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Abstract. In this paper we introduce and we study Sobolev type spaces associated to Jacobi-
Cherednik operator on R. Next we define the generalized Besov and Triebel spaces and study
some of properties. As applications on these spaces we establish the Sobolev embedding, the
hypoellipticity for the Jacobi-Cherednik operator. We give some properties including some
estimates for the solution of the generalized wave equation and the generalized Schrödinger
equation. Also, some applications are given for these spaces.

1. Introduction

In this paper, we are interested in generalized spaces of Sobolev types. In the classical
case the theory of function spaces appears at first to be a disconnected subject, because of the
variety of spaces and the different considerations involved in their definitions. There are the
Lebesgue spaces Lp(Rd), the Sobolev spaces Hs(Rd), the Besov spaces Bs

p,q(Rd), the Triebel

F sp,q(Rd) spaces and others.
In this paper, we consider the differential-difference operator Tk,k′ , called the Jacobi-

Cherednik operator (cf. [4]), defined for a function f of class C1 on R by
(1.1)

Tk,k′f(x) =

{
f ′(x) +

(
k coth(x) + k′ tanh(x))(f(x)− f(−x)

)
− (k + k′)f(−x), for x 6= 0

(2k + 1)f ′(0)− (k + k′)f(0)

and where k > 0 and k′ ≥ 0 are two parameters satisfying the following condition (C):

either k′ = 0 and 0 < k,
either 0 < k′ ≤ k. (C)

The one dimensional Cherednik operator (cf. [3]) is a particular case of Tk,k′ . Such operators
have been used by Heckman and Opdam to develop a theory generalizing harmonic analysis on
symmetric spaces (cf. [6, 11, 12]). For recent important results in this direction we refer to [13].
We note also that the operator Tk,k′ is a particular case of the operator Λ (cf. [10]) given by

Λf =
df

dx
+
A′(x)

A(x)

(
f(x)− f(−x)

2

)
− %f(−x),

where
A(x) = |x|2k B(x), k > 0,

B being a positive C∞ even function on R, and % > 0. The operator Tk,k′ corresponds to the
function A(x) = Ak,k′(x), where

Ak,k′(x) = sinh2k(|x|) cosh2k′(x), % = k + k′.

For k ≥ k′ ≥ 0 and k 6= 0, a complete spectral analysis of the Jacobi-Cherednik operator has
been performed in [1, 4].
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In the context of differential-differences operators, the generalized Sobolev has already been
studied in various settings. The rational Dunkl case was treated by Mejjaoli-Trimèche [8], while
Ben Salem-Dachraoui [2] studied the generalized Soblev spaces in the Jacobi setting theory. The
purpose of this paper is to introduce new spaces associated with the Jacobi-Cherednik operator:

the Sobolev spaces W s,p
k,k′(R), Ws,p

k,k′(R), the Potential space Hs,p
k,k′(R), the Besov space Bs,k,k′

p,q (R)

and the Triebel space F s,k,k
′

p,q (R) that generalizes the corresponding classical spaces.
The paper is organized as follows. In §2 we recall the main results about the harmonic analysis

associated with the Jacobi-Cherednik operator. In §3 generalized Sobolev spaces associated with
the Jacobi-Cherednik operator are studied. Some properties including completeness and Sobolev
embedding theorems are established. Next, we define the generalized potential transform and
we study the generalized potential space. The §4 is devoted to define the Besov and the Triebel
spaces associated with the Jacobi-Cherednik operator and to give some of their properties.
In §5 we give some applications. Firstly we study the hypoellipticity for the Jacobi-Cherednik
operator. Some estimates of the solution for the generalized wave equation is given. We introduce
also the generalized Schrödinger equation, and we study the solution if the initial data belongs
to the generalized Sobolev spaces. Finally, we give practical real inversion formulas using the
theory of reproducing kernels for the generalized wavelet transform.

2. Preliminaries

This section gives an introduction to the harmonic analysis associated with the Jacobi-
Cherednik operator. Main references are [1, 4, 13].

2.1. Jacobi-Cherednik kernel. In this subsection we collect some notations and results on
Jacobi-Cherednik operator and the Jacobi-Cherednik kernel.

In the following we denote by

C(R) the space of continuous functions on R.
Cc(R) the space of continuous functions on R with compact support.
Cp(R) the space of functions of class Cp on R.
Cpb (R) the space of bounded functions of class Cp.
E(R) the space of C∞-functions on R.
S(R) the Schwartz space of rapidly decreasing functions on R.
D(R) the space of C∞-functions on R which are of compact support.
S ′(R) the space of temperate distributions on R.
Sk,k′(R) := (coshx)−ρS(R) the generalized Schwartz space.
S ′k,k′(R) the dual topological space of Sk,k′(R).

We define the generalized Laplace operator on R by

4k,k′f(x) := T 2
k,k′f(x) = f ′′(x) + (k + k′) cothxf ′(x) + (k + k′)2f(x)(2.2)

−
( k − k′

sinh2 x
+

4k′

sinh2(2x)

)(
f(−x)− f(x)

)
.

For every λ ∈ C, let us denote by G
(k,k′)
λ the unique solution of the eigenvalue problem

(2.3)

{
Tk,k′f(x) = iλf(x),
f(0) = 1.

Proposition 1. ([4]). For every λ ∈ C, the eigenfunction equation (2.3) has a unique solution
of the form

∀x ∈ R, G(k,k′)
λ (x) = ϕ

(k− 1
2
,k′− 1

2
)

λ (x)− ρ+ iλ

ρ2 + λ2

d

dx
ϕ

(k− 1
2
,k′− 1

2
)

λ (x)(2.4)

= ϕ
(k− 1

2
,k′− 1

2
)

λ (x) +
ρ+ iλ

4k + 2
sinh(2x)ϕ

(k+ 1
2
,k′+ 1

2
)

λ (x)(2.5)
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where ρ = k + k′ and ϕ
(α,β)
λ is the Jacobi function of index (α, β) given by

(2.6) ϕ
(α,β)
λ (x) = F (

1

2
(ρ+ iλ),

1

2
(ρ− iλ); α+ 1; −(sinh(x))2),

where F is the hypergeometric function 2F1 of Gauss.

Proposition 2. ([13]). Let p and q be polynomials of degree m and n. Then there exists a
positive constant C such that for all λ ∈ C and for all x ∈ R, we have

(2.7) |p( ∂
∂λ

)q(
∂

∂x
)G

(k,k′)
λ (x)| ≤ C(1 + |x|)n(1 + |λ|)me−%|x|e|Imλ||x|.

2.2. Opdam-Cherednik transform. For a Borel positive measure µ on R, and 1 ≤ p ≤ ∞,
we write Lpµ(R) for the Lebesgue space equipped with the norm ‖ · ‖p,µ defined by

‖f‖Lpµ(R) =

(∫
R
|f(x)|p dµ(x)

)1/p

, if p <∞,

and ‖f‖L∞µ (R) = ess supx∈R|f(x)|. When µ(x) = w(x)dx, with w a nonnegative function on R,

we replace the µ in the norms by w.
For k ≥ k′ ≥ 0 with k 6= 0, and f ∈ Cc(R), the Opdam-Cherednik transform is defined by

(2.8) F(f)(λ) =

∫
R
f(x)G

(k,k′)
λ (−x)Ak,k′(x)dx, ∀λ ∈ C.

Remark 1. For λ ∈ C and g ∈ Cc(R), we have

(2.9) F(g)(λ) = 2Fk,k′(ge)(λ) + 2(%+ iλ)Fk,k′(Igo)(λ),

where Fk,k′ denotes the Jacobi transform, ge (resp. go) denotes the even (resp. odd) part of g,
and

Igo(x) =

∫ x

−∞
go(t)dt.

The inverse Opdam-Cherednik transform of a suitable function g on R is given by:

(2.10) J g(x) = F−1g(x) =

∫
R
g(λ)G

(k,k′)
λ (x)(1− ρ

iλ
)

dλ

8π|ck,k′(λ)|2

where

ck,k′(λ) :=
2ρ−iλΓ(k + 1

2)Γ(iλ)

Γ(1
2(ρ+ iλ))Γ(1

2(k − k′ + 1 + iλ))
, λ ∈ C\iN.

Remark 2. i) The function λ 7→ 1
|ck,k′ (λ)|2 is continuous on R.

ii) There exists R > 0 such that C1, C2 > 0 such that

C1|λ|2k ≤ |ck,k′(λ)|−2 ≤ C2|λ|2k,
when |λ| ≥ R.

Proposition 3. ([13]). The Opdam-Cherednik transform F and its inverse J are topological
isomorphisms between the generalized Schwartz space Sk,k′(R) and the Schwartz space S(R).

Next, we give some properties of this transform.
i) For f in L1

Ak,k′
(R) we have

(2.11) ||F(f)||L∞νk,k′ (R) ≤ ||f ||L1
Ak,k′

(R),

where

(2.12) dνk,k′(λ) =
dλ

16π|ck,k′(λ)|2
.

ii) For f in Sk,k′(R) we have

(2.13) F(4k,k′f)(y) = −y2F(f)(y), for all y ∈ R.
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Proposition 4. ([13]). i) Plancherel formula for F . For all f in Sk,k′(R) we have

(2.14)

∫
R
|f(x)|2Ak,k′(x) dx =

∫
R+

[
|F(f)(ξ)|2 + F(f̌)(ξ)|2

]
dνk,k′(ξ),

where f̌(x) := f(−x).
ii) For all f, g in Sk,k′(R) we have

(2.15)

∫
R
f(x)g(−x)Ak,k′(x) dx = 2

∫
R
F(f)(ξ)F(g)(−ξ)(1− %

iξ
)dνk,k′(ξ).

We denote by

De(R) :=
{
f ∈ D(R) : f is even

}
and

Sk,k′,e(R) :=
{
f ∈ Sk,k′(R) : f is even

}
.

Corollary 1. i) Plancherel formula.
For all f, g in De(R) (resp . Sk,k′,e(R)) we have

(2.16)

∫
R
f(x)g(x)Ak,k′(x)dx =

∫
R
F(f)(λ)F(g)(λ)dνk,k′(λ).

ii) Plancherel theorem.
The transform F extends uniquely to an isomorphism from L2

Ak,k′ ,e
(R) onto L2

νk,k′
(R).

2.3. Jacobi-Cherednik convolution.

Definition 1. ([1]). Let x ∈ R and let f ∈ Cb(R). For k ≥ k′ ≥ 0, with k 6= 0, we define the

generalized translation operator τ
(k,k′)
x by

(2.17) τ (k,k′)
x f(y) =

∫
R
f(z)dµ(k,k′)

x,y (z)

here

dµ(k,k′)
x,y (z) =

 Kk,k
′(x, y, z)Ak,k′(z)dz if xy 6= 0

dδx(z) if y = 0
dδy(z) if x = 0

where Kk,k′(x, y, z) is given explicitly in [1]. Moreover

supp(dµ(k,k′)
x,y ) ⊂

[
− |x| − |y|,−

∣∣∣ |x| − |y| ∣∣∣]⋃[∣∣∣ |x| − |y| ∣∣∣, |x|+ |y|].
Proposition 5. ([1]). For a suitable function f on R, we have

i) τ
(k,k′)
x f(y) = τ

(k,k′)
y f(x).

ii) τk,k
′

0 f(y) = f(y).

iii) τ
(k,k′)
x τ

(k,k′)
y = τ

(k,k′)
y τ

(k,k′)
x .

iv) τ
(k,k′)
x G

(k,k′)
λ (y) = G

(k,k′)
λ (x)G

(k,k′)
λ (y).

v) F(τ
(k,k′)
x f)(λ) = G

(k,k′)
λ (x)F(f)(λ).

vi) Tk,k′(τ
(k,k′)
x )f = τ

(k,k′)
x (Tk,k′f) where Tk,k′ is the Jacobi-Cherednik operator (1.1).

Lemma 1. ([1]). For 1 ≤ p ≤ ∞, f ∈ LpAk,k′ (R) and x ∈ R, we have

(2.18) ‖τ (k,k′)
x f‖LpAk,k′ (R) ≤ Ck,k′‖f‖LpAk,k′ (R),

where

(2.19) Ck,k′ =

{
4 +

Γ(k+ 1
2

)Γ(k′)

Γ(k)Γ(k′+ 1
2

)
if k > k′ > 0,

5
2 , if k = k′ > 0.
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Definition 2. ([1]). For suitable functions f and g, we define the convolution product f ∗k,k′ g
by

(2.20) f ∗k,k′ g(x) =

∫
R
τ (k,k′)
x f(−y)g(y)Ak,k′(y)dy.

Remark 3. It is clear that this convolution product is both commutative and associative:
i) f ∗k,k′ g = g ∗k,k′ f.
ii) (f ∗k,k′ g) ∗k,k′ h = f ∗k,k′ (g ∗k,k′ h).

Proposition 6. ([1]).
i) Assume that 1 ≤ p, q, r ≤ ∞ satisfy 1

p + 1
q − 1 = 1

r . Then, for every f ∈ LpAk,k′ (R) and

g ∈ LqAk,k′ (R), we have f ∗k,k′ g ∈ LrAk,k′ (R), and

(2.21) ‖f ∗k,k′ g‖LrAk,k′ (R) ≤ Ck,k′‖f‖LpAk,k′ (R)‖g‖LqAk,k′ (R),

where Ck,k′ is given by the relation (2.19).
ii) Let 1 ≤ p < q ≤ 2. Then

(2.22) LpAk,k′
(R) ∗k,k′ LqAk,k′ (R) ↪→ LqAk,k′

(R).

iii) Let 2 < p, q <∞ such that q
2 ≤ p < q. Then

(2.23) LpAk,k′
(R) ∗k,k′ Lq

′

Ak,k′
(R) ↪→ LqAk,k′

(R)

where q′ is the conjugate exponent of q.
iv) Let 1 < p < 2 and p < q ≤ p

2−p . Then

(2.24) LpAk,k′
(R) ∗k,k′ LpAk,k′ (R) ↪→ LqAk,k′

(R).

Proposition 7. ([1]).
i) Let Da(R) be the space of smooth functions on R supported in [−a, a]. For f ∈ Da(R) and

g ∈ Db(R), we have f ∗k,k′ g ∈ Da+b(R) and

(2.25) F(f ∗k,k′ g) = F(f)(λ)F(f)(λ).

ii) For f ∈ L2
Ak,k′

(R) and g ∈ LpAk,k′ (R), with 1 ≤ p < 2 we have

(2.26) F(f ∗k,k′ g) = F(f)(λ)F(g)(λ).

Proposition 8. Let f, g ∈ L2
Ak,k′

(R). Then f ∗k,k′ g ∈ L2
Ak,k′

(R) if and only if F(f)F(g) belongs

to L2
νk,k′

(R), and in this case we have

F(f ∗k,k′ g) = F(f)F(g).

The proof of this proposition is a consequence of the two following lemmas.

Lemma 2. Let f ∈ L∞Ak,k′ (R), g ∈ L1
νk,k′

(R) and assume that for all χ ∈ L1
Ak,k′

(R) ∩ L2
Ak,k′

(R)

we have ∫
R
f(y)χ(y)Ak,k′(y)dy = 2

∫
R
g(ξ)F(χ̌)(ξ)(1− %

iξ
)dνk,k′(ξ),

where χ̌(ξ) = χ(−ξ). Then f ∈ L2
Ak,k′

(R) if and only if g ∈ L2
νk,k′

(R), and in this case we have

F(f) = g a.e.

Proof. This follows from an easy application of the Plancherel formula. �

Lemma 3. Let f, g ∈ L2
Ak,k′

(R), χ ∈ L1
Ak,k′

(R) ∩ L2
Ak,k′

(R) we have∫
R
f ∗k,k′ g(y)χ(y)Ak,k′(y)dy = 2

∫
R
F(f)(ξ)F(g)(ξ)F(χ̌)(1− %

iξ
)dνk,k′(ξ).
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Proof. First note the following general fact: if f ∈ L1
Ak,k′

(R)∩L2
Ak,k′

(R) and g ∈ L2
Ak,k′

(R) then

F(f ∗k,k′ g) = F(f)F(g) a.e.

This follows from the analogous fact for L1
Ak,k′

(R) functions and the possibility to approximate

g in L2
Ak,k′

(R) with functions in L1
Ak,k′

(R) ∩ L2
Ak,k′

(R).

Next fix g ∈ L2
Ak,k′

(R) and define on L1
Ak,k′

(R) ∩ L2
Ak,k′

(R)

the two functionals

S1(f) :=

∫
R
f ∗k,k′ g(y)χ(y)Ak,k′(y)dy, S2(f) := 2

∫
R
F(f)(ξ)F(g)(ξ)F(χ̌)(1− %

iξ
)dνk,k′(ξ).

By the previous fact and Plancherels identity, S1 and S2 coincide on L1
Ak,k′

(R)∩L2
Ak,k′

(R). It is

easy to show that both functionals are bounded with respect to the L2
Ak,k′

norm, and therefore

can be extended to the whole space L2
Ak,k′

(R), where they still coincide. �

An immediate consequence of Proposition 8 and the Plancherel formula we deduce the fol-
lowing.

Proposition 9. Let f and g be in L2
Ak,k′

(R). Then, we have

(2.27)

∫
R
|f ∗k,k′ g(x)|2Ak,k′(x)dx =

∫
R+

[
|F(f)(ξ)|2|F(g)(ξ)|2 + F(f̌)(ξ)|2|F(ǧ)(ξ)|2

]
dνk,k′(ξ)

where both sides are finite or infinite.

Definition 3. The Opdam-Cherednik transform of a distribution τ in S ′k,k′(R) is defined by

(2.28) 〈F(τ), φ〉 = 〈τ,F−1(φ)〉, for all φ ∈ S(R).

Proposition 10. The Opdam-Cherednik transform F is a topological isomorphism from S ′k,k′(R)
onto S ′(R).

Let τ be in S ′k,k′(R). We define the distribution 4k,k′τ , by

〈4k,k′τ, ψ〉 = 〈τ,4k,k′ψ〉, for all ψ ∈ Sk,k′(R).(2.29)

This distribution satisfy the following property

F(4k,k′τ) = −y2F(τ).(2.30)

3. Sobolev and potentials spaces

In this Section we establish the main properties of the Sobolev spaces associated with the
Jacobi-Cherednik operator.

Definition 4. Let s ∈ R and 1 ≤ p <∞, we define the space W s,p
k,k′(R) as{

u ∈ S ′k,k′(R) : (1 + |ξ|2)sF(u) ∈ Lpνk,k′ (R)
}
.

We provide this space with the norm

(3.31) ||u||W s,p

k,k′ (R) =
(∫

R
(1 + |ξ|2)sp|F(u)(ξ)|pdνk,k′(ξ)

) 1
p
.

Proposition 11. i) Let 1 ≤ p < ∞. The space W s,p
k,k′(R) provided with the norm ||.||W s,p

k,k′ (R) is

a Banach space.
ii) Let 1 ≤ p <∞ and s1, s2 in R such that s1 ≥ s2 then

W s1,p
k,k′ (R) ↪→W s2,p

k,k′ (R).

iii) Let s ∈ R and 1 ≤ p <∞. Then D(R) is dense in W s,p
k,k′(R).
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Proof. i) It is clear that Lp(R, (1 + |ξ|2)spdνk,k′(ξ)) is complete and since F is an isomorphism
from S′k,k′(R) onto S ′(R), W s,p

k,k′(R) is then a Banach space.

The result ii) is immediately from definition of the generalized Sobolev space. As in [15], §6,
we can obtain iii). �

Proposition 12. Let 1 ≤ p < ∞, and s1, s, s2 be three real numbers : s1 < s < s2. Then, for
all ε > 0, there exists a nonnegative constant Cε such that for all u in W s,p

k,k′(R)

(3.32) ||u||W s,p

k,k′ (R) ≤ Cε||u||W s1,p

k,k′ (R) + ε||u||W s2,p

k,k′ (R).

Proof. We consider s = (1− t)s1 + ts2, (with t ∈]0, 1[). Moreover it is easy to see

||u||W s,p

k,k′ (R) ≤ ||u||1−tW
s1,p

k,k′ (R)
||u||t

W
s2,p

k,k′ (R)
.

Thus

||u||W s,p

k,k′ (R) ≤ (ε−
t

1−t ||u||W s1,p

k,k′ (R))
1−t(ε||u||W s2,p

k,k′ (R))
t

≤ ε−
t

1−t ||u||W s1,p

k,k′ (R) + ε||u||W s2,p

k,k′ (R).

Hence the proof is completed for Cε = ε−
t

1−t . �

A characterization of W s,p
k,k′(R), for s = m, a positive integer, is given below.

Proposition 13. Let m ∈ N, then for 1 ≤ p <∞

Wm,p
k,k′ (R) =

{
u ∈ S′k,k′(R) : F(4j

k,k′u) ∈ Lpνk,k′ (R), 0 ≤ j ≤ m
}
.

Proof. Let u ∈Wm,p
k,k′ (R). Using the formula (2.30) we have∫

R
|F(4j

k,k′u)(ξ)|pdνk,k′(ξ) =

∫
R
|(−ξ2)jF(u)(ξ)|pdνk,k′(ξ)

≤
∫
R

(1 + |ξ|2)mp|F(u)(ξ)|pdνk,k′(ξ) <∞.

Conversely assume now that F(4j
k,k′u) ∈ Lpνk,k′ (R), 0 ≤ j ≤ m. It is easy to see that there

exists a positive constant C such that (1 + |ξ|2)mp ≤ C
m∑
j=0

|ξ|2pj . Then

∫
R

(1 + |ξ|2)mp|F(u)(ξ)|pdνk,k′(ξ) ≤ C

m∑
j=0

∫
R
|(−ξ2)jF(u)(ξ)|pdνk,k′(ξ)

= C
m∑
j=0

∫
R
|F(4j

k,k′u)(ξ)|pdνk,k′(ξ) <∞.

�

Proposition 14. Let p ∈ N and s ∈ R such that s > 2k+1+2p
4 , then

W s,2
k,k′(R) ↪→ Cp(R).

Proof. Let u be in W s,2
k,k′(R) with s ∈ R such that s > 2k+1

4 .

We have ∫
R
|F(u)(λ)|dνk,k′(λ) =

∫
R

(1 + |λ|2)−s(1 + |λ|2)s|F(u)(λ)|dνk,k′(λ).

Using Hölder inequality we obtain∫
R
|F(u)(λ)|dνk,k′(λ) ≤

(∫
R

(1 + |λ|2)−2sdνk,k′(λ)
) 1

2
(∫

R
(1 + |λ|2)2s|F(u)(λ)|2dνk,k′(λ)

) 1
2
.
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Thus from Remark 2, we deduce that there exists a positive constant C such that

(3.33) ||F(u)||L1
νk,k′

(R) ≤ C||u||W s,2

k,k′ (R)
.

Then F(u) is in L1
νk,k′

(R). Hence F(u) belongs to L1
νk,k′

(R) ∩ L2
νk,k′

(R).

Thus from (2.10) we have

u(x) =

∫
R
F(u)(λ)G

(k,k′)
λ (x)(1− ρ

iλ
)

dλ

8π|ck,k′(λ)|2
, a.e. x ∈ R.

We identify u with the second member, then we deduce that u belongs to C(R) and using (3.33)

we show that the injection of W s,2
k,k′(R) into C(R) is continuous.

Now let u be in W s,2
k,k′(R) with s ∈ R such that s > 2k+1+2p

4 with p ∈ N\{0}. From (2.7), for

all x, λ ∈ R, and n ∈ N such that n ≤ p, we have

|Dn
xG

(k,k′)
λ (x)| ≤ C|λ|n.

Using the same method as for p = 0, and the derivation theorem under the integral sign we
deduce that

∀x ∈ R, Dnu(x) =

∫
R
F(u)(λ)Dn

xG
(k,k′)
λ (x)(1− ρ

iλ
)

dλ

8π|ck,k′(λ)|2
.

Thus Dnu belongs to C(R), for all n ∈ N such that n ≤ p. Then we show that u is in Cp(R)

and the injection of W s,2
k,k′(R) into Cp(R) is continuous. �

Definition 5. Let n be a nonnegative integer and 1 ≤ p <∞, we define inhomogeneous Sobolev
spaces Wn,p

k;k′(R) by:

Wn,p
k,k′(R) :=

{
f ∈ S ′k,k′(R) : 4j

k,k′f ∈ L
p
Ak,k′

(R), 0 ≤ j ≤ n
}

endowed with the norm

||f ||Wn,p

k;k′ (R) :=

n∑
j=0

||4j
k,k′f ||LpAk,k′ (R)

where 4j
k,k′ = 4k,k′ ◦ · · · ◦ 4k,k′ is the iterated of generalized Laplace operator.

Proposition 15. Let n be a nonnegative integer. Wn,p
k;k′(R) is complete when 1 ≤ p <∞.

Proof. Let (fl)l be a Cauchy sequence inWn,p
k;k′(R). Therefore ((4k,k′)

jfl)l is a Cauchy sequence

in LpAk,k′
(R), j = 0, ..., n. If we denote by gj to the limit in LpAk,k′

(R) of ((4k,k′)
jf)l, we have, by

the uniqueness of the limit

〈(4k,k′)
jg0, φ〉 = 〈gj , φ〉, for all φ ∈ Sk,k′(R).

Then, fl → g0 in Wn,p
k;k′(R) as l→∞. �

Now, we establish in a similar way to that in (cf. [2, 16]), the definition of the generalized
Jacobi potential and potentials spaces.

Definition 6. Let u ∈ S′k,k′(R) and s ∈ R, we define the generalized Jacobi potential of order
s, as follows

J sk,k′(u) = F−1
(

(λ2 + 1)−s/2F(u)(λ)
)
.

Definition 7. Let s ∈ R and 1 ≤ p <∞. We define the generalized potentials spaces as

Hs,p
k,k′(R) :=

{
φ ∈ S′k,k′(R) : J −sk,k′(φ) ∈ LpAk,k′ (R)

}
.

The norm in Hs,p
k,k′(R) is given by

‖φ‖Hs,p

k,k′ (R) = ‖J −sk,k′(φ)‖LpAk,k′ (R).
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Lemma 4. Let f ∈ S′k,k′(R). Then

J sk,k′(J tk,k′(f)) = J s+tk,k′ (f)

and

J 0
k,k′(f) = f.

Proof. By definition J tk,k′(f) = F−1
(
(λ2 + 1)−t/2F(f)(λ)

)
.

Then,

J sk,k′(J tk,k′(f)) = F−1
(

(λ2 + 1)−s/2(λ2 + 1)−t/2F(f)(λ)
)

= F−1
(

(λ2 + 1)−(t+s)/2F(f)(λ)
)

= J s+tk,k′ (f)

On the other hand, J 0
k,k′(f) = F−1(F(f)(λ)) = f. �

Lemma 5. The generalized Jacobi potential J tk,k′ is an isometry of Hs,p
k,k′(R) onto Hs+t,p

k,k′ (R)

satisfying

‖J tk,k′(φ)‖Hs+t,p

k,k′ (R) = ‖φ‖Hs,p

k,k′ (R).

Proof. Let φ ∈ Hs,p
k,k′(R). By Definition 6 and Lemma 4 we obtain

‖J tk,k′(φ)‖Hs+t,p

k,k′ (R) = ‖J −s−tk,k′ (J tk,k′(φ))‖LpAk,k′ (R) = ‖J −sk,k′(φ)‖LpAk,k′ (R) = ‖φ‖Hs,p

k,k′ (R).

Now, let f ∈ Hs+t,p
k,k′ (R). J −tk,k′(f) ∈ Hs,p

k,k′(R) and J tk,k′(J
−t
k,k′(f)) = f. Therefore we obtain

the result. �

Proposition 16. Hs,p
k,k′(R) is a Banach space with respect to the norm ‖.‖Hs,p

k,k′ (R).

Proof. Let (φn)n be a Cauchy sequence in Hs,p
k,k′(R). By the definition of Hs,p

k,k′(R) the sequence

{J −sk,k′(φn)} is a Cauchy sequence in LpAk,k′
(R). As LpAk,k′

(R) is complete, it follows that there

exists a function φ in LpAk,k′
(R) such that J −sk,k′(φn) converge to φ in LpAk,k′

(R). Thus, it is easy

to see that φn → g in Hs,p
k,k′(R) as n→∞, with g = J sk,k′(φ). �

Proposition 17. For s ∈ R and 1 ≤ p <∞, Sk,k′(R) is dense in Hs,p
k,k′(R).

Proof. Let f ∈ Hs,p
k,k′(R). Then, J −sk,k′(f) ∈ LpAk,k′

(R). Since D(R) is dense in LpAk,k′
(R), there

exists a sequence (φj)j ∈ D(R) such that

(3.34) φj → J −sk,k′(f) in LpAk,k′
(R).

Next, we define gj = J sk,k′(φj) = F−1
(
(λ2 + 1)−s/2F(φj)(λ)

)
. From Proposition 3 we deduce

that

λ 7→ (λ2 + 1)−s/2F(φj)(λ) ∈ S(R).

Proposition 3 give that gj = F−1
(

(λ2 + 1)−s/2F(φj)(λ)
)
∈ Sk,k′(R). Hence, by (3.34) we obtain

‖f − gj‖Hs,p

k,k′ (R) =

(∫
R
|J −sk,k′(f)(x)− J −sk,k′(gj)(x)|pAk,k′(x)dx

)1/p

=

(∫
R
|J −sk,k′(f)(x)− φj(x)|pAk,k′(x)dx

)1/p

→ 0, for j →∞.

�
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Proposition 18. For s > k + 1
2 and 1 ≤ p ≤ 2, J −sk,k′ maps LpAk,k′

(R) into L2
Ak,k′

(R).

More precisely there exists g ∈ L2
Ak,k′

(R) such that for all f ∈ LpAk,k′ (R), we have

J −sk,k′(f) = f ∗k,k′ g,

and there exists a positive constant C such that

‖J −sk,k′(f)‖L2
Ak,k′

(R) ≤ C||f ||LpAk,k′ (R).

Proof. From properties of νk,k′ (cf. Remark 2), we see that the function λ 7→ (1 +λ2)−
s
2 belongs

to

L2
νk,k′

(R) ∩ L∞νk,k′ (R), for s > k +
1

2
.

Thus we deduce from Proposition 4 that there exists an even function g ∈ L2
Ak,k′

(R) such that

(1 + λ2)−
s
2 = F(g)(λ).

i) For p = 2, the function λ 7→ (1 + λ2)−
s
2F(f)(λ) belongs to L2

νk,k′
(R). Using Proposition

8, we deduce that g ∗k,k′ f belongs to L2
Ak,k′

(R) and

F(g ∗k,k′ f)(λ) = F(g)(λ)F(f)(λ) = (1 + λ2)−
s
2F(f)(λ).

On the other hand, we have

F(J −sk,k′(f))(λ) = (1 + λ2)−
s
2F(f)(λ).

We conclude by using Proposition 4 and Proposition 8 that J −sk,k′(f) = f ∗k,k′ g. Moreover, we

have

‖J −sk,k′(f)‖2
L2
Ak,k′

(R)
= ‖g ∗k,k′ f‖2L2

Ak,k′
(R)

= ‖F(g ∗k,k′ f)‖2L2
νk,k′

(R+) + ‖F( ˇg ∗k,k′ f)‖2L2
νk,k′

(R+)

= ‖F(g)F(f)‖2L2
νk,k′

(R+) + ‖F(g)F(f̌)‖2L2
νk,k′

(R+)

≤ ‖F(g)‖2L∞νk,k′ (R+)

[
‖F(f)‖2L2

νk,k′
(R+) + ‖F(f̌)‖2L2

νk,k′
(R+)

]
= ‖F(g)‖2L∞νk,k′ (R+)||f ||

2
L2
Ak,k′

(R)
.

So, we obtain

‖J −sk,k′(f)‖L2
Ak,k′

(R) ≤ ||(1 + λ2)−
s
2 ||L∞νk,k′ (R)‖f‖L2

Ak,k′
(R) ≤ C‖f‖L2

Ak,k′
(R).

ii) For p ∈ [1, 2), g ∈ L2
Ak,k′

(R) and f ∈ LpAk,k′ (R). Using Proposition 4 and Proposition 7

ii), we prove

J −sk,k′(f) = g ∗k,k′ f.
Finally, applying Proposition 6 ii), we obtain

‖J −sk,k′f‖L2
Ak,k′

(R) ≤ C||f ||LpAk,k′ (R).

This completes the proof of theorem. �

Proposition 19. For s > k + 1
2 + t and 1 ≤ p ≤ 2, then, we have

Hs,p
k,k′(R) ⊂ Ht,2

k,k′(R).

Moreover, there exits a positive constant C, such that for all u ∈ Hs,p
k,k′(R)

||u||
Ht,2

k,k′ (R)
≤ C||u||Hs,p

k,k′ (R).
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Proof. Let u ∈ Hs,p
k,k′(R). Then, we have J −sk,k′(u) = f , where f ∈ LpAk,k′ (R). From Lemma 5 and

Proposition 18 we can write

J −tk,k′(u) = J −t+sk,k′ (J −sk,k′(u)) = f ∗k,k′ g,

where g is such that

(1 + λ2)−
s−t
2 = F(g)(λ).

Furthermore, we have

||u||
Ht,2

k,k′ (R)
= ||f ∗k,k′ g||L2

Ak,k′
(R) ≤ C||f ||LpAk,k′ (R) ≤ C||u||Hs,p

k,k′ (R).

�

In the last of this section we assume that the Jacobi-Cherednik operator is the unidimensionnel
Cherednik operators with the root systems R = {−2α,−α, α, 2α} with α the positive root (cf.
[4, 5]).

Now, our purpose is obtain the analogue of the Caldérons theorem for the Opdam-Cherednik
transform. For this, we need the following proposition.

Proposition 20. Let 0 ≤ m ≤ s/2, m ∈ N, 1 ≤ p <∞. Then, 4m
k,k′J sk,k′ is a continuous linear

mapping of LpAk,k′ ,e
(R) :=

{
f ∈ LpAk,k′ (R) : f is even

}
into itself.

Proof. Applying the multiplier theorem given in [5] with

m(λ) = (−1)mλ2m(λ2 + 1)−s/2,

the desired result is established. �

We denote by

Wn,p
k,k′,e(R) :=

{
f ∈ Wn,p

k,k′(R) : f is even
}

and

H2n,p
k,k′,e(R) :=

{
f ∈ H2n,p

k,k′ (R) : f is even
}
.

Now, we are in conditions to demonstrate the Caldérón’s theorem, that is exposed as follows.

Theorem 1. Let n ∈ N and 1 < p <∞. Then, f ∈ Wn,p
k,k′,e(R) if and only if f ∈ H2n,p

k,k′,e(R).

Proof. Let f ∈ H2n,p
k,k′,e(R), then by definition, f = J 2n

k,k′(g), g ∈ LpAk,k′ ,e(R).

Moreover, if m ≤ n, m ∈ N, by Proposition 20, 4m
k,k′f = 4m

k,k′J 2n
k,k′(g) ∈ LpAk,k′ ,e(R) and

‖4m
k,k′f‖LpAk,k′ (R) = ‖4m

k,k′J 2n
k,k′(g)‖LpAk,k′ (R)

≤ C‖g‖LpAk,k′ (R) = C‖J −2n
k,k′ (f)‖LpAk,k′ (R) = C‖f‖

H2n,p

k,k′ (R)
.

Hence,

‖f‖Wn,p

k,k′ (R) :=
∑

0≤m≤n
‖4m

k,k′f‖LpAk,k′ (R) ≤ C‖f‖H2n,p

k,k′ (R)

and therefore f ∈ Wn,p
k,k′,e(R).

Conversely, we consider f ∈ Wn,p
k,k′,e(R). Then 4m

k,k′f ∈ L
p
Ak,k′

(R), for all m ∈ N,

0 ≤ m ≤ n. By definition we have J −2n
k,k′ (f) = (1−4k,k′)

nf and then taking norms we obtain

‖f‖
H2n,p

k,k′ (R)
= ‖J −2n

k,k′ (f)‖LpAk,k′ (R) = ‖(1−4k,k′)
nf‖LpAk,k′ (R) ≤ C

∑
0≤m≤n

‖4m
k,k′f‖LpAk,k′ (R) = C‖f‖Wn,p

k,k′ (R).

�
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4. Bs,k,k′
p,q , F s,k,k

′
p,q spaces and basic properties

Let ψ be a non-negative function in D(R) even, satisfying ψ(ξ) ≡ 1 for |ξ| ≤ 1
2 and ψ(ξ) ≡ 0

for |ξ| ≥ 1. We define a function ϕ on R by

ϕ(ξ) = ψ(
ξ

2
)− ψ(ξ).

Definition 8. For j = 0, 1, 2, · · · , the operators Sj and ∆j on S ′k,k′(R) are defined by

F(Sjf) = ψ(
ξ

2j
)F(f), j = 0, 1, 2, · · ·

F(∆jf) = ϕ(
ξ

2j
)F(f), j = 1, 2, · · ·

and put ∆0 = S0. We call ∆jf the j-th dyadic block of the generalized Littlewood-Paley decom-
position of f .

In this section we define analogues of the Besov and Triebel-Lizorkin spaces associated with
the Jacobi-Cherednik operator on R and obtain their basic properties.

4.1. Definitions. From now, we make the convention that for all non-negative sequence {aq}q∈Z,

the notation (
∑

q a
r
q)

1
r stands for supq aq in the case r = ∞. Let s ∈ R and 1 ≤ p ≤ ∞. For a

sequence {uj} of functions on R, we define

‖{uj}‖lsq(LpAk,k′ (R)) = ‖u0‖LpAk,k′ (R) + (
∑
j>0

(2js‖uj‖LpAk,k′ (R))
q)

1
q ,

‖{uj}‖LpAk,k′ (R)(lsq)
= ‖u0‖LpAk,k′ (R) + ‖

∑
j>0

(2js|uj(x)|)q)
1
q ‖LpAk,k′ (R).

Definition 9. For s ∈ R and 1 ≤ p, q ≤ ∞, the inhomogeneous generalized Besov space

Bs,k,k′
p,q (R) is defined by

Bs,k,k′
p,q (R) :=

{
f ∈ S ′k,k′(R) : ‖f‖

Bs,k,k
′

p,q (R)
= ‖{∆jf}‖lsq(LpAk,k′ (R)) <∞

}
.

Definition 10. Let s ∈ R and 1 ≤ p, q ≤ ∞, the inhomogeneous generalized Triebel-Lizorkin

space F s,k,k
′

p,q (R) is defined by

F s,k,k
′

p,q (R) :=
{
f ∈ S ′k,k′(R) : ‖f‖

F s,k,k
′

p,q (R)
= ‖{∆jf}‖LpAk,k′ (R)(lsq)

<∞
}
.

As in [16], §6, we can obtain.

Proposition 21. Let s ∈ R and 1 ≤ p, q <∞. Then D(R) is dense in Bs,k,k′
p,q (R) and F s,k,k

′
p,q (R).

4.2. Embeddings.

Theorem 2. (1) If s1 < s2 and 1 ≤ p, q ≤ ∞, then

Bs2,k,k′
p,q (R) ↪→ Bs1,k,k′

p,q (R),

F s2,k,k
′

p,q (R) ↪→ F s1,k,k
′

p,q (R).

(2) If s ∈ R, 1 ≤ p ≤ ∞ and 1 ≤ q1 < q2 ≤ ∞, then

Bs,k,k′
p,q1 (R) ↪→ Bs,k,k′

p,q2 (R),

F s,k,k
′

p,q1 (R) ↪→ F s,k,k
′

p,q2 (R).

(3) For s ∈ R and 1 ≤ p, q ≤ ∞, let r = min{p, q}, t = max{p, q}. Then

Bs,k,k′
p,r (R) ↪→ F s,k,k

′
p,q (R) ↪→ Bs,k,k′

p,t (R).(4.35)
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Proof. The monotone character of lq-spaces and Minkowski’s inequality yield (1) and (2).
On the follow we want to prove (3). We must prove that

(4.36) Bs,k,k′
p,p (R) ⊂ F s,k,k′p,q (R) ⊂ Bs,k,k′

p,q (R),

if p ≤ q, and

(4.37) Bs,k,k′
p,q (R) ⊂ F s,k,k′p,q (R) ⊂ Bs,k,k′

p,p (R),

if q ≤ p.
To prove the previous embedding we will use the monotony of the lsq spaces:

lsq :=
{
ξ : ξ = (ξj)

∞
j=0, ξj complex, ||ξj ||lsq :=

( ∞∑
j=0

2sjq|ξj |q
) 1
q
<∞

}
, 1 ≤ q <∞

and

ls∞ :=
{
ξ : ξ = (ξj)

∞
j=0, ξj complex, ||ξj ||ls∞ := sup

j∈N
(2sj |ξj |) <∞

}
,

and the trivial equality Bs,k,k′
p,p (R) = F s,k,k

′
p,p (R).

First, we will prove (4.36). Let f ∈ F s,k,k
′

p,q (R)

||f ||
Bs,k,k

′
p,q (R)

= ||S0f ||LpAk,k′ (R) +
( ∞∑
j=0

2jqs||∆jf ||qLpAk,k′ (R)

) 1
q

≤ ||S0f ||LpAk,k′ (R) +
∣∣∣∣∣∣(2jsp||∆jf ||pLpAk,k′ (R)

)∣∣∣∣∣∣ 1p
lsq
p

.

Now, by using Minkowski’s inequality we obtain:

||f ||
Bs,k,k

′
p,q (R)

≤ ||S0f ||LpAk,k′ (R) + ||
( ∞∑
j=0

2js|∆jf |q
) 1
q ||LpAk,k′ (R) = ||f ||

F s,k,k
′

p,q (R)

≤ ||S0f ||LpAk,k′ (R) + ||∆jf ||LpAk,k′ (R,l
s
p)

= ||S0f ||LpAk,k′ (R) + ||∆jf ||lsp(LpAk,k′
(R)) = ||f ||

Bs,k,k
′

p,p (R)
.

Then, to prove (4.37) we have

||f ||
Bs,k,k

′
p,p (R)

= ||S0f ||LpAk,k′ (R) + ||∆jf ||LpAk,k′ (R,l
s
p)

= ||S0f ||LpAk,k′ (R) +
∣∣∣∣∣∣(∑

j≥0

2js|∆jf |q
)∣∣∣∣∣∣ 1q

L
p
q
Ak,k′

(R)

≤ ||S0f ||LpAk,k′ (R) +
(∑
j≥0

2jsq|| |∆jf |q||
L
p
q
Ak,k′

(R)

) 1
p

= ||S0f ||LpAk,k′ (R) + ||∆jf ||lsq(LpAk,k′ (R)) = ||f ||
Bs,k,k

′
p,q (R)

.

�

4.3. Lifting property. We recall that for f ∈ S ′k,k′(R),

F(4k,k′∆nf)(ξ) = 22nφ̃(
ξ

2n
)F(f)(ξ), φ̃(ξ) = −ξ2φ(ξ).

Then we can obtain

Proposition 22. Let s ∈ R and 1 ≤ q ≤ ∞. The operator 4k,k′ is a linear continuous operator

from Bs,k,k′

2,q (R) into Bs−2,k,k′

2,q (R), and from Hs,k,k′

2,q (R) into Hs−2,k,k′

2,q (R).

Proposition 23. Let s, t ∈ R and 1 ≤ q ≤ ∞. The operator J tk,k′ is a linear continuous

injective operator from Bs,k,k′

2,q (R) onto Bs−t,k,k′
2,q (R), and from Hs,k,k′

2,q (R) onto Hs−t,k
2,q (R).
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Proof. Since F satisfies (2.25), we can apply the same arguments used in the proof of Theorem
5.1.1 in [15]. �

Corollary 2. (1) If s ∈ R, then

(Hs,2
k,k′(R))′ = H−s,2k,k′ (R).

(2) If s ∈ R, and 1 ≤ q <∞, then

(Bs,k,k′

2,q (R))′ = B−s,k,k
′

2,q′ (R).

Proof. The first formula follows from Proposition 23 and the fact
(
L2
Ak,k′

(R)
)′

= L2
Ak,k′

(R).

The second formula is implied by definition of inhomogeneous generalized Besov space and the
duality Theorem. �

4.4. Interpolation.

Theorem 3. (1) Let s0 6= s1, 0 < θ < 1, s = (1− θ)s0 + θs1, 1 ≤ p, q, q0, q1 ≤ ∞. Then

(Bs0,k,k′
p,q0 (R), Bs1,k,k′

p,q1 (R))θ,q = Bs,k,k′
p,q (R).

(2) Let s ∈ R, 1 ≤ p0, p1 ≤ ∞, p0 6= p1, 0 < θ < 1, 1
p = 1−θ

p0
+ θ

p1
, then

(F s,k,k
′

p0,2
(R), F s,k,k

′

p1,2
(R))θ,p = F s,k,k

′

p,2 (R).

(3) Let s0, s1 ∈ R, s0 6= s1, 1 ≤ p0, p1 ≤ ∞, p0 6= p1, 0 < θ < 1, s = (1 − θ)s0 + θs1,
1
p = 1−θ

p0
+ θ

p1
, then

(F s0,k,k
′

p0,2
(R), F s1,k,k

′

p1,2
(R))θ,p = Bs,k,k′

p,p (R).

(4) Let s0, s1 ∈ R, s0 6= s1, 0 < θ < 1, s = (1− θ)s0 + θs1, 1 ≤ p, q, q0, q1 ≤ ∞. Then

(F s0,k,k
′

p,q0 (R), F s1,k,k
′

p,q1 (R))θ,q = Bs,k,k′
p,q (R).(4.38)

Proof. (1), (2), (3) follows from the arguments used in Theorem 8.1.3 and Theorem 8.3.3 in [15].
(4) follows from (1) and (4.35). �

As a consequence of real and complex interpolations, we can deduce multiplicative inequalities,
which will be needed in the theory of differential-difference operators.

Theorem 4. (1) If u belongs to Bs,k,k′
p,q (R)∩Bt,k,k′

p,q (R), then u belongs to B
θs+(1−θ)t,k,k′
p,q (R) for

all θ ∈ [0, 1] and

‖u‖
B
θs+(1−θ)t,k,k′
p,q (R)

≤ ‖u‖θ
Bs,k,k

′
p,q (R)

‖u‖1−θ
Bt,k,k

′
p,q (R)

.

(2) If u belongs to Bs,k,k′
p,∞ (R) ∩Bt,k,k′

p,∞ (R) and s < t, then u belongs to B
θs+(1−θ)t,k,k′
p,1 (R) for all

θ ∈ (0, 1) and there exists a positive constant C(t, s) such that

‖u‖
B
θs+(1−θ)t,k,k′
p,1 (R)

≤ C(t, s)‖u‖θ
Bs,k,k

′
p,∞ (R)

‖u‖1−θ
Bt,k,k

′
p,∞ (R)

.

(3) If u belongs to Bs,k,k′
p,∞ (R) ∩ Bs+ε,k,k′

p,∞ (R) and ε > 0, then u belongs to Bs,k,k′

p,1 (R) and there
exists a positive constant C such that

‖u‖
Bs,k,k

′
p,1 (R)

≤ C

ε
‖u‖

Bs,k,k
′

p,∞ (R)
log2

(
e+
‖u‖

Bs+ε,k,k
′

p,∞ (R)

‖u‖
Bs,k,k

′
p,∞ (R)

)
.

Proof. (1) is obvious from Hölder’s inequality. As for (2), we write ‖u‖
B
θs+(1−θ)t,k,k′
p,1 (R)

as∑
j≤N

2j(θs+(1−θ)t)‖∆ju‖LpAk,k′ (R) +
∑
j>N

2j(θs+(1−θ)t)‖∆ju‖LpAk,k′ (R),
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where N is chosen here after. By the definition of the generalized Besov norms, we see that

2j(θs+(1−θ)t)‖∆ju‖LpAk,k′ (R) ≤ 2j(1−θ)(t−s)‖u‖
Bs,k,k

′
p,∞ (R)

,

2j(θs+(1−θ)t)‖∆ju‖LpAk,k′ (R) ≤ 2−jθ(t−s)‖u‖
Bt,k,k

′
p,∞ (R)

and thus, ‖u‖
B
θs+(1−θ)t,k,k′
p,1 (R)

is dominated by

‖u‖
Bs,k,k

′
p,∞ (R)

∑
j≤N

2j(1−θ)(t−s) + ‖u‖
Bt,k,k

′
p,∞ (R)

∑
j>N

2−jθ(t−s)

≤C‖u‖
Bs,k,k

′
p,∞ (R)

2(N+1)(1−θ)(t−s)

2(1−θ)(t−s) − 1
+ ‖u‖

Bt,k,k
′

p,∞ (R)

2−Nθ(t−s)

1− 2−θ(t−s)
.

Hence, in order to complete the proof of (2), it suffices to choose N such that

‖u‖
Bt,k,k

′
p,∞ (R)

‖u‖
Bs,k,k

′
p,∞ (R)

≤ 2N(t−s) < 2
‖u‖

Bt,k,k
′

p,∞ (R)

‖u‖
Bs,k,k

′
p,∞ (R)

.

As for (3), it is easy to see that ‖u‖
Bs,k,k

′
p,1 (R)

is dominated as∑
j≤N−1

2js‖∆ju‖LpAk,k′ (R) +
∑
j≥N

2js‖∆ju‖LpAk,k′ (R)

≤(N + 1)‖u‖
Bs,k,k

′
p,∞ (R)

+
2−(N−1)ε

2ε − 1
‖u‖

Bs+ε,k,k
′

p,∞ (R)
.

Hence, letting

N = 1 +
[1

ε
log2

‖u‖
Bs+ε,k,k

′
p,∞ (R)

‖u‖
Bs,k,k

′
p,∞ (R)

]
,

we can obtain the desired estimate. �

In the last of this section we assume that the Jacobi-Cherednik operator is the unidimensionnel
Cherednik operators with the root systems R = {−2α,−α, α, 2α} with α the positive root (cf.
[4, 5]).

To obtain a new characterization of the generalized Jacobi potentials spaces, we need to state
the following lemma.

Lemma 6. ([5]). Let s ∈ R and let {rj}j∈N be the Rademacher functions (cf. [14]). Then, for
every p with 1 < p <∞ and for all 0 < t < 1, there exists a positive constant C such that

||F−1(niF(g)))||LpAk,k′ ,e(R) ≤ C||g||LpAk,k′ ,e(R),

where

n1(ξ) :=
∞∑
j=0

2jsrj(t)(1 + |ξ|2)−
s
2ϕj(ξ)

and

n2(ξ) :=
( ∞∑
j=0

ϕ2
j (ξ)

)−1
.

Theorem 5. Let 1 < p <∞ and s ∈ R, we have

F s,k,k
′

p,2,e (R) = Hs,p
k,k′,e(R),

where

F s,k,k
′

p,2,e (R) :=
{
f ∈ F s,k,k

′

p,2 (R) : f is even
}
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and

Hs,p
k,k′,e(R) :=

{
f ∈ Hs,p

k,k′(R) : f is even
}
.

Proof. We must see that exists a positive constant C such that

(4.39)
1

C
||f ||Hs,p

k,k′,e(R) ≤ ||
( ∞∑
j=0

22sj |∆jf |2
) 1

2 ||LpAk,k′,e (R) ≤ C||f ||Hs,p

k,k′,e(R).

In a similar way to Proposition 17 we have that Sk,k′(R) is dense in F s,k,k
′

p,2,e (R) for s ∈ R,

1 < p <∞. Then, it is not difficult to obtain that the functions f ∈ LpAk,k′ ,e(R) with supp(F(f))

compact are dense both in Hs,p
k,k′,e(R) and in F s,k,k

′

p,2,e (R), for 1 < p < ∞. Therefore it is enough

to prove (4.39) for a functions of this type. Moreover, we observe that in this case the infinite
sum in (4.39) is actually finite.

We first prove the right hand estimate. Let f ∈ Hs,p
k,k′,e(R), then there exists g ∈ LpAk,k′ ,e(R)

such that f = J sk,k′(g). From Lemma 6, with n1, we have for all t ∈ (0, 1)

||
∞∑
j=0

rj(t)2
sj∆jf ||LpAk,k′ ,e(R) ≤ C||f ||Hs,p

k,k′,e(R).

Thus

(4.40)

∫ 1

0
||
∞∑
j=0

rj(t)2
sj∆jf ||LpAk,k′ ,e(R)dt ≤ C||f ||Hs,p

k,k′,e(R).

Using the Minkowski’s inequality and the right hand inequality of ( [14], Chapter V , Theorem
8.4, p. 213) with p = 1 we obtain∣∣∣∣∣∣( ∞∑

j=0

22sj |∆jf |2
) 1

2
∣∣∣∣∣∣
LpAk,k′ ,e

(R)
≤ C

∣∣∣∣∣∣ ∫ 1

0

∣∣∣∑
j∈N

rj(t)2
sj∆jf

∣∣∣dt∣∣∣∣∣∣
LpAk,k′ ,e

(R)

≤ C

∫ 1

0

∣∣∣∣∣∣(∑
j∈N

rj(t)2
sj∆jf

)∣∣∣∣∣∣
LpAk,k′ ,e

(R)
dt.

Now, by (4.40) we have∣∣∣∣∣∣( ∞∑
j=0

22sj |∆jf |2
) 1

2
∣∣∣∣∣∣
LpAk,k′ ,e

(R)
≤ C||f ||Hs,p

k,k′,e(R).

Therefore we achieve that f ∈ F s,k,k
′

p,2,e (R).

For the converse inequality we will use duality. Let f ∈ F s,k,k
′

p,2,e (R) and from Lemma 6 with

n2(x) = (
∑∞

j=0 ϕ
2
j )
−1 gives

(4.41) ||J −sk,k′(f)||LpAk,k′ ,e(R) ≤ C||h||LpAk,k′ ,e(R),

with

h = F−1
(

(1 + |ξ|2)
s
2

∞∑
j=0

ϕ2
j (ξ)F(f)(ξ)

)
.

Now, consider u ∈ LqAk,k′ ,e(R) be a function such that supp(F(u)) is compact,

(4.42)

∫
R
|u(x)|qAk,k′(x)dx = 1,

(1
p + 1

q = 1) and

(4.43)

∫
R
u(x)h(x)Ak,k′(x)dx ≥ 1

2
||h||LpAk,k′ (R).
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Let v a even function defined by F(v)(ξ) = (1 + ξ2)
s
2F(u)(ξ), then from (4.41),(4.43) and (2.16)

we obtain

||f ||Hs,p

k,k′ (R) = ||J −sk,k′(f)||LpAk,k′ (R)

≤ C

∫
R
u(x)h(x)Ak,k′(x)dx ≤ C

∫
R
|F(u)(ξ)| |F(h)(ξ)|dνk,k′(ξ)

≤ C

∫
R
|F(u)(ξ)|

∞∑
j=0

(1 + |ξ|2)
s
2ϕ2

j (ξ)|F(f)(ξ)|dνk,k′(ξ)

≤ C

∫
R

∞∑
j=0

(
|2jsF(f)(ξ)ϕj(ξ)|

)(
2−js|F(v)(ξ)ϕj(ξ)|

)
dνk,k′(ξ).

Therefore, by Plancherel formula and the Cauchy and Hölder inequalities we have

(4.44) ||f ||Hs,p

k,k′ (R) ≤ C||(
∞∑
j=0

(22js|∆jf |2)
1
2 ||LpAk,k′ (R)||(

∞∑
j=0

(2−2js|∆jv|2)
1
2 ||LqAk,k′ (R).

Then by the right hand inequality of (4.39) we achieve

(4.45) ||(
∞∑
j=0

(2−2js|∆jv|2)
1
2 ||LqAk,k′ (R) ≤ C||v||H−s,q

k,k′ (R) = C

∫
R
|u(x)|qAk,k′(x)dx.

Hence, combining (4.44), (4.45) and (4.42) the proof is finished. �

As a consequence of Theorem 5 and Theorem 1, we obtain the following result.

Corollary 3. Let s ∈ N and 1 < p <∞ then F 2s,k,k′

p,2,e (R) =Ws,p
k,k′,e(R).

5. Applications

In this Section we give some applications of the generalized potential and generalized Sobolev
spaces.

5.1. Hypoellipticity of Jacobi-Cherednik operator.

Theorem 6. Let P (−4k,k′) =
n∑
j=0

aj(−4k,k′)
j , an 6= 0, a differential-difference operator with

constant coefficients aj and symbol P (λ2) =
n∑
j=0

ajλ
2j 6= 0, λ ∈ R. If

u ∈ L2
Ak,k′

(R), P (−4k,k′)u = f, and f ∈ L2
Ak,k′

(R), then u ∈ H2n,2
k,k′ (R).

Proof. It is easy to see that there exists R > 0 and a positive constant C such that

|P (λ2)| ≥ C|λ|2n, |λ| ≥ R.(5.46)

We have

‖u‖2
H2n,2

k,k′ (R)
=

∫
R+

(λ2 + 1)2n
(
|F(u)(λ)|2 + |F(ǔ)(λ)|2

)
dνk,k′(λ).

If we consider R ≥ 1, we have

‖u‖2
H2n,2

k,k′ (R)
=

∫ R

0
(λ2 + 1)2n(|F(u)(λ)|2 + |F(ǔ)(λ)|2)dνk,k′(λ)

+

∫
λ≥R

(λ2 + 1)2n(|F(u)(λ)|2 + |F(ǔ)(λ)|2)dνk,k′(λ).
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Now, if 0 ≤ λ ≤ R, we use that (λ2 + 1)2n ≤ (1 + R2)2n and for λ ≥ R, (λ2 + 1)2n ≤ C|λ|4n,
obtaining

‖u‖2
H2n,2

k,k′ (R)
≤ C(1 +R2)2n

∫ R

0
(|F(u)(λ)|2 + |F(ǔ)(λ)|2)dνk,k′(λ)

+ C

∫
λ≥R
|λ|4n(|F(u)(λ)|2 + |F(ǔ)(λ)|2)dνk,k′(λ).

Using again Proposition 4, the relations (2.13) and (5.46) we have

‖u‖2
H2n,2

k,k′ (R)
≤ C

(∫
R

∣∣u(x)
∣∣2Ak,k′(x)dx+

∫
R
|λ|4n(|F(u)(λ)|2 + |F(ǔ)(λ)|2)dνk,k′(λ)

)
≤ C

(
‖u‖2L2

Ak,k′
(R) +

∫
R
|P (|λ|2)|2(|F(u)(λ)|2 + |F(ǔ)(λ)|2)dνk,k′(λ)

)
≤ C

(
‖u‖2L2

Ak,k′
(R) +

∫
R

[∣∣∣F(P (−4k,k′)u
)

(λ)
∣∣∣2 +

∣∣∣F( ˘
P (−4k,k′)u

)
(λ)
∣∣∣2])dνk,k′(λ)

)
.

Again, by using Plancharel formula we obtain

‖u‖2
H2n,2

k,k′ (R)
≤ C

(
‖u‖2L2

Ak,k′
(R) + ‖P (−4k,k′)u‖2L2

Ak,k′
(R)

)
.

Now, we complete the proof using Proposition 17 that is, that Sk,k′(R) is dense in H2n,2
k,k′ (R). �

Proposition 24. Let f ∈ Bs,k,k′

2,q (R) then exists g ∈ S′k,k′(R) such that

(I −4k,k′)
mg = f

where I is the identity operator and m ∈ N\{0}.

Proof. Let us consider f ∈ Bs,k,k′

2,q (R). We want to obtain g ∈ S′k,k′(R) such that

(I −4m
k,k′)g = f.

Applying the Opdam-Cherednik transform we have

(λ2 + 1)mF(g) = F(f).

Now, using the inverse transform we get

F−1
(

(λ2 + 1)−mF(g)
)

= J 2m
k,k′(f).

On the other hand, by Proposition 23, we obtain that g ∈ Bs+2m,k,k′

2,q (R). Thus the proof is
complete. �

5.2. Generalized wave equation.

Lemma 7. i) For all p, q ∈ [1,∞], 1
r = 1

p + 1
q − 1 ≥ 0, s, s′ ∈ R, f ∈ Hs,p

k,k′(R) and g ∈ Hs′,q
k,k′(R)

then

f ∗k,k′ g ∈ Hs+s′,r
k,k′ (R),

and we have

‖f ∗k,k′ g‖Hs+s′,r
k,k′ (R)

≤ Ck,k′‖f‖Hs,p

k,k′ (R)‖g‖Hs′,q
k,k′ (R)

,

with Ck,k′ the constant given by the relation (2.19).

ii) For all 1 ≤ p < q ≤ 2, s, s′ ∈ R, f ∈ Hs,p
k,k′(R) and g ∈ Hs′,q

k,k′(R) then

f ∗k,k′ g ∈ Hs+s′,q
k,k′ (R),

and we have

‖f ∗k,k′ g‖Hs+s′,q
k,k′ (R)

≤ C‖f‖Hs,p

k,k′ (R)‖g‖Hs′,q
k,k′ (R)

,
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with C is a positive constant.

iii) Let 2 < p, q <∞ such that q
2 ≤ p < q, s, s′ ∈ R, f ∈ Hs,p

k,k′(R) and g ∈ Hs′,q′

k,k′ (R) then

f ∗k,k′ g ∈ Hs+s′,q
k,k′ (R),

and we have

‖f ∗k,k′ g‖Hs+s′,q
k,k′ (R)

≤ C‖f‖Hs,p

k,k′ (R)‖g‖Hs′,q′
k,k′ (R)

,

with C is a positive constant, and q′ the conjugate composent of q.

iv) Let 1 < p < 2 and p < q ≤ p
2−p , s, s′ ∈ R, f ∈ Hs,p

k,k′(R) and g ∈ Hs′,p
k,k′(R) then

f ∗k,k′ g ∈ Hs+s′,q
k,k′ (R),

and we have

‖f ∗k,k′ g‖Hs+s′,q
k,k′ (R)

≤ C‖f‖Hs,p

k,k′ (R)‖g‖Hs′,p
k,k′ (R)

,

with C is a positive constant.

Proof. The results are given by Proposition 6 and the definition of the generalized potential
spaces. �

This is the generalized wave equation where the unknown is a function u (with real values)
of (t, x) ∈ R× R:

(W )


∂2
t u−4k,k′u = 0
ut|=0 = u0 ∈ Hs,p

k,k′(R)

∂tut|=0 = u1 ∈ Hs′,q
k,k′(R).

Corollary 4. Let us define C :=
{
ξ ∈ R, r ≤ |ξ| ≤ R

}
for some positive r and R such that

r < R. We assume that u0 and u1 are two functions such that

supp F(uj) ⊂ C.

i) For p = q = 2, u ∈ Ha+s,∞
k,k′ (R) +Hb+s′,∞

k,k′ (R), where a, b ∈ R. For a+ s = b+ s′ = c,

‖u‖Hc,∞
k,k′ (R) ≤ C

(
‖u0‖Hs,2

k,k′ (R)
+ ‖u1‖Hs′,2

k,k′ (R)

)
.

ii) For p 6= 2 and q 6= 2, u ∈ H
a+s, 2p

2−p
k,k′ (R)+H

b+s′, 2q
2−q

k,k′ (R), where a, b ∈ R. For a+s = s′+b = c

‖u‖
H
c,

2p
2−p

k,k′ (R)
≤ C

(
‖u0‖Hs,p

k,k′ (R) + ‖u1‖Hs′,p
k,k′ (R)

)
.

iii) For all 1 ≤ p, q < r ≤ 2, s, s′ ∈ R, u ∈ Ha+s,r
k,k′ (R) + Hb+s′,r

k,k′ (R), where a, b ∈ R. For

a+ s = s′ + b = c

‖u‖Hc,r

k,k′ (R) ≤ C
(
‖u0‖Hs,p

k,k′ (R) + ‖u1‖Hs′,q
k,k′ (R)

)
.

iv) Let 2 < p, q, r < ∞ such that r
2 ≤ p, q < r, s, s′ ∈ R, u ∈ Ha+s,r

k,k′ (R) + Hb+s′,r
k,k′ (R), where

a, b ∈ R. For a+ s = s′ + b = c

‖u‖Hc,r

k,k′ (R) ≤ C
(
‖u0‖Hs,p

k,k′ (R) + ‖u1‖Hs′,q
k,k′ (R)

)
.

v) Let 1 < p, q < 2 and p < r ≤ p
2−p , q < r ≤ q

2−q , s, s′ ∈ R, u ∈ Ha+s,r
k,k′ (R) +Hb+s′,r

k,k′ (R),

where a, b ∈ R. For a+ s = s′ + b = c

‖u‖Hc,r

k,k′ (R) ≤ C
(
‖u0‖Hs,p

k,k′ (R) + ‖u1‖Hs′,q
k,k′ (R)

)
.

Proof. The results are immediately from Duhamel expression for the solution and Lemma 7. �
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5.3. Generalized Schrödinger equation. We consider the following equation where the un-
known is a function u (with complex value) of (t, x) ∈ R× R

(S)

{
∂tu− i4k,k′u = 0
u|t=0 = g.

Theorem 7. Let g be in S ′k,k′(R). There exists a unique solution u ∈ E(R;S ′k,k′(R)) such that

(S)

{
∂tu− i4k,k′u = 0, in D′(R× R)
u|t=0 = g.

Proof. Firstly we prove the existence. For t ∈ R, we put

(5.47) ut = F−1(e−it|ξ|
2F(g)).

From (2.28) we have

〈ut, ϕ〉 = 〈F(g), e−it|ξ|
2F−1(ϕ)〉.

Thus we deduce that ut ∈ E(R;S ′k,k′(R)), and F(ut) ∈ E(R;S ′(R)).
We recall that u is defined by

〈u, ψ〉 =

∫
R
〈ut, ψ(t, .)〉dt, ψ ∈ S(R,Sk,k′(R)).

Then for any ψ in S(R,Sk,k′(R)), we have from (2.29)

〈∂tu− i4k,k′u, ψ〉 = −〈u, ∂tψ + i4k,k′ψ〉 = −
∫
R
〈ut, ∂tψ(t, .) + i4k,k′ψ(t, .)〉dt

= −
∫
R
〈F(ut),F−1

(
∂tψ(t, .) + i4k,k′ψ(t, .)

)
〉dt

= −
∫
R
〈e−it|.|2F(g), (∂t − i|.|2)F−1ψ(t, .)〉dt.

But

∂t

(
e−it|ξ|

2F−1ψ(t, ξ)
)

=
[
(∂t − i|ξ|2)F−1ψ(t, ξ)

]
e−it|ξ|

2
.

Thus

〈∂tut − i4k,k′u, ψ〉 = −
∫
R
〈F(g), ∂t

(
e−it|.|

2F−1ψ(t, .)
)
〉dt

= −
∫
R
∂t〈F(g), e−it|.|

2F−1ψ(t, .)〉dt = 0.

Thus we have proved that u is solution of (S).
Now we prove the uniqueness, which equivalently proves that u ≡ 0 is the solution of problem{

∂tu− i4k,k′u = 0, in E(R;S ′k,k′(R))
u|t=0 = 0.

Indeed for all ψ in S(R,Sk,k′(R)) we have

0 = 〈∂tu− i4k,k′u, ψ〉 = −
∫
R
〈ut, (∂t + i4k,k′)ψ(t, .)〉dt.

But
d

dt
〈ut, ψ(t, .)〉 = 〈u(1)

t , ψ(t, .)〉+ 〈ut, ∂tψ(t, .)〉,

hence

(5.48) 0 = −
∫
R

d

dt
〈ut, ψ(t, .)〉dt+

∫
R

[
〈u(1)
t , ψ(t, .)〉 − i〈ut,4k,k′ψ(t, .)〉

]
dt.

As ψ(−∞, .) = ψ(∞, .) = 0, then we obtain

(5.49)

∫
R

[
〈u(1)
t , ψ(t, .)〉 − i〈ut,4k,k′ψ(t, .)〉

]
dt = 0.
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Moreover, using that F(u
(1)
t ) = (F(ut))

(1) and the relations (5.49),(2.13) we deduce

(5.50)

∫
R

[
〈(F(ut))

(1),F−1ψ(t, .)〉+ i〈F(ut), |.|2F−1ψ(t, .)〉
]
dt = 0, ∀ψ ∈ S(R,Sk,k′(R)).

If we take ψ such that F−1ψ(t, ξ) = eit|ξ|
2
ϕ(ξ)χ(t) with ϕ in Sk,k′(R), χ in S(R), we obtain

(5.51)

∫
R

[
〈(F(ut))

(1), eit|.|
2
ϕ〉+ i〈F(ut), |.|2eit|.|

2
ϕ〉
]
χ(t)dt = 0, ∀χ ∈ S(R).

Thus we deduce that

(5.52)
d

dt
〈F(ut), e

it|.|2ϕ〉 = 〈(F(ut))
(1), eit|.|

2
ϕ〉+ i〈F(ut), |.|2eit|.|

2
ϕ〉 = 0, ∀ϕ ∈ Sk,k′(R).

Hence for all ϕ in Sk,k′(R), the function t 7→ 〈F(ut), e
it|.|2ϕ〉 is constant.

Finally, since u0 = 0 then

〈F(ut), e
it|.|2ϕ〉 = 〈F(u0), ϕ〉 = 0, ∀ t ∈ R; ∀ϕ ∈ Sk,k′(R).

From this we deduce that u = 0. �

Proposition 25. Let g be in W s,p
k,k′(R), s ∈ R and 1 ≤ p < ∞, the solution u given by the

Theorem 7 belongs to C(R;W s,p
k,k′(R)). For m in N, (u

(m)
t ) ∈ C(R;W s−m,p

k,k′ (R)) and we have

(5.53)

 ||ut||W
s,p

k,k′ (R) = ||g||W s,p

k,k′ (R), ∀ t ∈ R

||u(m)
t ||W s−m,p

k,k′ (R) ≤ Cm||g||W s,p

k,k′ (R), ∀ t ∈ R; ∀m ∈ N∗.

Proof. The formula (5.47) give that, for all t in R,

F(ut) = e−it|ξ|
2F(g).

Thus it is easy to deduce (5.53).

Now we will prove that for m in N, (u
(m)
t ) belongs to C(R;W s−m,p

k,k′ (R)). Indeed, let (tn)n a

sequence that converge to t0 in R, we have

||utn − ut0 ||2W s,p

k,k′ (R) =

∫
R

(1 + |ξ|2)sp|e−itn|ξ|2 − e−it0|ξ|2 |p|F(g)(ξ)|pdνk,k′(ξ).

The dominate convergence theorem gives that

lim
n→∞

||utn − ut0 ||
p
W s,p

k,k′ (R)
= 0.

On the other hand, from (5.47) we have

F(u
(m)
t ) = (−i|ξ|2)me−it|ξ|

2F(g).

From this we obtain

||u(m)
tn − u

(m)
t0
||p
W s,p

k,k′ (R)
=

∫
R

(1 + |ξ|2)sp|e−itn|ξ|2 − e−it0|ξ|2 |p|ξ|2mp|F(g)(ξ)|pdνk,k′(ξ).

Thus the dominate convergence theorem gives the result. �

5.4. Practical real inversion formulas for the generalized wavelet transform S
(k,k′)
g . In

this paragraph we give practical real inversion formulas. Using the harmonic analysis associated
with the operator Tk,k′ we define and study in this subsection the generalized wavelet and the
generalized continuous wavelet transform.

Definition 11. A generalized wavelet on R is a measurable function h even on R satisfying for
almost all x ∈ R, the condition

(5.54) 0 < Ch =

∫ ∞
0
|F(h)(λx)|2dλ

λ
<∞.
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Example 1. Let Et, t > 0, the heat kernel is defined on R by

(5.55) ∀x ∈ R, Et(x) = F−1(e−tλ
2
)(x).

The function h(x) = − d

dt
Et(x) is a generalized wavelet on R in S(R), and we have Ch =

1

8t2
.

Proposition 26. Let a > 0 and h be a generalized wavelet in L2
Ak,k′

(R). Then there exists a

function ha in L2
Ak,k′

(R) such that

(5.56) ∀ y ∈ R, F(ha)(y) = F(h)(ay).

This function is given by the relation

(5.57) ha =
1√
a
F−1 ◦Da−1 ◦ F(h)

and satisfies

(5.58) ||ha||2,Ak,k′ ≤
s(a)√
a
||h||2,Ak,k′ ,

where

s(a) = sup
λ∈R

|ck,k′(|λ|)|
|ck,k′( |λ|a )|

, and Da(f)(x) =
1√
a
f(
x

a
).

Proof. We use a similar ideas as in [9]. �

Let a > 0 and h be in L2
Ak,k′

(R). We consider the family ha,x, x ∈ R, of functions on R in

L2
Ak,k′

(R) defined by

(5.59) ha,x(y) =
a

1
2

s(a)
τk,k

′
x ha(−y), y ∈ R,

where τk,k
′

x , x ∈ R, are the generalized translation operators given by (2.17).

Definition 12. Let h be a generalized wavelet on R in L2
Ak,k′

(R). The generalized continuous

wavelet transform S
(k,k′)
h on R is defined for regular functions f on R by

(5.60) S
(k,k′)
h (f)(a, x) =

∫
R
f(y)ha,x(y)Ak,k′(y)dy, a > 0, x ∈ R.

• Let h be a generalized wavelet on R in L2
Ak,k′

(R) such that F(h) ∈ L∞νk,k′ (R). It is easily to

see that the generalized continuous wavelet transform S
(k,k′)
h , is a bounded linear operator from

W 2t,2
k,k′ (R), t ≥ 0, into L2

Ak,k′
(R), and we have

‖S(k,k′)
h f(a, .)‖L2

Ak,k′
(R) ≤ C(a)‖F(h)‖L∞νk,k′ (R)‖f‖W 2t,2

k,k′ (R)
, f ∈W 2t,2

k,k′ (R).

• Let λ > 0, t ≥ 0 and h be a generalized wavelet on R in L2
Ak,k′

(R) such that F(h) ∈ L∞νk,k′ (R).

We define the Hilbert space Hλ,th,Ak,k′ (R) as the subspace of W 2t,2
k,k′ (R) with the inner product:

〈f, g〉Hλ,th,Ak,k′
= λ〈f, g〉

W 2t,2

k,k′ (R)
+ 〈S(k,k′)

h f(a, .), S
(k,k′)
h g(a, .)〉L2

Ak,k′
(R), f, g ∈W 2t,2

k,k′ (R).

The norm associated to the inner product is define by:

‖f‖2Hλ,th,Ak,k′
:= λ‖f‖2

W 2t,2

k,k′ (R)
+ ‖S(k,k′)

h f(a, .)‖2L2
Ak,k′

(R).

We proceed as [9] we prove the following results.
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Proposition 27. Let t > 2k+1
4 and h be a generalized wavelet on R in L2

Ak,k′
(R) such that

F(h) ∈ L∞νk,k′ (R). Then the Hilbert space Hλ,th,Ak,k′ (R) admits the following reproducing kernel

Wλ,h(x, y) =

∫
R

G
(k,k′)
ξ (x)G

(k,k′)
ξ (−y)

λ(1 + |ξ|2)2t + [F(h)(aξ) ]2
(1− ρ

iξ
)

dξ

8π|ck,k′(ξ)|2
.

Theorem 8. Let t > 2k+1
4 and h be a generalized wavelet on R in L2

Ak,k′
(R) such that F(h) ∈

L∞νk,k′ (R).

i) For any g ∈ L2
Ak,k′

(R) and for any λ > 0, the best approximate function f∗λ,g in the sense

inf
f∈W 2t,2

k,k′ (R)

{
λ‖f‖2

W 2t,2

k,k′ (R)
+ ‖g − S(k,k′)

h f(a, .)‖2L2
Ak,k′

(R)

}
= λ‖f∗λ,g‖2W 2t,2

k,k′ (R)
+ ‖g − S(k,k′)

h f∗λ,g(a, .)‖2L2
Ak,k′

(R)

exists uniquely and f∗λ,g is represented by

f∗λ,g(a, x) =

∫
R
g(y)Qλ,h(x, y)Ak,k′(y)dy,

where

Qλ,h(x, y) =

∫
R

F(h)(aξ)G
(k,k′)
ξ (x)G

(k,k′)
ξ (−y)

λ(1 + |ξ|2)2t + [F(h)(aξ)]2
(1− ρ

iξ
)

dξ

8π|ck,k′(ξ)|2
.

ii) If we take g = S
(k,k′)
h f(a, .), then

f∗λ,g → f as λ→ 0, uniformly .

iii) Let δ > 0 and let g, gδ satisfy ‖g − gδ‖L2
Ak,k′

(R) ≤ δ. Then

‖f∗λ,g − f∗λ,gδ‖W 2t,2

k,k′ (R)
≤ δ√

λ
.
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