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1 Introduction

Frames were first introduced by Duffin and Schaeffer [12] in the context of nonharmonic Fourier

series. Outside of signal processing, frames did not seem to generate much interest until the

ground breaking work of Daubechies, Grossmann, and Meyer [11]. Since then, the theory

of frames began to be more widely studied. Traditionally, frames have been used in signal

processing, image processing, data compression, and sampling theory. Recently, frames are

also used to mitigate the effect of losses in packet-based communication systems and hence to

improve the robustness of data transmission [3], [14], and to design high-rate constellation with

full diversity in multiple-antenna code design [15]. We refer to the monograph of Daubechies

[9] or the research-tutorial [4] for basic properties of frames. Recently, generalized frames were

studied in papers [1] and [16].
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An important example about frame is wavelet frame, which is obtained by translating

and dilating a finite family of functions. Wavelets were introduced relatively recently, in the

beginning of the 1980. They attracted considerable interest from the mathematical community

and from members of many diverse disciplines in which wavelets had promising applications.

Daubechies, Grossman and Meyer[11] combined the theory of the continuous wavelet transform

with the theory of frames to define wavelet frames for L2(R). In 1990, Daubechies[10] obtained

the first result on the necessary conditions for affine frames, and then in 1993, Chui and Shi[6]

obtained an improved result. After about ten years, Casazza and Christensen [2] established

a stronger condition which also works for wavelet frame. Recently, Shi and his co-authors [20,

23, 25] obtained the necessary conditions and sufficient conditions of wavelet frames.

Another most important concrete realization of frame is Gabor frame. Gabor systems (Weyl-

Heisenberg systems) were first introduced by Gabor[13]. They are generated by modulations

and translations of a finite family of functions. In 2007, Shi and Chen[24] established some new

necessary conditions for Gabor frames. These conditions are also sufficient for tight frames.

In paper [21], Li, Wu and Zhang presented two new sufficient conditions for Gabor frame

via Fourier transform. The conditions they proposed were stated in terms of the Fourier

transforms of the Gabor system’s generating functions, and the conditions were better than

that of Daubechies. Furthermore, in paper [22], Li, Wu and Yang established a necessary

condition and two sufficient conditions ensuring that the shift-invariant system is a frame for

L2(Rn). As some applications, the results are used to obtain some known conclusions about

wavelet frames and Gabor frames.

In paper [7], authors introduced wave packet systems by applying certain collections of

dilations, modulations and translations to the Gaussian function in the study of some classes of

singular integral operators. In paper [17], authors adopted the same expression to describe any

collections of functions which are obtained by applying the same operations to a finite family

of functions. In fact, Gabor systems, wavelet systems and the Fourier transform of wavelet

systems are special cases of wave packet systems. Wave packet systems have recently been

successfully applied to some problems in harmonic analysis and operator theory [18, 19].

In paper [17], authors examined in detail both the continuous and discrete versions of wave

packet systems by using a unified approach that the authors have developed in their previous

work. They gave a classification of the wave packet system to be a Parseval frame. They

constructed a very general example of wave packet frame. In paper [5], authors considered wave

packet systems as special cases of generalized shift-invariant systems and presented a sufficient

condition for a wave packet system to form a frame. They also presented certain natural

conditions on the parameters in a wave packet system which exclude the frame property. Then,
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they gave a characterization of the wave packet system to be a Parseval frame. At last, they

provided several examples which the dilations do not have to be expanding and the modulations

do not have to be associated with a lattice. In paper [8], authors introduced analogues of the

notion of Beurling density to describe completeness properties of wave packet systems via

geometric properties of the sets of their parameters. In particular, they showed necessary

conditions for the wave packet system to be a Bessel system. Also, they obtained the necessary

conditions for existence of wave packet frames and provided large families of new, non-standard

examples of wave packet frames with prescribed dimensions.

Except for above three systems mentioned, composite dilation wavelet systems and shearlet

systems have widely studied recently. People can refer to the review [26] for further knowledge

about all reproducing systems generated by finite functions.

Since both Gabor systems and wavelet systems are some particular examples of wave packet

systems, people ask naturally: how do we construct some examples of wave packet systems

such that they possess simultaneously both Gabor systems and wavelet systems’ advantages

and, however, overcome their shortcomings? In need of applications, how do we develop the

algorithm as classical multiresolution analysis in the setting of the wave packet systems?

So far as we know, few results are known about these problems. This impels people to make

great efforts solve them.

The main goal of this paper is to consider the necessary conditions and sufficient conditions

of wave packet frames in higher dimensions. We establish some necessary conditions and

sufficient conditions for the wave packet frames of the different operator order in L2(Rn) with

matrix dilations of the form (Df)(x) =
√
qf(Ax), where A is an arbitrary expanding n × n

matrix with integer coefficients and q = |detA|. At first, we give a necessary condition for

the wave packet system to be a frame, which is a generalization of classical wavelet frame

and Gabor frame. Of course, our way combines with some techniques in wavelet analysis and

time-frequency analysis. In particular, we use some thoughts of C. K. Chui and X. L. Shi [6] in

classifying the necessary condition for the Gabor frame. Also, we discuss necessary conditions

for other wave packet frames with the different operator order. Secondly, we deduce a sufficient

condition for the wave packet system to be a frame in L2(Rn). Also, we fuse some ways in

wavelet analysis and Gabor theory and we mainly borrow some thoughts in classifying the

sufficient conditions of the wavelet frame in papers [20,21, 22, 23, 25].

Let us now describe the organization of the material that follows. Section 2 is of a prelim-

inary character: it contains various notations and some facts about the frame and the wave

packet system. In Section 3, we establish some necessary conditions for all kinds of wave packet

frames with the different operator order in L2(Rn). In Section 4, we give a sufficient condition
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for the wave packet system to be a frame in L2(Rn).

2 Preliminaries

Let us now establish some basic notations.

Throughout this paper, we use the following notations. Rn and Zn denote the set of real

numbers and the set of integers in n dimensions, respectively. L2(Rn) is the space of all square-

integrable functions in n dimensions, and · and ‖ · ‖ denote the inner product and norm in

L2(Rn), respectively, and l2(Zn) denotes the space of all square-summable sequences.

For x = (x1, x2, · · · , xn) ∈ Rn, define |x| =
√

x2
1 + x2

2 + · · ·+ x2
n. We denote by T n the

n-dimensional torus. By Lp(T n) we denote the space of all Zn-periodic functions f (i.e., f is

1-periodic in each variable) such that
∫

T n |f(x)|pdx < +∞.

We use the Fourier transform in the form

f̂(ω) =
∫

Rn
f(x)e−2πix·ωdx, (2.1)

where · denotes the standard inner product in Rn, and we often omit it when we can understand

this from the background. Sometimes, f̂(ω) is defined by Ff .

The Lebesgue measure of a set S ⊆ Rn will be denoted by |S|. When measurable sets X

and Y are equal up to a set of measure zero, we write X=̇Y .

Let En denote the set of all expanding matrices. The expanding matrices mean that all

eigenvalues have magnitude greater than 1. For A ∈ En, we denote by A∗ the transpose of A.

It is obvious that A∗ ∈ En. Let GLn(R) denote the set of all n× n non-singular (or invertible)

matrices with real entries. For B ∈ GLn(R) we denote by B−1 the invertible matrix of B. For

the sake of simplicity, we denote (A∗)−1 by A♯.

Let us recall the definition of frame.

Definition 1 Let H be a separable Hilbert space. A sequence {fi}i∈N of elements of H is a

frame for H if there exist constants 0 < C ≤ D <∞ such that for all f ∈ H,

C‖f‖2 ≤
∞
∑

i=1

| < f, fi > |2 ≤ D‖f‖2. (2.2)

The numbers C,D are called lower and upper frame bounds, respectively(the largest C and the

smallest D for which (2.2) holds are the optimal frame bounds). Those sequences which satisfy

only the upper inequality in (2.2) are called Bessel sequences. A frame is tight if C = D. If

C = D = 1, it is called a Parseval frame.
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Let Tf denote the synthesis operator of f = {fi}i∈N , i.e., Tf(c) =
∑

i cifi for each sequence

of scalars c = (ci)i∈N . Then the frame operator Sh = TfT
∗
f (h) associated with {fi}i∈N is a

bounded, invertible, and positive operator mapping of H on itself. This provides the recon-

struction formula

h =
∞
∑

i=1

< h, f̃i > fi =
∞
∑

i=1

< h, fi > f̃i, ∀ h ∈ H. (2.3)

where f̃i = S−1fi. The family {f̃i}i∈N is also a frame for H , called the canonical dual frame of

{fi}i∈N . If {gi}i∈N is any sequence in H which satisfies

h =
∞
∑

i=1

< h, gi > fi =
∞
∑

i=1

< h, fi > gi, ∀ h ∈ H, (2.4)

it is called an alternate dual frame of {fi}i∈N .

In this paper, we will work with three families of unitary operators on L2(Rn). Let A ∈ En

and B,C ∈ GLn(R). The first one consists of the dilation operator DA : L2(Rn) → L2(Rn)

defined by (DA)(x) = q1/2f(Ax) with q = |detA|. The second one consists of all translation

operators TBk : L2(Rn) → L2(Rn), k ∈ Zn, defined by (TBkf)(x) = f(x− Bk). The third one

consists of the modulation operator ECm : L2(Rn) → L2(Rn), m ∈ Zn, defined by (ECmf)(x) =

e2iπCm·xf(x).

Let P ⊂ Z and Q ⊂ Rn. Let S = P × Q. Then, we have S ⊂ Z × Rn. Again, let

{Ap : Ap ∈ P} ⊂ En and B ∈ GLn(R). For the function ψ ∈ L2(Rn), we will consider the wave

packet system Ψ defined by the following

Ψ =
{

ψp, ν, m(x) | DApEνTBmψ(x), m ∈ Zn, (p, ν) ∈ S
}

. (2.5)

Let Ap = Aj(j ∈ Z), S = Z × {0}. Then, we obtain the wavelet systems. On the other

side, we can get the Gabor systems when the set {Ap : Ap ∈ P} only consists of the elementary

matrix E. This simple observation already suggests that the wave packet systems provide

greater flexibility than the wavelet systems or the Gabor systems.

By changing the order of the operators, we can also define the following one-to-one function

systems from S × Zn into L2(Rn):

Ψ1 =
{

ψp, ν, m(x) | DApTBmEνψ(x), m ∈ Zn, (p, ν) ∈ S
}

,

Ψ2 =
{

ψp, ν, m(x) | EνDApTBmψ(x), m ∈ Zn, (p, ν) ∈ S
}

,

Ψ3 =
{

ψp, ν, m(x) | EνTBmDApψ(x), m ∈ Zn, (p, ν) ∈ S
}

, (2.6)

Ψ4 =
{

ψp, ν, m(x) | TBmDApEνψ(x), m ∈ Zn, (p, ν) ∈ S
}

,
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Ψ5 =
{

ψp, ν, m(x) | TBmEνDApψ(x), m ∈ Zn, (p, ν) ∈ S
}

.

Then, we will give the definitions of the wave packet frame and the frame wave packet.

Definition 2 We say that the wave packet system Ψ defined by (2.5) is a wave packet frame

if it is a frame for L2(Rn). Then, the function ψ is called a frame wave functions.

For other wave packet systems Ψi (1 ≤ i ≤ 5) defined by (2.6), we can define the corre-

sponding wave packet frames and the frame wave packets like definition 2.

In order to prove theorems to be presented in next section, we need the following lemmas.

Lemma 1 Suppose that {fk}+∞
k=1 is a family of elements in a Hilbert space H such that there

exist constants 0 < C ≤ D < +∞ satisfying (2.2) for all f belonging to a dense subset D of

H. Then, the same inequalities (2.2) are true for all f ∈ H; that is, {fk}+∞
k=1 is a frame for H.

For proof of Lemma 1, people can refer to the book[9].

Therefore, we will consider the following set of functions:

D =
{

f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and f̂ has compact support in R
n \ {0}

}

. (2.10)

The following result is well known, we can find it in [9].

Lemma 2 D is a dense subset of L2(Rn).

The following useful facts can be found in paper [5, Lemma 2.2].

Lemma 3 Let A ∈ GLn(R), y, z ∈ Rn and f ∈ L2(Rn). Then the following holds:

(1) (Tyf )̂ = E−yf̂ , (Ezf )̂ = Tzf̂ , (DAf )̂ = DA♯ f̂ ;

(2) TyEzf = e−2πiz·yEzTyf, DAEyf = EA∗yDAf, DATyf = TA−1yDAf ;

(3) (TyEzf )̂ = e−2πiz·yTzE−yf̂ ;

(4) (DATyf )̂(ξ) = E−A♯yDA♯ f̂(ξ) = |detA|− 1

2 f̂(A♯ξ)e−2πiA−1y·ξ.

3 Necessary Conditions of Wave Packet Frames

We firstly give some existing results of wavelet frame and Gabor frame in real line R.

Let a and b be the real numbers with a > 1, b > 0, ψ ∈ L2(R), and the system ψj,k(x) :=

{a j
2ψ(ajx − kb)}j,k∈Z be a wavelet system. In 1990, Daubechies[10] proved that if the system

ψj,k(x) forms a wavelet frame in L2(R) with bounds C and D, then
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bC ln a ≤
∫ +∞

0

|ψ̂(ω)|2
ω

dω ≤ bD ln a

and

bC ln a ≤
∫ 0

−∞

|ψ̂(ω)|2
|ω| dω ≤ Db ln a. (3.1)

In 1993, C. K. Chui and X. L. Shi [6] established the following improvement if ψ(x) is a

frame wavelet:

bC ≤
∑

j∈Z

|ψ̂(ajω)|2 ≤ bD, a.e. ω. (3.2)

Let a and b be the real numbers with a > 1, b > 0, ψ ∈ L2(R), and the system Gm,k(x) :=

{e2iπamxψ(x − kb)}m,k∈Z be a Gabor system. O. Christensen [4] introduced that if the system

Gm,k(x) forms a Gabor frame in L2(R) with bounds C and D, then

bC ≤
∑

m∈Z

|ψ̂(ω − am)|2 ≤ bD, a.e. ω. (3.3)

Motivating by the fundament works in (3.2) and (3.3), we will give a necessary condition of

wave packet frame Ψ defined by (2.5) for higher dimension with an arbitrary expansive matrix

dilation in the following.

Theorem 1 Suppose that wave packet system {DApEνTBmψ(x)}m∈Zn, (p, ν)∈S defined by (2.5)

is a frame with frame bounds A1 and A2, then we have

bA1 ≤
∑

(p, ν)∈S

|ψ̂(A♯
pω − ν)|2 ≤ bA2, a.e. ω, (3.4)

where b = |detB|.

Proof. Because wave packet system {DApEνTBmψ(x)}m∈Zn, (p, ν)∈S is a frame with frame

bounds A1 and A2, for all f ∈ L2(Rn),we have

A1‖f‖2 ≤
∑

(p, ν)∈S

∑

m∈Zn

| < f, DApEνTBmψ > |2 ≤ A2‖f‖2. (3.5)

Let f̂ ∈ Cc(R) and f̂ have compact support.
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Let qp = |detAp|. According to Lemma 3 and Plancheral theorem, we have

∑

(p, ν)∈S

∑

m∈Zn

| < f, DApEνTBmψ > |2

=
∑

(p, ν)∈S

∑

m∈Zn

| < Ff, FDApEνTBmψ > |2

=
∑

(p, ν)∈S

∑

m∈Zn

| < f̂, DA♯
p
TνE−Bmψ̂ > |2

=
∑

p∈P

q−1
p

∑

ν∈Q

∑

m∈Zn

|
∫

Rn
f̂(ω)ψ̂(A♯

pω − ν)e2πiBm(A♯
pω−ν)dω|2

=
∑

p∈P

qp
∑

ν∈Q

∑

m∈Zn

|
∫

Rn
f̂(A∗

p(ω + ν))ψ̂(ω)e2πiBmωdω|2

(3.6)

where we change variables by ω′ = A♯
pω − ν in the last equality.

We assert:
∑

p∈P

qp
∑

ν∈Q

∑

m∈Zn

|
∫

Rn
f̂(A∗j(ω + ν))ψ̂(ω)e2πiBmωdω|2

=
∑

(p, ν)∈S

qp

b

∫

B♯([0,1]n)
|
∑

s∈Zn

f̂(A∗
p(ω +B♯s+ ν))

¯̂
ψ(ω +B♯s)|2dω.

(3.7)

For fixed (p, ν) ∈ S, we have
∫

B♯([0,1]n)

∑

s∈Zn

|f̂(A∗
p(ω +B♯s+ ν))

¯̂
ψ(ω +B♯s)|dω

=
∑

s∈Zn

∫

B♯([0,1]n)
|f̂(A∗

p(ω +B♯s+ ν))
¯̂
ψ(ω +B♯s)|dω

=
∑

s∈Zn

∫

B♯s+B♯([0,1]n)
|f̂(A∗

p(ω + ν))
¯̂
ψ(ω)|dω

=
∫

Rn
|f̂(A∗

p(ω + ν))
¯̂
ψ(ω)|dω

≤ (
∫

Rn
|f̂(A∗

p(ω + ν))|2dω)
1

2 (
∫

Rn
| ¯̂ψ(ω)|2dω)

1

2

< ∞,

(3.8)

where the fourth inequality is obtained by using Cauchy-Schwarz’s inequality.

Thus we can define a function Fp : R → C by

Fp(ω) =
∑

s∈Zn

f̂(A∗
p(ω +B♯s+ ν))

¯̂
ψ(ω +B♯s), a.e. ω. (3.9)

Fp(ω) is B♯T n-periodic, and the above argument gives that Fp(ω) ∈ L1(B♯[0, 1]n). In fact, we

even have Fp(ω) ∈ L2(B♯[0, 1]n). To see this, we first see that

|Fp(ω)|2 ≤
∑

s∈Zn

|f̂(A∗
p(ω +B♯s+ ν))|2

∑

s∈Zn

|ψ̂(ω +B♯s)|2. (3.10)

Since f̂ ∈ Cc(R), the function ω → ∑

s∈Zn |f̂(A∗
p(ω + B♯s + ν))|2 is bounded. According to

above argument, we easily get Fp(x) ∈ L2(B♯[0, 1]n).
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Then, according to the definition of Fp(ω), we have
∫

Rn
f̂(A∗

p(ω + ν))ψ̂(ω)e2πiBmωdω

=
∑

s∈Zn

∫

B♯s+B♯([0,1]n)
f̂(A∗

p(ω + ν))
¯̂
ψ(ω)e2πiBmωdω

=
∑

s∈Zn

∫

B♯([0,1]n)
f̂(A∗

p(ω +B♯s + ν))
¯̂
ψ(ω +B♯s)e2πiBmωdω

=
∫

B♯([0,1]n)

(

∑

s∈Zn

f̂(A∗
p(ω +B♯s+ ν))

¯̂
ψ(ω +B♯s)

)

e2πiBmωdω

=
∫

B♯([0,1]n)
Fp(ω)e2πiBmωdω.

(3.11)

Parseval’s equality shows that
∑

m∈Zn

|
∫

B♯([0,1]n)
Fp(ω)e2πiBmωdω|2 =

1

b

∫

B♯([0,1]n)
|Fp(ω)|2dω; (3.12)

Combining (3.11),(3.12) and the definition of Fp(ω), we obtain that
∑

m∈Zn

|
∫

Rn
f̂(A∗

p(ω + ν))ψ̂(ω)e2πiBmωdω|2

=
1

b

∫

B♯([0,1]n)
|
∑

s∈Zn

f̂(A∗
p(ω +B♯s+ ν))

¯̂
ψ(ω +B♯s)|2dω.

(3.13)

So, we obtain (3.7). Thus, we complete the assertion.

Choose ω0 ∈ R to be Lebesgue point of the function
∑

(p, ν)∈S

|ψ̂(A♯
pω − ν)|2. Letting B(ǫ)

denote the ball of radius ǫ > 0 about the origin and ǫ be sufficiently small, define fǫ by

f̂ǫ(ω) =
1

√

|B(ǫ)|
χB(ǫ)(ω − ω0). (3.14)

Therefore, we obtain

‖fǫ‖2 = ‖f̂ǫ‖2 = 1. (3.15)

Thus, we have
∑

(p, ν)∈S

|ψ̂(A♯
pω0 − ν)|2 = lim

ǫ→0

∫

|ω−ω0|<ǫ

1

|B(ǫ)|
∑

(p, ν)∈S

|ψ̂(A♯
pω − ν)|2dω. (3.16)

From the definition of f , (3.5),(3.6) and (3.7), we have
∫

|ω−ω0|<ǫ

1

|B(ǫ)|
∑

(p, ν)∈S

|ψ̂(A♯
pω − ν)|2dω

=
∑

(p, ν)∈S

∫

B♯([0,1]n)
|f̂ǫ(ω)|2|ψ̂(A♯ω − ν)|2dω

=
∑

(p, ν)∈S

qp

∫

B♯([0,1]n)
|
∑

s∈Zn

f̂ǫ(A
∗
p(ω +B♯s+ ν))

¯̂
ψ(ω +B♯s)|2dω

= b
∑

(p, ν)∈S

∑

m∈Zn

| < fǫ, DApEνTBmψ > |2

≤ bA2,

(3.17)
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where the third equality is obtained by changing variables ω′ = A∗
p(ω + ν).

Let ǫ→ 0, using the definition of Lebesgue point, we get

∑

(p, ν)∈S

|ψ̂(A♯
pω0 − ν)|2 ≤ bA2. (3.18)

According to the definition of Lebesgue point, by the similar technique of C. K. Chui and

X. L. Shi [6], we obtain
∑

(p, ν)∈S

|ψ̂(A♯
pω0 − ν)|2 ≥ bA1. (3.19)

We leave the assertion to readers.

Comparing with (3.17) and (3.18), by changing variables by ω = ω0, we have (3.4).

Therefore, we have completed the proof of Theorem 1. 2
Remark 1 In particular, let A the elementary matrix E in the Theorem 1, then, we obtain

the necessary condition of the Gabor frames as the following, which is a generalization of the

known result [4] in higher dimensions.

Corollary 1 Let B,C ∈ GLn(R). Suppose that the Gabor system {ECkTBmψ(x)}k,m∈Zn is

a frame with frame bounds A1 and A2, then

bA1 ≤
∑

k∈Zn

|ψ̂(ω − Ck)|2 ≤ bA2, a.e. ω, (3.20)

where b = |detB|.

On the other side, let P = {Aj : j ∈ Z,A ∈ GLn(R)} and Q = {0} in the Theorem

1, then, we obtain the necessary condition of the wavelet frames as the following, which is a

generalization of C. K. Chui and X. L. Shi [6] in higher dimensions.

Corollary 2 Let A ∈ En, B ∈ GLn(R). Suppose that wavelet system {Dj
ATBmψ(x)}j∈Z,m∈Zn

is a frame with frame bounds A1 and A2, then

bA1 ≤
∑

j∈Z

|ψ̂(A∗jω)|2 ≤ bA2, a.e. ω, (3.21)

where b = |detB|.

In the following, we will discuss necessary conditions for other wave packet frames Ψi (1 ≤
i ≤ 5) defined by (2.6) with the different operator order.

For wave packet systems Ψ1, from Lemma 3, we have

DApTBmEνψ(x) = e−2πiBm·νDApEνTBmψ(x). (3.22)
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If wave packet system {DApTBmEνψ(x)}m∈Zn, (p, ν)∈S defined by (2.6) is a frame with frame

bounds A1 and A2, then, from Theorem 1 and (3.22), the inequality (3.4) holds.

For wave packet systems Ψ2, from (2) of Lemma 3, we have

EνDApTBmψ(x) = DApEA♯νTBmψ(x). (3.23)

If wave packet system {DApTBmEνψ(x)}m∈Zn, (p, ν)∈S defined by (2.6) is a frame with frame

bounds A1 and A2, then, in the same way, the inequality (3.4) holds.

Then, from Theorem 1 and (3.23), we have

Corollary 3 Suppose that wave packet system {EνDApTBmψ(x)}m∈Zn, (p, ν)∈S defined by (2.6)

is a frame with frame bounds A1 and A2, then we have

bA1 ≤
∑

(p, ν)∈S

|ψ̂(A♯
p(ω − ν))|2 ≤ bA2, a.e. ω, (3.24)

where b = |detB|.

For wave packet systems Ψi (1 ≤ 3 ≤ 5), according to the same reason, we have

EνTBmDApψ(x) = DApEA♯νTApBmψ(x). (3.25)

TBmEνDApψ(x) = e−2πiApBm·νDApEA♯νTApBmψ(x). (3.26)

TBmDApEνψ(x) = e−2πiApBm·νDApEAνTApBmψ(x). (3.27)

The problems turn into being more complicated because all of three equalities are involved

in the operator TApBm. We can not obtain directly the results from Theorem 1. We will discuss

them in the future.

4 Sufficient Condition of Wave Packet Frames

Not all choices for ψ,Ap, ν and B lead to the wave packet system {DApEνTBmψ(x)}j∈Z, k,m∈Zn

to be a wave packet frame, even if ψ satisfies (3.4).

In this section, we will derive a sufficient condition for the wave packet system to be a frame

in L2(Rn).

Theorem 2 Suppose that wave packet system {DApEνTBmψ(x)}m∈Zn, (p, ν)∈S is defined by (2.5).

Define the constants C1, C2 as the following

C1 :=
1

b







inf
ω∈Rn





∑

(p, ν)∈S

|ψ̂(A∗
pω − ν)|2 −

∑

(p, ν)∈S

∑

s∈Zn\{0}

|ψ̂(A♯
pω − ν)|| ¯̂ψ(A♯

pω − ν +B♯s)|










> 0,

(4.1)
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C2 :=
1

b







sup
ω∈Rn





∑

(p, ν)∈S

∑

s∈Zn

|ψ̂(A♯
pω − ν)|| ¯̂ψ(A♯

pω − ν +B♯s)|










<∞, (4.2)

where b = |detB|. Then, the wave packet system {DApEνTBmψ(x)}m∈Zn, (p, ν)∈S is a frame with

frame bounds C1, C2.

Proof. By Lemma 1 and Lemma 2, it suffices to show that Theorem 2 holds for all f ∈ D.

To do this, we need to estimate the series
∑

(p, ν)∈S

∑

m∈Zn

| < f, DApEνTBmψ > |2. (4.3)

Because f ∈ D, the number of k is finite, so (3.6), (3.7) and the Fourier transform inversion

formula imply that
∑

(p, ν)∈S

∑

m∈Zn

| < f, DApEνTBmψ > |2

=
∑

(p, ν)∈S

qp

b

∫

B♯([0,1]n)
|
∑

s∈Zn

f̂(A∗
p(ω + B♯s+ ν))

¯̂
ψ(ω +B♯s)|2dω

=
∑

(p, ν)∈S

qp

b

∫

B♯([0,1]n)

∑

s∈Zn

f̂(A∗
p(ω +B♯s+ ν))

¯̂
ψ(ω +B♯s)

∑

m∈Zn

¯̂
f(A∗

p(ω +B♯m+ ν))ψ̂(ω +B♯m)dω

=
∑

(p, ν)∈S

qp

b

∫

Rn
f̂(A∗

p(ω + ν))ψ̂(ω)

[

∑

s∈Zn

f̂(A∗
p(ω +B♯s+ ν))

¯̂
ψ(ω +B♯s)

]

dω.

(4.4)

Then, by (4.4) and changing variables ω′ = A∗
pω, we can write

∑

(p, ν)∈S

∑

m∈Zn

| < f, DApEνTBmψ > |2

=
1

b

∑

(p, ν)∈S

∑

s∈Zn

∫

Rn
f̂(ω + A∗

pν)ψ̂(A♯
pω)f̂(ω + A∗

pB
♯s+ A∗

pν)
¯̂
ψ(A♯

pω +B♯s)dω

= Q1 +Q2,

(4.5)

where,

Q1 =
1

b

∑

(p, ν)∈S

∫

Rn
|f̂(ω + A∗

pν)ψ̂(A♯
pω)|2dω (4.6)

and

Q2 =
1

b

∑

(p, ν)∈S

∑

s∈Zn\{0}

∫

Rn
f̂(ω + A∗

pν)ψ̂(A♯
pω)f̂(ω + A∗

pB
♯s+ A∗

pν)
¯̂
ψ(A♯

pω +B♯s)dω. (4.7)

Thus, we can rearrange the series Q2 as

Q2 =
1

b

∑

ν∈Q

∑

p∈P

∑

s∈Zn\{0}

∫

Rn
f̂(ω + A∗

pν)f̂(ω + A∗
pν + A∗

pB
♯s)

(

ψ̂(A♯
pω)

¯̂
ψ(A♯

pω +B♯s)
)

dω

=
1

b

∑

p∈P

∑

s∈Zn\{0}

∫

Rn
f̂(ω)f̂(ω + A∗

pB
♯s)





∑

ν∈Q

ψ̂(A♯
pω − ν)

¯̂
ψ(A♯

pω − ν +B♯s)



 dω,

(4.8)
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where the second equality is obtained by changing variables ω′ = ω + A∗
pν.

Let

∆s(ω) =
∑

ν∈Q

ψ̂(A♯
pω − ν)

¯̂
ψ(A♯

pω − ν +B♯s). (4.9)

According to Hölder’s inequality and (4.8), we have

|Q2| ≤ 1

b

∑

p∈P

∑

s∈Zn\{0}

∫

Rn

(

|¯̂f(ω)|
√

|∆s(ω)|)(|f̂(ω + A∗
pB

♯s)|
√

|∆s(ω)|
)

dω

≤ 1

b

∑

p∈P

∑

s∈Zn\{0}

[∫

Rn
|¯̂f(ω)|2|∆s(ω)|dω

∫

Rn
|f̂(ω + A∗

pB
♯s)|2|∆s(ω)|dω

] 1

2

.

(4.10)

Therefore, by (4.10) and Cauchy-Schwarz’s inequality,

|Q2| ≤ 1

b

√

√

√

√

∑

p∈P

∫

Rn
|f̂(ω)|2

∑

s∈Zn\{0}

|∆s(ω)|dω

×
√

√

√

√

∑

p∈P

∫

Rn
|f̂(ω + A∗

pB
♯s)|2

∑

s∈Zn\{0}

|∆s(ω)|dω.
(4.11)

Combining with (4.11), we get:
∫

Rn
|f̂(ω + A∗

pB
♯s)|2|∆s(ω)|dω =

∫

Rn
|f̂(ω)|2|∆s(ω − A∗

pB
♯s)|dω (4.12)

and
∆s(ω − A∗

pB
♯s) =

∑

ν∈Q

ψ̂(A♯
pω − ν −B♯s)

¯̂
ψ(A♯

pω − ν)

=
∑

ν∈Q

ψ̂(A♯
pω − ν)

¯̂
ψ(A♯

pω − ν − B♯s)

= ∆−s(ω).

(4.13)

By changing variables s′ = −s, we can obtain we obtain

∑

s∈Zn\{0}

|∆−s(ω)| =
∑

s∈Zn\{0}

|∆s(ω)|. (4.14)

Thus, we have

|Q2| ≤ 1

b

∑

p∈P

∫

Rn
|f̂(ω)|2

∑

s∈Zn\{0}

|∆s(ω)|dω

≤ 1

b
‖f‖2 sup

ω∈R

∑

p∈P

∑

s∈Zn\{0}

|∆s(ω)|.
(4.15)

According to the definition of ∆s(ω) and (4.15), we get

|Q2| ≤ 1

b
‖f‖2 sup

ω∈R

∑

p∈P

∑

s∈Zn\{0}

|
∑

ν∈Q

ψ̂(A♯
pω − ν)

¯̂
ψ(A♯

pω − ν +B♯s)|

≤ 1

b
‖f‖2 sup

ω∈R

∑

p∈P

∑

s∈Zn\{0}

∑

p∈P

|
∑

ν∈Q

ψ̂(A♯
pω − ν)|| ¯̂ψ(A♯

pω − ν +B♯s)|.
(4.16)
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From (4.6), we easily obtain

|Q1| ≤
1

b
‖f‖2 sup

ω∈R

∑

(p, ν)∈S

|ψ̂(A∗
pω − ν)|2. (4.17)

Combining with (4.5), (4.16) and (4.17), we have

∑

(p, ν)∈S

∑

m∈Zn

| < f, DApEνTBmψ > |2

≤ 1

b
‖f‖2







sup
ω∈Rn





∑

(p, ν)∈S

∑

s∈Zn

|ψ̂(A♯
pω − ν)|| ¯̂ψ(A♯

pω − ν +B♯s)|










.

(4.18)

In the similar way, we can get

∑

(p, ν)∈S

∑

m∈Zn

| < f, DApEνTBmψ > |2

≥ 1

b
‖f‖2







inf
ω∈Rn





∑

(p, ν)∈S

|ψ̂(A∗
pω − ν)|2 −

∑

(p, ν)∈S

∑

s∈Zn\{0}

|ψ̂(A♯
pω − ν)|| ¯̂ψ(A♯

pω − ν +B♯s)|










.

(4.19)

That is to say, if the constants C1, C2 are defined by (4.1) and (4.2), the wave packet system

{DApEνTBmψ(x)}m∈Zn, (p, ν)∈S is a frame with frame bounds C1, C2.

Therefore, we have completed the proof of Theorem 2. 2
In particular, let A the elementary matrix E in the Theorem 2, then, we obtain the sufficient

condition of the Gabor frames as the following, which is a special case of Corollary 6.3 in paper

[22].

Corollary 4 Let B,C ∈ GLn(R), g(x) ∈ L2(Rn). Define the constants A1, A2 as the fol-

lowing

A1 = inf
ξ

∑

m∈Zn

(

|ĝ(ξ − Bm)|2 −
∑

k 6=0

|ĝ(ξ − Bm)||ĝ(ξ − Bm+ C∗k)|
)

> 0,

A2 =sup
ξ

(

∑

m∈Zn

∑

k∈Zn

|ĝ(ξ−Bm)||ĝ(ξ−Bm+C∗k)|
)

< +∞,

then, Gabor system {ECkTBmg(x)}k,m∈Zn is a frame for L2(Rn) with frame bounds A1 and A2.

On the other side, let P = {Aj : j ∈ Z,A ∈ En, } B = E and Q = {0} in the Theorem

2, then, we obtain the sufficient condition of the wavelet frames as the following, which is the

case of a single generator of Corollary 5.3 in paper [22].
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Corollary 5 Let ψ(x) ∈ L2(Rn), A ∈ En. Suppose that the constants C,D satisfy

C = inf
ξ

∑

j∈Z

(

|ψ̂
(

(A♯)jξ
)

|2 −
∑

m6=0

|ψ̂((A♯)jξ)||ψ̂((A♯)j(ξ +m))|
)

> 0,

D = sup
ξ

(

∑

m∈Zn

∑

j∈Z

|ψ̂((A♯)jξ)||ψ̂((A♯)j(ξ +m))|
)

< +∞,

then wavelet system {Dj
ATkψ(x) | j ∈ Z, k ∈ Zn} is a frame for L2(Rn) with bounds C and D.

Remark 2 Note that O. Christensen and A. Rahimi [5] presented a sufficient condition for

a wave packet system Ψ1 defined by (2.6) to form a frame by making use of the theory of

generalized shift-invariant systems. In this paper, we devoted to classifying the wave packet

system Ψ defined by (2.5), which includes the corresponding results of wavelet analysis and

Gabor theory as the special cases.
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