)c1.

Then ∫
dμ(x)

|x − y|α ≤ 2α + c1

∑
j≥1

2−(j+1)(β−α) = c2 < ∞

because β > α. Therefore,

Iα(μ) =

∫ (∫
dμ(x)

|x − y|α
)

dμ(y) ≤ c2

∫
dμ(y) = c2.

We conclude that CapαE > 0.

(2) Let us assume that CapαE > 0 and show that HαE > 0. Since CapαE > 0, there

exists a capacity μ on R such that μ(E) = 1 and Iα(μ) < ∞.

For any t > 0, define

Et =

{
y ∈ E :

∫
dμ(x)

|x − y|α ≤ t

}
.

We can choose t so large such that μ(Et) > 0. Indeed, suppose that for any t > 0,

μ(Et) = 0. Because 1 = μ(Et ∪Ec
t ) ≤ μ(Et) + μ(Ec

t ) = 1, it follows that μ(Ec
t ) = 1. Then

we find that

Iα(μ) ≥
∫

Ec
t

(∫
dμ(x)

|x − y|α
)

dμ(y)

≥
∫

Ec
t

t dμ(y) (by definition of Et)

= tμ(Ec
t ) = t.

It follows that Iα(μ) = ∞, a contradiction. Let us now fix t > 0 such that μ(Et) > 0 and
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consider a covering (In) of Et by intervals. We want to estimate
∑

n |In|α from below. For

this purpose, we may assume that In ∩Et �= ∅, for all n. Select yn ∈ In ∩Et, n = 1, 2, . . .

Since |In|α ≥ |x − yn|α for any x ∈ In, we have that

∫
In

dμ(x)

|x − yn|α ≥
∫

In

dμ(x)

|In|α =
μ(In)

|In|α .

Then

μ(In) ≤ |In|α
∫

In

dμ(x)

|x − yn|α ≤ t|In|α (since yn ∈ Et).

Therefore ∑
|In|α ≥ 1

t

∑
n

μ(In) ≥ 1

t
μ(∪nIn) ≥ 1

t
μ(Et) > 0

(since (In) is an arbitrary covering of Et). It follows that Hα(Et) > 0 and in particular

Hα(E) > 0.

(3) The first equality is obvious by definition. The second is a consequence of (1). Indeed,

denote γ = sup{α : Capα(E) > 0}. For any α < γ, we have that CapαE > 0 and then

from (2), Hα(E) > 0. Thus dim E ≥ α and, therefore, dim E ≥ γ. If dim E > γ, then

Hδ(E) > 0 for γ < δ < dim E and then from (1), Capδ(E) > 0 which is a contradiction.

It follows that dim E = γ.
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[9] R. Kaufman. Une propriété métrique du mouvement brownien. C. R. Acad. Sci.,

268:727–728, 1969.

[10] D. Khoshnevisan, D. Wu, and Y. Xiao. Sectorial local non-determinism and the

geometry of the Brownian sheet. Electron. J. Probab., 11(32):817–843, 2006.

10
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