On Opial-Dan's type inequalities

Zhao Chang-Jian*
Department of Mathematics, China Jiliang University, Hangzhou 310018, P.R.China
Email: chjzhao@163.com chjzhao@yahoo.com.cn
Wing-Sum Cheung ${ }^{\dagger}$
Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong
E-mail: wscheung@hku.hk

Abstract

In the present paper we establish some new Opial-type inequalities involving higher order partial derivatives. Our results in special cases yield some of the recent results on Opial's inequality and provide new estimates on inequalities of these types.

MR (2000) Subject Classification 26D15

Keywords Opial's inequality, Opial-type integral inequalities, Hölder's inequality.

1 Introduction

In 1960, Opial [21] established the following integral inequality:
Theorem 1.1 Suppose $f \in C^{1}[0, h]$ satisfies $f(0)=f(h)=0$ and $f(x)>0$ for all $x \in(0, h)$. Then the integral inequality holds

$$
\begin{equation*}
\int_{0}^{h}\left|f(x) f^{\prime}(x)\right| d x \leq \frac{h}{4} \int_{0}^{h}\left(f^{\prime}(x)\right)^{2} d x \tag{1.1}
\end{equation*}
$$

where this constant $\frac{h}{4}$ is best possible.
Opial's inequality and its generalizations, extensions and discretizations play a fundamental role in establishing the existence and uniqueness of initial and boundary value problems for ordinary and partial differential equations as well as difference equations [2, 4, 7, 18-19]. The inequality (1.1) has received considerable attention and a large number of papers dealing with new proofs, extensions, generalizations, variants and discrete analogues of Opial's inequality have appeared in the literature $[9-13,15-16,20,22-28,30]$. For an extensive survey on these inequalities, see $[2,19]$. For Opial type integral inequalities involving high-order partial derivatives see $[1,3,5,6,17,32]$.

[^0]The main purpose of the present paper is to establish some new Opial-type inequalities involving higher order partial derivatives by a extension of Das's idea[14]. Our results in special cases yield some of the recent results on Opial's type inequalities and provide some new estimates on such types of inequalities.

2 Main Results

Let $n \geq 1, k \geq 1$. Our main results are given in the following theorems.
Theorem 2.1 Let $x(s, t) \in C^{(n-1, m-1)}([0, a] \times[0, b])$ be such that $\left.\frac{\partial^{\kappa}}{\partial s^{\kappa}} x(s, t)\right|_{s=0}=0,0 \leq \kappa \leq$ $n-1$ and $\left.\frac{\partial^{\lambda}}{\partial t^{\lambda}} x(s, t)\right|_{t=0}=0,0 \leq \lambda \leq m-1$. Further, let $\frac{\partial^{n}}{\partial s^{n}}\left(\frac{\partial^{m-1}}{\partial t^{m-1}} x(s, t)\right)$ and $\frac{\partial^{n-1}}{\partial s^{n-1}}\left(\frac{\partial^{m}}{\partial t^{m}} x(s, t)\right)$ are absolutely continuous on $[0, a] \times[0, b]$, and let $1 / p+1 / q=1, p>1$ and $\int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{q} d s d t$, exist. Then

$$
\begin{gather*}
\int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{\kappa+\lambda}}{\partial s^{\kappa} \partial t^{\lambda}} x(s, t) \frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right| d s d t \\
\leq C_{n, m, \kappa, \lambda, p, q} a^{n-\kappa-1+2 / p} b^{m-\lambda-1+2 / p}\left(\int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{q} d s d t\right)^{(q+1) / q} \tag{2.1}
\end{gather*}
$$

where

$$
C_{n, m, \kappa, \lambda, p, q}=\frac{[(p(n-\kappa-1)+1)(p(n-\kappa-1)+2)(p(m-\lambda-1)+1)(p(m-\lambda-1)+2)]^{-1 / p}}{2^{1 / q}(n-\kappa-1)!(m-\lambda-1)!}
$$

Proof From the hypotheses of the Theorem 2.1, we have for $0 \leq \kappa \leq n-1,0 \leq \lambda \leq m-1$

$$
\begin{gather*}
\left|\frac{\partial^{\kappa+\lambda}}{\partial s^{\kappa} \partial t^{\lambda}} x(s, t)\right| \leq \frac{1}{(n-\kappa-1)!(m-\lambda-1)!} \\
\times \int_{0}^{s} \int_{0}^{t}(s-\sigma)^{n-\kappa-1}(t-\tau)^{m-\lambda-1}\left|\frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right| d \sigma d \tau \tag{2.2}
\end{gather*}
$$

Multiplying both sides of (2.2) by $\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|$ and using the Hölder inequality, we have

$$
\begin{gather*}
\left|\frac{\partial^{\kappa+\lambda}}{\partial s^{\kappa} \partial t^{\lambda}} x(s, t) \frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right| \leq \frac{\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|}{(n-\kappa-1)!(m-\lambda-1)!} \\
\times\left(\int_{0}^{s} \int_{0}^{t}(s-\sigma)^{p(n-\kappa-1)}(t-\tau)^{p(m-\lambda-1)} d \sigma d \tau\right)^{\frac{1}{p}}\left(\int_{0}^{s} \int_{0}^{t}\left|\frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right|^{q} d \sigma d \tau\right)^{\frac{1}{q}} \\
=\frac{s^{n-\kappa-1+1 / p} t^{m-\lambda-1+1 / p}}{(n-\kappa-1)!(m-\lambda-1)![(p(n-\kappa-1)+1)(p(m-\lambda-1)+1)]^{1 / p}} \\
\times\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|\left(\int_{0}^{s} \int_{0}^{t}\left|\frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right|^{q} d \sigma d \tau\right)^{\frac{1}{q}} \tag{2.3}
\end{gather*}
$$

Thus, integrating both sides of (2.3) over t from 0 to b first and then integrating the resulting inequality over s from 0 to a and applying the Hölder inequality again, we obtain

$$
\begin{gather*}
\int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{\kappa+\lambda}}{\partial s^{\kappa} \partial t^{\lambda}} x(s, t) \frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right| d s d t \\
\leq \frac{1}{(n-\kappa-1)!(m-\lambda-1)![(p(n-\kappa-1)+1)(p(m-\lambda-1)+1)]^{1 / p}} \\
\times\left(\int_{0}^{a} \int_{0}^{b} s^{p(n-\kappa-1)+1} t^{p(m-\lambda-1)+1} d s d t\right)^{\frac{1}{p}} \\
\times\left(\int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{q}\left(\int_{0}^{s} \int_{0}^{t}\left|\frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right|^{q} d \sigma d \tau\right) d s d t\right)^{\frac{1}{q}} . \tag{2.4}
\end{gather*}
$$

On the other hand, from the hypotheses of Theorem 2.1 and in view of the following facts

$$
\begin{align*}
& \frac{\partial^{2}}{\partial s \partial t}\left[\left(\int_{0}^{s} \int_{0}^{t}\left|\frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right|^{q} d \sigma d \tau\right)^{2}\right] \\
&=2\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{q}\left(\int_{0}^{s} \int_{0}^{t}\left|\frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right|^{q} d \sigma d \tau\right) \tag{2.5}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\int_{0}^{a} \int_{0}^{b} s^{p(n-\kappa-1)+1} t^{p(m-\lambda-1)+1} d s d t\right)^{1 / p}=\frac{a^{n-\kappa-1+2 / p} b^{m-\lambda-1+1 / p}}{[(p(n-\kappa-1)+2)(p(m-\lambda-1)+2)]^{1 / p}} \tag{2.6}
\end{equation*}
$$

From (2.4), (2.5) and (2.6), we have

$$
\begin{gathered}
\int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{\kappa+\lambda}}{\partial s^{\kappa} \partial t^{\lambda}} x(s, t) \frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right| d s d t \\
\leq C_{n, m, \kappa, \lambda, p, q} a^{n-\kappa-1+2 / p} b^{m-\lambda-1+2 / p}\left(\int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{q} d s d t\right)^{2 / q},
\end{gathered}
$$

where

$$
C_{n, m, \kappa, \lambda, p, q}=\frac{[(p(n-\kappa-1)+1)(p(n-\kappa-1)+2)(p(m-\lambda-1)+1)(p(m-\lambda-1)+2)]^{-1 / p}}{2^{1 / q}(n-\kappa-1)!(m-\lambda-1)!}
$$

This completes the proof.
Remark 2.1 Taking for $p=q=2, \kappa=\lambda=0$ in (2.1), (2.1) becomes to

$$
\begin{equation*}
\int_{0}^{a} \int_{0}^{b}\left|x(s, t) \cdot \frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right| d s d t \leq c_{n, m} \cdot a^{n} b^{m} \cdot \int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{2} d s d t \tag{2.7}
\end{equation*}
$$

where

$$
c_{n, m}=\frac{1}{4 n!m!}\left(\frac{2 n m}{(2 n-1)(2 m-1)}\right)^{\frac{1}{2}}
$$

Let $x(s, t)$ reduce to $s(t)$ and with suitable modifications, then (2.7) becomes the following inequality:

$$
\begin{equation*}
\int_{0}^{a}\left|x(t) x^{(n)}(t)\right| d t \leq \frac{1}{2 n!} \cdot\left(\frac{n}{2 n-1}\right)^{\frac{1}{2}} a^{n} \int_{0}^{a}\left|x^{(n)}(t)\right|^{2} d t \tag{2.8}
\end{equation*}
$$

This is just an inequality established by Das [14]. Obviously, for $n \geq 2,(2.8)$ is sharper than the following inequality established by Willett [29].

$$
\int_{0}^{a}\left|x(t) x^{n}(t)\right| d t \leq \frac{1}{2} a^{n} \int_{0}^{a}\left|x^{n}(t)\right|^{2} d t
$$

Remark 2.2 Taking for $n=m=1, \kappa=\lambda=0$ and $p=q=2$ in (2.1), (2.1) reduces to

$$
\begin{equation*}
\int_{0}^{a} \int_{0}^{b}\left|x(s, t) \cdot \frac{\partial^{2}}{\partial s \partial t} x(s, t)\right| d s d t \leq \frac{\sqrt{2}}{4} a b \int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{2}}{\partial s \partial t} x(s, t)\right|^{2} d s d t \tag{2.9}
\end{equation*}
$$

Let $x(s, t)$ reduce to $s(t)$ and with suitable modifications, then (2.9) becomes the following inequality:

If $x(t)$ is absolutely continuous in $[0, a]$ and $x(0)=0$, then

$$
\int_{0}^{a}\left|x(t) x^{\prime}(t)\right| d t \leq \frac{a}{2} \int_{0}^{a}\left|x^{\prime}(t)\right|^{2} d t
$$

This is just an inequality established by Beesack [8].
Theorem 2.2 Let l and m be positive numbers satisfying $l+m>1$. Further, let $x(s, t) \in$ $C^{(n-1, m-1)}([0, a] \times[0, b])$ be such that $\left.\frac{\partial^{\kappa}}{\partial s^{\kappa}} x(s, t)\right|_{s=0}=0,0 \leq \kappa \leq n-1$ and $\left.\frac{\partial^{\lambda}}{\partial t^{\lambda}} x(s, t)\right|_{t=0}=0,0 \leq$ $\lambda \leq m-1, \frac{\partial^{n}}{\partial s^{n}}\left(\frac{\partial^{m-1}}{\partial t^{m-1}} x(s, t)\right)$ and $\frac{\partial^{n-1}}{\partial s^{n-1}}\left(\frac{\partial^{m}}{\partial t^{m}} x(s, t)\right)$ are absolutely continuous on $[0, a] \times[0, b]$, and $\int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{l+m} d s d t$, exist. Then

$$
\begin{aligned}
& \int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{\kappa+\lambda}}{\partial s^{\kappa} \partial t^{\lambda}} x(s, t)\right|^{l}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{m} d s d t \\
\leq & C_{n, m, \kappa, \lambda}^{*} a^{(n-\kappa) l} b^{(m-\lambda) l} \int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{l+m} d s d t
\end{aligned}
$$

where

$$
C_{n, m, \kappa, \lambda}^{*}=\xi^{1+l \xi} m^{m \xi}\left(\frac{(n-\kappa)(m-\lambda)(1-\xi)^{2}}{(n-\kappa-1)(m-\lambda-1)}\right)^{l(1-\xi)} \frac{1}{[(n-\kappa)!(m-\lambda)!]^{l}}, \quad \xi=\frac{1}{l+m}
$$

Proof From the hypotheses of the Theorem 2.2, we have for $0 \leq \kappa \leq n-1,0 \leq \lambda \leq m-1$

$$
\begin{gather*}
\left|\frac{\partial^{\kappa+\lambda}}{\partial s^{\kappa} \partial t^{\lambda}} x(s, t)\right| \leq \frac{1}{(n-\kappa-1)!(m-\lambda-1)!} \\
\times \int_{0}^{s} \int_{0}^{t}(s-\sigma)^{n-\kappa-1}(t-\tau)^{m-\lambda-1}\left|\frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right| d \sigma d \tau \tag{2.11}
\end{gather*}
$$

By Hölder's inequality with indices $l+m$ and $\frac{l+m}{l+m-1}$, it follows that

$$
\begin{aligned}
\left|\frac{\partial^{\kappa+\lambda}}{\partial s^{\kappa} \partial t^{\lambda}} x(s, t)\right| \leq & \frac{1}{(n-\kappa-1)!(m-\lambda-1)!}\left(\int_{0}^{s} \int_{0}^{t}\left[(s-\sigma)^{n-\kappa-1}(t-\tau)^{m-\lambda-1}\right]^{\frac{l+m}{l+m-1}} d \sigma d \tau\right)^{\frac{l+m-1}{l+m}} \\
& \times\left(\int_{0}^{s} \int_{0}^{t}\left|\frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right|^{l+m} d \sigma d \tau\right)^{\frac{1}{l+m}} \\
& =D s^{n-\kappa-\xi} t^{m-\lambda-\xi}\left(\int_{0}^{s} \int_{0}^{t}\left|\frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right|^{l+m} d \sigma d \tau\right)^{\xi}
\end{aligned}
$$

where

$$
D=\left(\frac{(1-\xi)^{2}}{(n-\kappa-\xi)(m-\lambda-\xi)}\right)^{1-\xi} \frac{1}{(n-\kappa-1)!(m-\lambda-1)!}
$$

Multiplying the both sides of above inequality by $\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{m}$ and integrating both sides over t from 0 to b first and then integrating the resulting inequality over s from 0 to a, we obtain

$$
\begin{gathered}
\int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{\kappa+\lambda}}{\partial s^{\kappa} \partial t^{\lambda}} x(s, t)\right|^{l}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{m} d s d t \\
\leq D^{l} \int_{0}^{a} \int_{0}^{b} s^{l(n-\kappa-\xi)} t^{l(m-\lambda-\xi)}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{m}\left(\int_{0}^{s} \int_{0}^{t}\left|\frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right|^{l+m} d \sigma d \tau\right)^{l \xi} d s d t .
\end{gathered}
$$

Now, applying Hölder's inequality with indices $\frac{l+m}{l}$ and $\frac{l+m}{m}$ to the integral on the right side, we obtain

$$
\begin{gathered}
\int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{\kappa+\lambda}}{\partial s^{\kappa} \partial t^{\lambda}} x(s, t)\right|^{l}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{m} d s d t \\
\leq D^{l}\left(\int_{0}^{a} \int_{0}^{b} s^{(n-\kappa-\xi)(l+m)} t^{(m-\lambda-\xi)(l+m)} d s d t\right)^{\frac{l}{l+m}} \\
\times\left(\int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{m+l}\left(\int_{0}^{s} \int_{0}^{t}\left|\frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right|^{l+m} d \sigma d \tau\right)^{\frac{l}{m}} d s d t\right)^{\frac{m}{l+m}} \\
=D^{l}\left(\int_{0}^{a} \int_{0}^{b} s^{(n-\kappa-\xi)(l+m)} t^{(m-\lambda-\xi)(l+m)} d s d t\right)^{\frac{l}{l+m}} \\
\left.\times\left(\frac{m}{l+m} \int_{0}^{a} \int_{0}^{b} \frac{\partial^{2}}{\partial s \partial t}\left\{\left.\left(\int_{0}^{s} \int_{0}^{t} \left\lvert\, \frac{\partial^{n+m}}{\partial \sigma^{n} \partial \tau^{m}} x(\sigma, \tau)\right.\right)\right|^{l+m} d \sigma d \tau\right)^{\frac{l}{m}+1}\right\} d s d t\right)^{\frac{m}{l+m}} \\
=D^{l}\left(\frac{\xi^{2}}{(n-\kappa)(m-\lambda)}\right)^{\xi l}(m \xi)^{m \xi} a^{(n-\kappa) l} b^{(m-\lambda) l} \int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{l+m} d s d t \\
=C_{n, m, \kappa, \lambda}^{*} a^{(n-\kappa) l} b^{(m-\lambda) l} \int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{l+m} d s d t
\end{gathered}
$$

where

$$
C_{n, m, \kappa, \lambda}^{*}=\xi^{1+l \xi} m^{m \xi}\left(\frac{(n-\kappa)(m-\lambda)(1-\xi)^{2}}{(n-\kappa-1)(m-\lambda-1)}\right)^{l(1-\xi)} \frac{1}{[(n-\kappa)!(m-\lambda)!]^{l}}, \quad \xi=\frac{1}{l+m}
$$

This completes the proof.
Remark 2.3 Taking for $\kappa=\lambda=0$ in (2.10), (2.10) reduces to

$$
\begin{equation*}
\int_{0}^{a} \int_{0}^{b}|x(s, t)|^{l}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{m} d s d t \leq c_{n, m}^{*} a^{n l} b^{m l} \int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{n+m}}{\partial s^{n} \partial t^{m}} x(s, t)\right|^{l+m} d s d t \tag{2.11}
\end{equation*}
$$

where

$$
c_{n, m}^{*}=\xi^{l \xi+1} m^{\xi m}\left(\frac{m n(1-\xi)^{2}}{(n-\xi)(m-\xi)}\right)^{l(1-\xi)} \frac{1}{(n!m!)^{l}}, \quad \xi=\frac{1}{l+m}
$$

Let $x(s, t)$ reduce to $s(t)$ and with suitable modifications, then (2.11) becomes the following inequality:

$$
\begin{equation*}
\int_{0}^{a}|x(t)|^{l}\left|x^{(n)}(t)\right|^{m} d t \leq \xi m^{m \xi}\left(\frac{n(1-\xi)}{n-\xi}\right)^{l(1-\xi)}(n!)^{-l} a^{n l} \int_{0}^{a}\left|x^{(n)}(t)\right|^{l+m} d t \tag{2.12}
\end{equation*}
$$

This is an inequality given by Das [14]. Taking for $n=1$ in (2.12), we have

$$
\begin{equation*}
\int_{0}^{a}|x(t)|^{l}\left|x^{\prime}(t)\right|^{m} d t \leq \frac{m^{m /(l+m)}}{l+m} a^{l} \int_{0}^{a}\left|x^{\prime}(t)\right|^{m+l} d t . \tag{2.13}
\end{equation*}
$$

For $m, l \geq 1$ Yang [31] established the following inequality:

$$
\begin{equation*}
\int_{0}^{a}|x(t)|^{l}\left|x^{\prime}(t)\right|^{m} d t \leq \frac{m}{l+m} a^{l} \int_{0}^{a}\left|x^{\prime}(t)\right|^{m+l} d t . \tag{2.14}
\end{equation*}
$$

Obviously, for $m, l \geq 1,(2.13)$ is sharper than (2.14).
Remark 2.4 Taking for $n=m=1$ and $\kappa=\lambda=0$ in (2.10), (2.10) reduces to

$$
\begin{equation*}
\int_{0}^{a} \int_{0}^{b}|x(s, t)|^{l}\left|\frac{\partial^{2}}{\partial s \partial t} x(s, t)\right|^{m} d s d t \leq c_{1,1}^{*}(a b)^{l} \int_{0}^{a} \int_{0}^{b}\left|\frac{\partial^{2}}{\partial s \partial t} x(s, t)\right|^{m+l} d s d t \tag{2.15}
\end{equation*}
$$

Let $x(s, t)$ reduce to $s(t)$ and with suitable modifications, (2.15) becomes the following inequality:

$$
\int_{0}^{a}|x(t)|^{l}\left|x^{\prime}(t)\right|^{m} d t \leq \xi m^{m \xi} a^{l} \int_{0}^{a}\left|x^{\prime}(t)\right|^{m+l} d t, \quad \xi=(l+m)^{-1}
$$

This is just an inequality established by Yang [31].
Acknowledgements The authors express their grateful thanks to the two reviewers for their many valuable suggestions and comments.

References

[1] R. P. Agarwal, Sharp Opial-type inequalities involving r-derivatives and their applications, Tohoku Math. J., 1995, 47(4), 567-593.
[2] R. P. Agarwal and P. Y. H. Pang, Opial Inequalities with Applications in Differential and Difference Equations, Kluwer Academic Publishers, Dordrecht, 1995.
[3] R. P. Agarwal and P. Y. H. Pang, Sharp opial-type inequalities in two variables, Appl. Anal., 1996, 56(3), 227-242.
[4] R. P. Agarwal and V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993.
[5] R. P. Agarwal and E. Thandapani, On some new integrodifferential inequalities, Anal. sti. Univ. "Al. I. Cuza" din Iasi, 1982, 28,123-126.
[6] H. Alzer, An Opial-type inequality involving higher-order derivatives of two functions, Appl. Math. Letters, 1997, 10(4), 123-128.
[7] D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1992.
[8] P. R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc., 1962, 104,470-475.
[9] W. S. Cheung, On Opial-type inequalities in two variables, Aequationes Math., 1989, 38,236-244.
[10] W. S. Cheung, Some new Opial-type inequalities, Mathematika, 1990, 37,136-142.
[11] W. S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 1991, 162,317-321.
[12] W. S. Cheung, Opial-type inequalities with m functions in n variables, Mathematika, 1992, 39,319326.
[13] W. S. Cheung, D. D. Zhao and J. E. Pečarić, Opial-type inequalities for Differential Operators, to appear in Nonlinear Anal.
[14] K. M. Das, An inequality similar to Opial's inequality, Proc. Amer. Math. Soc., 1969, 22,258-261.
[15] E. K, Godunova and V. I. Levin, On an inequality of Maroni, Mat. Zametki, 1967, 2,221-224.
[16] L. K. Hua, On an inequality of Opial, Scientia Sinica, 1965, 14, 789-790.
[17] B. Karpuz, B. Kaymakcalan and U. M. Özkan, Some multi-dimenstonal Opial-type inequalities on time scales, J. Math. Ineq., 2010, 4(2), 207-216.
[18] J. D. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl., 1992, 167, 98-100.
[19] D. S. Mitrinovič, J. E. Pečarić and A. M. Fink, Inequalities involving Functions and Their Integrals ang Derivatives, Kluwer Academic Publishers, Dordrecht, 1991.
[20] D. S. Mitrinovič, Analytic Inequalities, Springer-Verlag, Berlin, New York, 1970.
[21] Z. Opial, Sur une inégalité, Ann. Polon. Math., 1960, 8, 29-32.
[22] B. G. Pachpatte, On integral inequalities similar to Opial's inequality, Demonstratio Math., 1989, 22, 21-27.
[23] B. G. Pachpatte, Some inequalities similar to Opial's inequality, Demonstratio Math., 1993, 26, 643-647.
[24] B. G. Pachpatte, A note on generalized Opial type inequalities, Tamkang J. Math., 1993, 24, 229-235.
[25] J. E. Pečarić, An integral inequality, in Analysis, Geometry, and Groups: A Riemann Legacy Volume (H. M. Srivastava and Th. M. Rassias, Editors), Part II, Hadronic Press, Palm Harbor, Florida, 1993, pp. 472-478.
[26] J. E. Pečarić and I. Brnetić, Note on generalization of Godunova-Levin-Opial inequality, Demonstratio Math., 1997, 30, 545-549.
[27] J. E. Pečarić and I. Brnetić, Note on the Generalization of Godunova-Levin-Opial inequality in Several Independent Variables, J. Math. Anal. Appl., 1997, 215, 274-282.
[28] G. I. Rozanova, Integral inequalities with derivatives and with arbitrary convex functions, Moskov. Gos. Ped. Inst. Vcen. Zap., 1972, 460, 58-65.
[29] D. Willett, The existence-uniqueness theorem for an n-th order linear ordinary differential equation, Amer. Math. Monthly, 1968, 75, 174-178.
[30] G. S. Yang, Inequality of Opial-type in two variables, Tamkang J. Math., 1982, 13, 255-259.
[31] G. S. Yang, On a certain result of Z. Opial, Proc. Japan Acad., 1966, 42, 78-83.
[32] C. J. Zhao and W. S. Cheung, Sharp integral inequalities involving high-order partial derivatives, J. Ineq. Appl., 2008, 2008, Article ID 571417, 10 pages.

[^0]: *Research is supported by National Natural Science Foundation of China(10971205)
 ${ }^{\dagger}$ Research is partially supported by a HKU URG grant.

