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Abstract

We give explicit representations of the generalized Drazin inverse of a block matrix
having generalized Schur complement generalized Drazin invertible in Banach algebras.
Also we give equivalent conditions under which the group inverse of a block matrix exists
and a formula for its computation. The provided results extend earlier works given in the
literature.
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1 Introduction

Let A be a complex unital Banach algebra with unit 1. For a € A, the symbols o(a) and
p(a) will denote the spectrum and the resolvent set of a, respectively. We use A" and A,
respectively, to denote the sets of all nilpotent and quasinilpotent elements (o(a) = {0}) of
A.

The concept of the generalized Drazin inverse in Banach algebras was introduced by
Koliha (see [7]). For a € A, if there exists an element b € A which satisfies

bab = b, ab = ba, a—a’be AT

then b is called the generalized Drazin inverse of a (or Koliha-Drazin inverse of a), and a
is generalized Drazin invertible. If the generalized Drazin inverse of a exists, it is unique
and denoted by a®. The set of all generalized Drazin invertible elements of A is denoted by
A, If a € A¢, the spectral idempotent a™ of a corresponding to the set {0} is given by
a™ = 1 —aa®. The Drazin inverse is a special case of the generalized Drazin inverse for which
a —a’b € A™. Obviously, if a is Drazin invertible, then it is generalized Drazin invertible.
The group inverse is the Drazin inverse for which the condition a — a?b € A™! is replaced
with a = aba. We use a? to denote the group inverse of a, and we use A# to denote the set
of all group invertible elements of A. Some interesting result about Cline’s formula for the
generalized Drazin inverse can be found in [10].

The next result is proved for matrices [6, Theorem 2.1], for bounded linear operators [4,
Theorem 2.3] and for elements of Banach algebra [1].
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Lemma 1.1. [1, Example 4.5] Let a,b € A? and let ab= 0. Then

o0

(CL—I—b)d:Z( n+1 naW—FZbﬂbn n—i—l'

n=0

If a € A9 then a? exists and a® = 0. Consequently, by Lemma 1.1, the following
lemma, which the part (i) is proved by N. Castro Gonzélez and J. J. Koliha [1] and part (ii)
for bounded linear operators in [4, Theorem 2.2], holds.

Lemma 1.2. Let b e A% and a € AT,

(bd)nJrlan.

|
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(i) [1, Corollary 3.4] If ab =0, then a +b € A? and (a + b)? =

n=0

an(bd)nJrl_

18

(ii) If ba =0, then a+b € A% and (a + b)¢ =

n=0

Let p = p? € A be an idempotent. Then we can represent element a € A as
ail a12
a= )
[ az1 022 }
where a11 = pap, a12 = pa(l — p), a1 = (1 — p)ap, aze = (1 — p)a(l — p).

The following result is well-known for complex matrices (see [13]) and it is proved for
elements of Banach algebra [8].

Lemma 1.3. [8, Lemma 2.2] Let z = { CCL Z] € A relative to the idempotent p € A,

a € (pAp)? and let w = aa® 4 a®bea be such that aw € (pAp)?. If ca™ = 0, a™b = 0 and the
generalized Schur complement s = d — ca®b is equal to 0, then

| A | S s o ek RS

T T el 0 0 0 0 O ca[(aw)?a  ca’[(aw)?]?b

The Drazin inverse has applications in a number of areas such as control theory, Markov
chains, singular differential and difference equations, iterative methods in numerical linear
algebra, etc.

Campbell and Meyer [2] proposed the problem of finding an explicit representation for
the Drazin inverse of a complex block matrix in terms of its blocks. This problem has not
been solved yet without any restrictions upon the blocks. Many authors have considered this
problem and presented formulae for the Drazin inverse under specific conditions [3, 5, 11, 15].

Let

a b
x = [ e d ] cA (2)
relative to the idempotent p € A, a € (pAp)? and let the generalized Schur complement

s=d—ca® € ((1—p)A(1 —p))L The generalized Schur complement s plays an important
role in the representations for z% in many cases [5, 11, 12, 15].



Several representations for the Drazin inverse of a 2 x 2 block matix under conditions
which involve W = AAP 4+ APBCAP and the generalized Schur complement equals to 0
are presented by Hartwig et al. [5]. In [9] Li gave a representation for the Drazin inverse
of block matrices with a group invertible generalized Schur complement S and in terms of
W = AAP + APBS™C AP | recovering the formula (1) for complex matrices [13].

In [14], some representations of the generalized Drazin inverse of a block matrix z in
(2) with a group invertible generalized Schur complement s = d — ca® are investigated,
under different conditions. The aim of paper [14] was to further weaken the conditions on the
elements needed to produce explicit formulae for the generalized Drazin inverse of x compared
to those known from the literature.

Under certain conditions, we present some formulae for the generalized Drazin inverse of
a block matrix z in (2) in terms of w = aa® + a®bs"ca? with generalized Schur complement
being generalized Drazin invertible in Banach algebras. Such formulae are very complicated,
but the main goal is to establish that z has the generalized Drazin inverse, and the formulae
are the means to produce that result. Necessary and sufficient conditions for the existence
as well as the expressions for the group inverse of triangular matrices are obtained as a
consequence. Recently results [13, 14] are extended to more general settings.

2 Results

Throughout this section when we say that = is defined as in (2), we assume that x has a
representation as in (2) relative to the idempotent p € A, a € (pAp)? and s = d — cab €
(1= p)AQL - ).

In the beginning of this section we derive new representation of the generalized Drazin
inverse of a block matrix = in (2) with a generalized Drazin invertible generalized Schur
complement in terms of the generalized Drazin inverse of a, s and a(aa? + a%bca?). This
representation for the generalized Drazin inverse of z is investigated under some rather cum-
bersome and complicated conditions but the theorem itself will have useful consequences
which will include much simpler conditions.

Theorem 2.1. Let x be defined as in (2) and let w = aa®+a?bs™ca? be such that aw € (pAp)?.
If

a"b=0, bs"ca®™ =0, wbss?=0, sslca¥bss?’=0, ss"c=0, (3)



then x € A% and

d 0 bSd
o= <1+[0 ca®hs?

0 0
[ (sM)2cal(aw)™a — s?ca(aw)?a s — scat(aw)?b + (5%)2cat(aw)™bs™ ]

+ nzz:l [ (sd)n+lcan—1a7r (Sd)2cad[(aw)d]”b$" _ Sdcad[(aw)d]n+1b5” :|
’ Zg ([ (s)"* L cad(aw)" Y (aw)™a  (s7)"*1cad(aw)" ! (aw)"bs™ ]
+ ; [ 0 (Sd)nJrlcad(aw)"*l[(aw)d]kbsk ]

k=1
—bs! [0 o) s
" [ g (1—-p) —ds? ] (r +n§1 [ 0 cal[(aw)?]"+2bsm ]) ’ (4)
where B [(aw d}Qa [(aw d]QbSﬂ—
"= [ ca® (aw)d}Qa ca® (aw)d]Qbs7r ] )

Proof. Since aa® + a™ = p and ss? 4+ s™ = 1 — p, we can write

a2a®  bsT + aa™ bss® N
caa® ds™ T odssd | T YTH

ca
The equalities aa™ = 0, s™s% = 0 and (3) imply

bs™ca™ awbss?
z= =
Y ca®bs™ca™ + ssTca™  cwbsst + ssTealbss?

In order to verify that y € A%, observe that

[ a%a?  bsT n 0 0 | "
Y=\ caa® cadbs™ 0 ss™ | YT

If A, = a?a?, By, = bs™, Cy, = caa® and D,, = cas™, by (a?a®)# = a?, A, € (pAp)*

Sy = Dy, — Cp Afi By, = 0 and W, = Ay A, + A} B, Cy A, = w. From A7 By,

a™bs™ =0, Cy, Ay, = 0 and Lemma 1.3, we have that y; € A? and

L 0 0]

d
1



Recall that, for u = [ m ],
0 n

A€ ppAp(m) N p(l—p)A(l—p)(n) = A€ p(u),
i.e.
o(u) C opap(m) Uon_paa—p)(n).

Thus, ss™ € ((1 — p)A(1 — p))? gives yo € A Using Lemma 1.2(i), by yoy1 = 0, we
deduce that y € A% and

d_N~pdynilon N~ 00"
y_g@Wy_gw[O%J.

To prove that z € A%, consider

L aa™ 0 n 0 o0 n 0 bss? o b2tz
- ™0 0 s2s4 0 cadbssd |~ LT 2T

Because aa™ € (pAp)qm'l and (std)# — Sd, then 21 € Aqm’l’ 29 € A# and Z# = [ 8 SOd :|

o0
From 2120 = 0 and Lemma 1.2(i), 21 + 20 € A? and (21 + 22)¢ = Z(zf)"“ . Also,
n=0
z3 € A" by 22 = 0. Now, by (21 + 22)23 = 0 and Lemma 1.2(ii), we conclude that z € .A¢
and 2% = (21 + 22)% + 23[(21 + 22)%)2.
Applying Lemma 1.1, we obtain that z € A% and

o0

$d _ Z( n+1n7r+zz n+1
n=0
[ee]
= Z(l + z3(21 4 20)D)[(21 + 20) Yy "y + Z Hrtl = X1 + Xo. (5)
n=0
From z1y = 0, we get (21 + 20)% = z#y and
o (e}
Z[(Zl + 2) "y = (24 2)t+ Z[(Zi + Zz)d]nzfyn
n=0 n=1
0o 0o n
= (214 2)+ Z Z# + Z(z#)kﬂzk) 2y
n=1 k=1
o oo
= (21 +2)+ Z ()" + () Z(z#)kﬂzk) 2y
n=1 k=1
o0 oo
— Z(Z#)n+1 + Z(Z;#)rﬂrlyn
n=0 n=1



implying

X, =

1+Zi k+1 >(i n+1n+z n+1n> ™
3

[
(-]
(

_l’_

k=
[0
0 cad
[0 bs?
3 ) (e St Strony)
- n=1
[0 bs? - R x
= (1[5 i ]) (e Sty s Sty ).
- n=1

n=0

It can be check that aa®(aw) = aw = (aw)aa?,
[e.e] o0
=yt =Y DME T =ul - YWD + e
n=1 n=1

and
[oe)

VU =iyt - Y DM+ vk e (n=2,3,..0).
k=1
Further, note that

aw dn+1 M g™
(yl)nyg = |: 0 Ca[c(l (az)u)]d;;-‘flbsnsw :|

k[0 (aw)klpsnFsm
Y1Y2 - 0 Cad(aw)k—lbsn—ksw

Also, we can show that

s 4| P (aw)%a —(aw)?bs™
v =1-yn = { —ca®(aw)?a (1 — p) — ca®(aw)lbs™
and
n x| aa(aw) Haw)a  (aw)" " (aw)Tbs™
Yo = ca(aw)" Y aw)"a ca(aw)" " (aw)Tbs™

Therefore, by these equalities, (6) and, forn =1,2,... and k =1,2,...,

(z#)t gk — 0 0
1 (sd)”+1cad(aw)k_1a (Sd)n+lcad(aw)k—1b8w )

2 +Z (=5 D i <Z<zf>"z?+z<z#>"y">y

(n=1,2,...).



we obtain

0 bs? 0 0
Xio= <1 + [ 0 cabs? }) {[ —s%ca(aw)?a s — Sdcad(aw)db }

— [0 0 0
[0 stea](aw)?mHpsn ]‘*‘Z[ n+1 algm 0}

(sd)%ag(aw)ﬂa (sd)2cad0aw ThsT ]*Z[ [(%w)d]"bs”}

1

+

= 0 0
+ Z <[ (s eat(aw)™ Haw)"a (s ea®(aw) ! (aw)Tbs™ ]

- Z [ 0 (s9)"Lead(aw)[(aw)?]Fbsk }

k=1
n—1
0 0
+ 2 [ 0 (s ead(qu)k—Lpsn g ])} (7)
Observe that, by
zzdy = [(z21 + 22)(21 + ZQ)d + z3(z1 + zz)d]y =(z1+ zz)z#y + z;;z#y

= (2 +23)20y,

_pst
we have zz%y? = (2 + %)zfyd, 2Tyt = [ ]5 (1 _p)s_ s ] y? and zz"y? = z1y(y?)? = 0.
Hence,
[e.e]
Xy = ZTl'yd+ ZZnZTr(yd)n—l—l — Zwyd
n=1
I —bs? [0 [(aw)l"2bs"
N [ 0 (1—p)—ds? } (T + Z_:l [ 0 ca](aw)?]"+2bs" ’ (8)
Thus, from (5), (7) and (8), we get (4). O

Similarly as Theorem 2.1, we get the following formula for the generalized Drazin inverse
of block matrix. For the sake of clarity of presentation, the proof is given.

Theorem 2.2. Let x be defined as in (2) and let w = aa®+a%bs™ca® be such that aw € (p.Ap)?.
If

ca™ =0, a"bs"c=0, sstcw=0, sstca®bss?=0, bs"s=0,



then x € A% and

d __ - 0 0
= <t+z [ s"ca[(aw)" 2a  s"ca’|(aw)?|" T2 ) { sde (1—p) _de]

[ - aa®(aw)™b(s%)? — (aw)bs? ] i[o a a™b(s )n+1}

5% — s7cal(aw)?bs? + s™ca(aw)™b(s 0 0

+
—

n=1
0
s ea[(aw)?]"2bs? — " s ca[(aw) ] b(s?)?

0

0

K

< [ ~(aw)Tb(s?)" ! }
! 0 s™ca?

k

)n—l (aw)”b(sd)”+1
0
Sk—i—lca aw)d]k—i-l (aw)n—lb(sd)m—l }

+
WE

3
Il
o

+
NE

3
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+
NE

k=0
TN | T TR N
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Proof. Notice that

[aQad aadb] [ aa™ a™b
xr =

sTe sTd d :| =y+=z

sste  ssid

and zy = 0.
To show that y € A%, let

_ a2a®  aad + 0O O N
Y= | ¢ s™cah 0 s7s | LTI

Then, by Lemma 1.3, y; € A% and y{ = t. Since yo € A and 12 = 0, by Lemma 1.2(ii),
oo
y € A and y? = 3 yy(yf)" .

n=0

Now, we will check that z € A%, If

aa™ a™b 0O O 0 0
L0 0 [ Tlo st | T s dy | AT a2

S§§°C SS ca

we have z; € AT 2, ¢ A#, z% =0, 2221 = 0 and 23(21 + 2z2) = 0. Applying Lemma 1.2,
o0
first 21 + 22 € A and (21 + 22)% = z?(zQ#)"H; and then z € A% and 2¢ = (21 + 29)? +

n=0

[(21 + 22)Y223.



Using Lemma, 1.1, we deduce that = € A¢ and

o0
xd _ Z( n+1 nzﬁ+zy n+1 = X, + Xo. (10)
n=0
0
By yz1 = 0, y(z1 + 20)% = yz#, ylz™ = y? [ —];dc (1—p) — std ] and y%2"z = 0. So,

o
X =yde™ 4+ 3 (yh) T2 = y?2™. Since, for n =1,2,... and k=1,2, ...,
n=1

ngk _ 0 0
Yo = snsﬂcad[(aw)d]k"'la s”s”cad[(aw)d]k"'lb )

we get
oo
0 0
X1 = <t+z:1 [ shcal[(aw)¥" 24 s"ca[(aw)d]"+2b })
n=
P 0
. [ —slc (1 —p)—std ] (11)
Furthermore,
o0
Zy”y”( = Zy y"[(z1 4+ 22) A+ (21 4 22)23)
n=0
= (y z1 + 22) dy Z:l/ﬂ'ynzjé [(z1 + Zg)d]n> (14 (21 + Zz)d2’3)
[e.e] o
[ Sy St (@n IIES
n—0 = k=1
n=1
(0.9}
[yﬂZz W [
n=0
oo
[ywzﬁzz 3yt | ()
n=1
We can get

oo
= T ehH™, YTy =y - Z s )y + e,

vy = iy — Zy”“ "“”JrZy” ", (n=2,3,...),



and also, forn=1,2,... and k=1,...,n—1,

~ | p—(aw)a —(aw)?b
1= [ —s"ca(aw)?a (1 —p) — s"ca®(aw)? ]

aa(aw)" Y(aw)"a  aa?(aw)"(aw)™b ]
d d 1

ynyﬂ':
1 s™ca(aw)" " (aw)"a s cal(aw)" " (aw)™b

_ 0 0
n _
Ys Y1 = |: s"’ks”cad(aw)k’la Snfksfrcad(aw)kflb :| )

v [0 aa(aw)rTp(styrt
U1 (22) - 0 Sﬂcad aw)n—lb(sd)n—l—l

Now we obtain

* {{ 8 sd — S(Z;Ud)dcfz dpsd ] * Z [ 0 smHt [(a(iu) st }

T 0 an—lawb(s )n—l—l 0 d(aw)ﬁb( d)2

+ T; 0 0 1o sea 4(aw)™b( sd)2

B i [0 0 OO n l(aw)wb(sd)n—i-l
— |0 s" 5™ ca[(aw) ] b(s? 0 s™ca®(aw)" ! (aw)™b(s?)" 1
—[0 0

+ kzo 0 Sk-i—lcad[(aw)d]k-i-l(aw n— lb n+1 ]

i
L

* [ 8 8"’“sﬁcad(m?;)k1b(sd)”Jrl D} (1 + [ Sgc 5l coadb D (12)

el
—_

The equalities (10), (11) and (12) imply (9). O

If we assume that the generalized Drazin Schur complement s is group invertible in The-
orem 2.1 and Theorem 2.2, we obtain [14, Theorem 2.1 and Theorem 2.2].

Using Theorem 2.1 and Theorem 2.2, we can get the next result which recovers Lemma
1.3 and the analogy result for matrices [13].

Corollary 2.1. Let x be defined as in (2) and let w = aa®+a%bea’ be such that aw € (p.Ap)?.
If s =0, and if

(@™b =0 and bea™ = 0) or (ca™ =0 and a"bc = 0) or (a™b =0 and ca™ = 0),
then x € A? and x? is defined as in (1).

In the following theorems, we study the group inverse of a triangular block matrix. First, if
b = 0in Theorem 2.1, we obtain the equivalent conditions for the existence and representation
of the group inverse of .

10



Theorem 2.3. Let x = [ CCL S } € A relative to the idempotent p € A, a € (pAp)? and
s€ ((1—p)A —p))?. Assume that ss™c = 0. Then
x € A" if and only if a € (pAp)*, s € (1 —p)A(l —p))* and s™ca™ = 0.
Furthermore, if a € (pAp)?”, s € (1 — p)A(1 — p))* and s"ca™ = 0, then
4 a® 0
v [ sTc(a®)? — st ca¥ + (s7)%ca™ s* } ’

Proof. Using Theorem 2.1 for b = 0, by s = d, w = aa?, (aw)* = a? and a%(aw)™ = a%a™ = 0,
we have z € A? and

o0
d a? 0 N Z 0 0
¢ = .
ch(ad)z — g%cq? g9 ‘ (Sd)n+1can—1a7r 0
n=
Now we get
a’a? 0
1‘2$d — 00
caa® + 3 2(sV)"Hleata™ 525 |
n=1
o0
which gives that 222? = z is equivalent to a?a? = a, s?s% = s and > s(s%)"ca” 'a™ = ca™.

n=1

Therefore, x € A# if and only if a € (pAp)*”, s € ((1 — p)A(1 —p))* and ss?ca™ = ca™. [
By Theorem 2.3, if « is defined as in Theorem 2.3, we can get:
(1) if s"¢ =0, then
x € A% if and only if a € (pAp)* and s € ((1 —p)A(1 — p))¥;

(2) if s € ((1 —p)A(1 —p))~L, then
x € A" if and only if a € (pAp)”.
In addition, if s € ((1 — p).A(1 —p))~! and a € (pAp)7*,

.%'# . CL# O
| —s7lea® + 57 2%ca™ s

For ¢ = 0 in Theorem 2.2, we show the next result similarly as Theorem 2.3.

8 z } € A relative to the idempotent p € A, a € (pAp)? and

s€ ((1—p)A(l —p))d. Assume that bs™s = 0. Then
x € A% if and only if a € (pAp)*, s € ((1 —p)A(l —p))* and a™bs™ = 0.
Furthermore, if a € (pAp)*, s € (1 — p)A(1 — p))* and a™bs™ = 0, then

4 a®  (a™)?bs™ — a®bs? 4 a™b(s7)?
T =
0 s?

Theorem 2.4. Let x = {

11



Notice that, if x is defined as in Theorem 2.4, we have:
(1) if bs™ = 0, then

x € A% if and only if a € (pAp)* and s € ((1 —p)A(1 — p))¥;

(2) if s € ((1 —p)A(1 —p))~L, then
x € A" if and only if a € (pAp)”.
In addition, if s € ((1 — p).A(1 —p))~! and a € (pAp)7*,

4 a? —a?bs ! + a"bhs?
" = -1
0 s

Expressions for the group inverses in Theorem 2.3 and Theorem 2.4 are the special cases
of [1, Theorem 2.3] for Banach algebra elements and [4, Theorem 2.2] for bounded linear
operators. Also these expressions are extensions of formulae in [14, Theorem 2.3 and Theorem
2.4).

In the end of this section, we state an example to illustrate our results.

Example 2.1. In Banach algebra A, if x = [g 8] € A(orz = [ZC) 8] € A
relative to the idempotent p € A, then ¢ = a =p, a™ =0, s =0 = s¢, s" =1 —p
and w = p = aw = (aw)?. Using Theorem 2.1 or Theorem 2.2, we get that z € A% and

z? = [g 8] (or ¢ = [Zc) 8])
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