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Abstract. The purpose of this paper is to present a new iteration method
based on the hybrid method in mathematical programming, extragradient
method and Mann’s method for finding a common element of the solution set
of equilibrium problems, the solution set of variational inequality problems for
a monotone, Lipschitz continuous mapping and the set of fixed points for a
nonexpansive semigroup in Hilbert spaces. We obtain a strong convergence
theorem for the sequences generated by this process. The results in this paper
generalize and extend some well-known strong convergence theorems in the
literature.

1. Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖, respec-
tively. Let C be a nonempty closed convex subset of H. Let A be a mapping of
C into H and G : C×C → R be a bifunction, where R is the set of real numbers.

Recall that a mapping A is called monotone if

〈Ax−Ay, x− y〉 ≥ 0 for all x, y ∈ C,
strictly monotone if 〈Ax−Ay, x−y〉 > 0 for all x 6= y, λ-inverse strongly monotone
mapping if

〈Ax−Ay, x− y〉 ≥ λ‖Ax−Ay‖2 for all x, y ∈ C, λ > 0,

and L-Lipschitz continuous if there exists a positive constant L such that

‖Ax−Ay‖ ≤ L‖x− y‖ for all x, y ∈ C.
It is clear that if A is λ-inverse strongly monotone, then A is monotone and
Lipschitz continuous.

The variational inequality problem (for short, VI(A;C)) is to find x∗ ∈ C such
that

(1.1) 〈Ax∗, x− x∗〉 ≥ 0 for all x ∈ C.
The set of solutions of the VI(C;A) is denoted by ΩA. Due to the many appli-
cations of the variational inequality problem to several branches of mathematics,
but also to mechanics, economics etc, finding its solutions is a very important
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field of research. In some cases, as for strictly monotone operators A, the solu-
tion, if it exists, is unique. More generally the set of solutions ΩA of a continuous
monotone mapping A is a convex subset of C.

Numerous problems in physics, optimization, and economics reduce to find a
solution of the equilibrium problem which is for a bifunction G(u, v) defined on
C × C to find u∗ ∈ C such that

(1.2) G(u∗, v) ≥ 0 for all v ∈ C.

The set of solutions of (1.2) is denoted by EP(G). Given a mapping B : C → H,
let G(u, v) = 〈Bu, v − u〉 for all u, v ∈ C. Then, w ∈ EP(G) if and only if
〈Bw, v − w〉 ≥ 0 for all v ∈ C, i.e., w is a solution of the variational inequality.
Some methods have been proposed to solve the equilibrium problem (1.2) (see
[1]-[7]). Recently, Combettes and Hirstoaga [7] introduced an iterative scheme of
finding the best approximation to the initial data when EP(G) is nonempty and
proved a strong convergence theorem.

Let T : C → C be a mapping. Recall that T is nonexpansive if ‖Tx− Ty‖ ≤
‖x − y‖ for all x, y ∈ C. A point x ∈ C is a fixed point of T provided Tx = x.
Denote by F(T ) the set of fixed points of T , that is, F(T ) = {x ∈ C : Tx = x}.
We know that F(T ) is nonempty if C is bounded (see [8]). We denote by R+

the set of nonegative numbers. Also, recall that a family {T (s) : s ∈ R+} of
mapping from C into itself is called a nonexpansive semigroup on C if it satisfies
the following conditions:

(1) for each s ∈ R+, T (s) is a nonexpansive mapping on C;
(2) T (0)x = x for all x ∈ C;
(3) T (s1 + s2) = T (s1) ◦ T (s2) for all s1, s2 ∈ R+;
(4) for each x ∈ C, the mapping T (.)x from R+ into C is continuous.
We denote by F = ∩s≥0F(T (s)) the set of all common fixed points of {T (s) :

s ∈ R+}. We know that F is nonempty if C is bounded (see [9]).
Takahashi and Toyoda [10] considered the problem of finding a solution of

the variational inequality which is also a fixed point of some mapping. More
precisely, given a nonempty closed convex subset C of H, a nonexpansive mapping
T : C → C and an λ-inverse strongly monotone mapping A : C → H, in order to
find an element p ∈ F(T ) ∩ ΩA they introduced the following iterative scheme

x0 ∈ C chosen arbitrarily,

xk+1 = αkxk + (1− αk)TPC(xk − λkAxk),
(1.3)

for all k ≥ 0, where {αk} is a sequence in (0, 1) and {λk} is a sequence in (0, 2λ)
and PC is the metric projection of H onto C. They proved that if F(T )∩ΩA 6= ∅,
then the sequence {xk} defined by (1.3) converges weakly to same point p ∈
F(T ) ∩ ΩA. Later on, in order to achieve strong convergence to an element of
F(T ) ∩ ΩA under the same assumptions, Iiduka and Takahashi [11] modified the
iterative scheme by using the hybrid method in mathematical programming as
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follows

x0 ∈ C chosen arbitrarily,

yk = αkxk + (1− αk)TPC(xk − λkAxk),

Ck = {z ∈ C : ‖z − yk‖ ≤ ‖z − xk‖},
Qk = {z ∈ C : 〈z − xk, x0 − xk〉 ≤ 0},

xk+1 = PCk∩Qk
(x0),

(1.4)

for all k ≥ 0, where 0 ≤ αk ≤ c < 1 and 0 < a ≤ λk ≤ b < 2λ. They showed that
if F(T ) ∩ ΩA 6= ∅, then the sequence {xk} defined by (1.4) converges strongly to
PF (T )∩ΩA

(x0). To overcome the restriction of the above methods to the class of
λ-inverse strongly monotone mappings, by combining a hybrid-type method with
an extragradient-type method of Korpelevich [12], Nadezhkina and Takahashi [13]
introduced the following iterative method for finding an element of F(T ) ∩ ΩA

and established the strong convergence theorem under Lipschitz and monotone
assumptions of the mapping A:

x0 ∈ C chosen arbitrarily,

yk = PC(xk − λkAxk),

zk = αkxk + (1− αk)TPC(xk − λkAyk),

Ck = {z ∈ C : ‖z − zk‖ ≤ ‖z − xk‖},
Qk = {z ∈ C : 〈z − xk, x0 − xk〉 ≤ 0},

xk+1 = PCk∩Qk
(x0), k ≥ 0,

(1.5)

where k ≥ 0, {αk} ⊂ [a, b] for some a, b ∈ (0, 1/L) and {λk} ⊂ [0, c] for some
c ∈ [0, 1). They proved that if F(T )∩ΩA 6= ∅, then the sequence {xk}, {yk}, {zk}
defined by (1.5) converge strongly to the same point z = PF (T )∩ΩA

(x0).
Tada and Takahashi [14] introduced the following iterative scheme by the hy-

brid method:

x0 ∈ H chosen arbitrarily,

uk ∈ C, G(uk, y) +
1

rk
〈uk − xk, y − uk〉 ≥ 0, ∀y ∈ C,

yk = (1− αk)xk + αkTuk,

Ck = {z ∈ H : ‖zk − z‖ ≤ ‖xk − z‖},
Qk = {z ∈ H : 〈xk − z, x0 − xk〉 ≥ 0},

xk+1 = PCk∩Qk
(x0), k ≥ 0,

(1.6)

for finding a common element of the set of solution (1.2) and the set of fixed
points of a nonexpansive mapping in a Hilbert. They proved that under certain
appropriate conditions imposed on {αk} and {rk}, the sequences {xk} and {uk}
generated by (1.6) converge strongly to PF(T )∩EP(Q)x0. Generally speaking, the
algorithm suggested by Tada and Takahashi is based on two well-known types
of methods, namely, on the Mann iterative methods and the so-called hybrid for
solving fixed point problem.
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In 2002, Suzuki [15] was the first to introduce the following implicit iteration
process in Hilbert spaces:

x0 ∈ C chosen arbitrarily,

xk = αkx0 + (1− αk)T (tk)xk, k ≥ 1,
(1.7)

where {αk} and {tk} are sequences of real numbers satisfying 0 < αk < 1, tk > 0
and limk tk = limk αk/tk = 0 for the nonexpansive semigroup. If F 6= ∅, then the
sequence {xk} defined by (1.7) converges strongly to the element of F nearest to
x0.

He and Chen [16] is proved a strong convergence theorem for nonexpansive
semigroups in Hilbert spaces by hybrid method in the mathematical program-
ming:

x0 ∈ C chosen arbitrarily,

yk = αkxk + (1− αk)T (tk)xk,

Ck = {z ∈ C : ‖yk − z‖ ≤ ‖xk − z‖},
Qk = {z ∈ C : 〈xk − z, x0 − xk〉 ≥ 0},

xk+1 = PCk∩Qk
(x0), k ≥ 0,

(1.8)

where αk ∈ [0, a) for some a ∈ [0, 1) and tk ≥ 0, limk→∞ tk = 0.
In 2008, Seajung [17] showed that the proof of the main result in [16] is very

questionable and corrected this fact under some additional restriction on the
parameter tk:

(1.9) lim inf
k
tk = 0, lim sup

k
tk > 0, and lim

k
(tk+1 − tk) = 0.

In 2011, Buong [18] solved the problem of finding a common element of the set
of solution (1.1) and the set of common fixed points of a nonexpansive semigroup
{T (s), s ∈ R+} on C for any monotone Lipschitz continuous mapping A by the
following algorithm

x0 ∈ H chosen arbitrarily,

yk = PC(xk − λkAPC(xk)),

zk = xk − µk[xk − TkPC(xk − λkAyk)],

Hk = {z ∈ H : ‖zk − z‖ ≤ ‖xk − z‖},
Wk = {z ∈ H : 〈xk − x0, z − xk〉 ≤ 0},
xk+1 = PHk∩Wk

(x0), k ≥ 0,

(1.10)

where {λk} ⊂ [a, b] for some a, b ∈ [0, 1/L], {µk} ⊂ [c, 1] for some c ∈ (0, 1)
and {tk} is a sequence of positive real numbers satisfying condition (1.9) and
Tkx = T (tk)x for x ∈ C. If F ∩ ΩA 6= ∅, then the sequences {xk}, {yk}, {zk}
defined by (1.10) converge strongly to the same point z0 = PF∩ΩA

(x0).
On the other hand, in 2011, Buong and Duong [19] introduced a viscosity ap-

proximation method for finding a common element of the set of solution (1.1) and
the set of solution (1.2). Ceng and Yao [20] investigated the problem of finding a
common element of the set of solutions of a mixed equilibrium problem and the
set of common fixed points of finitely many nonexpansive mappings in a Hilbert
space. The authors’s result is the improvements and extension of Takahashi and



5

Takahashi [21]. Plubtieng and Punpaeng [22] introduced an iterative process
based on the extragradient method for finding the common element of the set of
fixed points of a nonexpansive mapping, the set of an equilibrium problem and the
set of solutions of variational inequality problem for an λ-inverse strongly mono-
tone mapping. In [23] Penga and Yao introduced two iterative process by the
extragradient-like methods for finding a common element of the set of solutions
of a generalized equilibrium problem, the set of fixed points of an infinite family
of nonexpansive mappings and the set of solutions of the variational inequality
for a monotone, Lipschitz-continuous mapping in a Hilbert space.

In this paper, motivated the above results we give a new algorithm for finding
a common element of the set of solutions of an equilibrium problem, the set of
fixed points of a nonexpansive semigroup and the set of solutions of the variational
inequality for a monotone, Lipschitz continuous mapping in a Hilbert space.

For this purpose, we consider the following algorithm

x0 ∈ H chosen arbitrarily,

uk ∈ C : G(uk, y) +
1

rk
〈uk − xk, y − uk〉 ≥ 0, ∀y ∈ C,

yk = PC(uk − λkAuk),

zk = (1− µk)xk + µkTkPC(uk − λkAyk),

Hk = {z ∈ H : ‖zk − z‖ ≤ ‖xk − z‖},
Wk = {z ∈ H : 〈xk − z, x0 − xk〉 ≥ 0},
xk+1 = PHk∩Wk

(x0), k ≥ 0,

(1.11)

where Tk is defined

Tkx = T (sk)x, ∀x ∈ C and

lim inf
k
sk = 0, lim sup

k
sk > 0, lim

k
(sk+1 − sk) = 0,(1.12)

or Tk is defined by

Tkx =
1

sk

∫ sk

0
T (s)xds, ∀x ∈ C and lim

k→∞
sk = +∞,(1.13)

respectively. The strong convergence of (1.11) with (1.12) or (1.13) is proved in
the Section 3. In Section 2, we give some preliminaries.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖, respec-
tively. When {xn} is a sequence in H, xn ⇀ x implies that {xn} converges weakly
to x and xn → x means the strong convergence.

We need the following facts to prove our results.

Lemma 2.1. [24] Let H be a real Hilbert space. Then:
(i) ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉;
(ii) ‖tx+(1−t)y‖2 = t‖x‖2 +(1−t)‖y‖2−t(1−t)‖x−y‖2, ∀t ∈ [0, 1], ∀x, y ∈ H;
(iii) ‖x− y‖2 ≥ ‖x− PC(x)‖2 + ‖y − PC(x)‖2 for any x ∈ H and for all y ∈ C,
where C is a nonempty closed convex subset in H.
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Lemma 2.2. [24] Let C be a nonempty closed convex subset of a real Hilbert
space H. For any x ∈ H, there exists a unique z ∈ C such that ‖z−x‖ ≤ ‖y−x‖
for all y ∈ C, and

(2.1) z ∈ PC(x) if and only if 〈z − x, y − z〉 ≥ 0 for all y ∈ C,
where PC is the metric projection of H onto C.

Let A be a monotone mapping of C into H. In the context of the variational
inequality problem, the characterization of a projection in Lemma 2.2 implies the
following:

u ∈ ΩA ⇔ u = PC(u− kAu), k > 0.

Lemma 2.3. [25] Every Hilbert space H has Randon-Riesz property or Kadec-
Klee property, that is, for a sequence {xn} ⊂ H with xn ⇀ x and ‖xn‖ → ‖x‖,
then there hodls xn → x.

A set-valued mapping B : H → 2H is called monotone if for all x, y ∈ H,
f ∈ Bx and g ∈ By imply 〈f − g, x− y〉 ≥ 0. A monotone mapping B : H → 2H

is maximal if its graph Gr(B) of B is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping B is maximal if
and only if for (x, f) ∈ H ×H, 〈f − g, x− y〉 ≥ 0 for every (y, g) ∈Gr(B) implies
f ∈ Bx. Let A be a monotone, λ-Lipschitz continuous mapping of C into H and
let NCx be normal cone to C at x ∈ C, i.e. NCx = {y ∈ H : 〈y, x−u〉 ≥ 0, ∀u ∈
C}. Define

Bx =

{
Ax+NCx, if x ∈ C
∅, if x /∈ C.

Then B is maximal monotone and 0 ∈ Bx if and only if x ∈ ΩA (see [26]).
For solving the equilibrium problem for a bifunction G : C × C → R, assume

that G satisfies the following set of standard properties:
(A1) G(u, u) = 0 for all u ∈ C;
(A2) G is monotone, i.e., G(u, v) +G(v, u) ≤ 0 for all (u, v) ∈ C × C;
(A3) For every u ∈ C, G(u, .) : C → R is weakly lower semicontinuous and

convex;
(A4) limt→+0G((1− t)u+ tz, v) ≤ G(u, v) for all (u, z, v) ∈ C × C × C.

The following lemma appears in [1].

Lemma 2.4. [1] Let C be a nonempty closed convex subset of H and G be a
bifunction of C × C into R satisfying conditions (A1)-(A4). Let r > 0 and
x ∈ H. Then, there exists z ∈ C such that

(2.2) G(z, v) +
1

r
〈z − x, v − z〉 ≥ 0 for all v ∈ C.

The following lemma was also given in [7].

Lemma 2.5. [7] Assume that G : C × C → R satisfies conditions (A1)-(A4).
For r > 0 and x ∈ H, define a mapping T r : H → C as follows:

(2.3) T r(x) =
{
u ∈ C : G(u, v) +

1

r
〈u− x, v − u〉 ≥ 0, ∀v ∈ C

}
.

Then, the following statements hold:
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(i) T r is single-valued;
(ii) T r is firmly nonexpansive, i.e., for any x, y ∈ H,

‖T r(x)− T r(y)‖2 ≤ 〈T r(x)− T r(y), x− y〉;

(iii) F(T r) =EP(G);
(iv) EP(G) is closed and convex.

Lemma 2.6. [27] Let C be a nonempty bounded closed convex subset of H and
let {T (t) : t ∈ R+} be a nonexpansive semigroup on C. Then, for any h ≥ 0

(2.4) lim
t→∞

sup
y∈C

∥∥∥∥T (h)

(
1

t

∫ t

0
T (s)yds

)
−1

t

∫ t

0
T (s)yds

∥∥∥∥= 0.

Lemma 2.7. [25] (Demiclosedness Principle) If C is a closed convex subset of H,
T is a nonexpansive mapping on C, {xn} is a sequence in C such that xn ⇀ x ∈ C
and xn − Txn → 0, then x− Tx = 0.

It is also known that H satisfies Opial’s condition. See following definition in
[28].

Definition 2.8. A Banach space X is said to satisfy Opial’s condition if when-
ever {xk} is a sequence in X which converges weakly to x, as k →∞, then

lim sup
k→∞

‖xk − x‖ < lim sup
k→∞

‖xk − y‖, ∀y ∈ X, with x 6= y.

3. Main Results

Now, we are in a position to prove the following results.

Theorem 3.1. Let C be a nonempty closed convex subset in a real Hilbert space
H, {T (s) : s ∈ R+} be a nonexpansive semigroup on C, G be a bifunction from
C × C to R satisfying conditions (A1)-(A4), and A : C → H be a monotone
L-Lipschitz continuous mapping such that F∩ EP(G)∩ΩA 6= ∅. Let {xk}, {uk},
{yk} and {zk} be sequences generated by (1.11) for every k ≥ 0, where {µk} ⊂
[a, 1] for some a ∈ (0, 1), {rk} ⊂ (0,∞) satisfies lim infk→∞ rk > 0, {λk} ⊂ [b, c]
for some b, c ∈ (0, 1/

√
2L) and Tk with {sk} satisfies (1.12) or (1.13). Then,

{xk}, {uk}, {yk} and {zk} converge strongly to an element p ∈ F∩ EP(G)∩ΩA.

Proof. First, we consider the case that Tk with {sk} satisfies (1.12).
It is obvious that Hk is closed and Wk is closed and convex for every k ≥ 0. It

follows that Hk is convex for every k ≥ 0 because ‖z−zk‖ ≤ ‖z−xk‖ is equivalent
to

(3.1) 〈zk − xk, xk − z〉 ≤ −
1

2
‖zk − xk‖2,

so, Hk∩Wk is closed and convex for every k ≥ 0. So that the {xk} is well defined
for every k ≥ 0.

We have F∩ EP(G)∩ΩA ⊂ Hk ∩Wk for every k ≥ 0. Indeed, for each u ∈ F∩
EP(G) ∩ ΩA, by putting uk = T rkxk and using Lemma 2.5 we have that

(3.2) ‖uk − u‖ = ‖T rkxk − T rku‖ ≤ ‖xk − u‖.
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Putting tk = PC(uk − λkAyk) for every k ≥ 0. Using (i) in Lemma 2.1, (2.1)
in Lemma 2.2 with x = uk − λkAyk and y = u, it follows from the monotonicity
of A and u ∈ ΩA we obtain

‖tk − u‖2 ≤ ‖uk − λkAyk − u‖2 − ‖uk − λkAyk − tk‖2

≤ ‖uk − u‖2 − ‖uk − tk‖2 + 2λk〈Ayk, u− tk〉
= ‖uk − u‖2 − ‖uk − tk‖2 + 2λk[〈Ayk −Au, u− yk〉

+ 〈Au, u− yk〉+ 〈Ayk, yk − tk〉]
≤ ‖uk − u‖2 − ‖uk − tk‖2 + 2λk〈Ayk, yk − tk〉
= ‖uk − u‖2 − ‖uk − yk‖2 − 2〈uk − yk, yk − tk〉
− ‖yk − tk‖2 + 2λk〈Ayk, yk − tk〉

= ‖uk − u‖2 − ‖uk − yk‖2 − ‖yk − tk‖2

+ 2〈uk − λkAyk − yk, tk − yk〉.

(3.3)

Since yk = PC(uk − λkAuk) in (1.11), A is L-Lipschitz continuous and (2.1) we
have

2〈uk − λkAyk − yk, tk − yk〉 = 2〈uk − λkAuk − yk, tk − yk〉
+ 2λk〈Auk −Ayk, tk − yk〉
≤ 2λk〈Auk −Ayk, tk − yk〉
≤ 2λkL‖uk − yk‖‖yk − tk‖.

(3.4)

Using monotonicity of A, {λk} ∈ (0, 1/
√

2L) and PC is a nonexpansive mapping,
it follows from (3.3) and (3.4) that

‖tk − u‖2 ≤ ‖uk − u‖2 − ‖uk − yk‖2 − ‖yk − tk‖2

+ 2λkL‖uk − yk‖‖yk − tk‖
≤ ‖uk − u‖2 − ‖uk − yk‖2

+ 2λkL‖uk − yk‖‖PC(uk − λkAuk)− PC(uk − λkAyk)‖
≤ ‖uk − u‖2 + (2λ2

kL
2 − 1)‖uk − yk‖2

≤ ‖uk − u‖2.

(3.5)

By the convexity of ‖.‖2, properties of PC and Tk, it follows from (3.2) and (3.5)
that

‖zk − u‖2 = ‖(1− µk)(xk − u) + µk(Tktk − u)‖2

≤ (1− µk)‖xk − u‖2 + µk‖Tktk − Tku‖2

≤ (1− µk)‖xk − u‖2 + µk‖tk − u‖2

≤ (1− µk)‖xk − u‖2 + µk‖uk − u‖2

≤ (1− µk)‖xk − u‖2 + µk‖xk − u‖2

≤ ‖xk − u‖2, ∀k ≥ 0.

(3.6)

It follows from (3.6) that ‖zk−u‖ ≤ ‖xk−u‖, so u ∈ Hk. Hence F∩ EP(G)∩ΩA ⊂
Hk for all k ≥ 0.
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Next we show F∩ EP(G)∩ΩA ⊂ Hk∩Wk for all k ≥ 0. Indeed, in the case that
k = 0, we have x0 ∈ C and W0 = H. Consequently, F∩EP(G) ∩ ΩA ⊂ H0 ∩W0.
Suppose that xi is given and F∩ EP(G) ∩ ΩA ⊂ Hi ∩Wi for some i ≥ 0. We
have to prove that F∩ EP(G) ∩ ΩA ⊂ Hi+1 ∩Wi+1. Since F∩ EP(G) ∩ ΩA is
nonempty closed convex subset of H. So there exists a unique element xi+1 ∈ F∩
EP(G)∩ΩA such that xi+1 = PF∩EP (G)∩ΩA

(x0). By Lemma 2.2, we have for every
z ∈ F∩ EP(G) ∩ ΩA that

(3.7) 〈xi+1 − z, x0 − xi+1〉 ≥ 0,

and hence z ∈Wi+1. Finally, z ∈ Hi+1∩Wi+1 and the F∩ EP(G)∩ΩA ⊂ Hk∩Wk

holds for all k ≥ 0.
Next, we shall show that the {xk} generated by (1.11) is bounded.
Since F∩ EP(G) ∩ ΩA is a nonempty closed convex subset of C, there exists

a unique element z0 ∈ F∩ EP(G) ∩ ΩA such that z0 = PF∩EP (G)∩ΩA
(x0). Now,

from xk+1 = PHk∩Wk
(x0) we obtain that

(3.8) ‖xk+1 − x0‖ ≤ ‖z − x0‖, ∀z ∈ Hk ∩Wk.

As z0 ∈ F∩ EP(G) ∩ ΩA ⊂ Hk ∩Wk, we get

‖xk+1 − x0‖ ≤ ‖z0 − x0‖,
for each k ≥ 0. Hence, the sequence {xk} is bounded.

We shall show that {xk}, {uk}, {yk} and {zk} converge strongly to an element
p ∈ F∩ EP(G)∩ΩA. Since xk = PWk

(x0) and xk+1 ∈Wk, it follows from Lemma
2.2 that,

(3.9) ‖xk − x0‖ ≤ ‖xk+1 − x0‖,
for all k ≥ 0. Then, there exists limk→∞ ‖xk − x0‖ = c. Since xk = PWk

(x0) and
xk+1 ∈Wk, from (ii) in Lemma 2.1 we have

‖xk − x0‖2 ≤ ‖
xk + xk+1

2
− x0‖2

≤ ‖xk − x0

2
+
xk+1 − x0

2
‖2

≤ ‖xk − x0‖2

2
+
‖xk+1 − x0‖2

2
− ‖xk − xk+1‖2

4
.

(3.10)

So, we get

(3.11) ‖xk − xk+1‖2 ≤ 2(‖xk+1 − x0‖2 − ‖xk − x0‖2).

Since limk→∞ ‖xk − x0‖ = c, we obtain

(3.12) lim
k→∞

‖xk − xk+1‖ = 0.

From xk+1 ∈ Hk, we have

(3.13) ‖zk − xk‖ ≤ ‖xk − xk+1‖+ ‖xk+1 − zk‖ ≤ 2‖xk − xk+1‖.
It follows from (3.12) and (3.13) that

(3.14) lim
k→∞

‖zk − xk‖ = 0.

Now from (3.6) we can write

(3.15) ‖zk − u‖2 − ‖xk − u‖2 ≤ µk[‖Tktk − u‖2 − ‖xk − u‖2] ≤ 0.
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On the other hand, by Lemma 2.1 we have

(3.16) ‖zk − u‖2 − ‖xk − u‖2 = ‖zk − xk‖2 + 2〈zk − xk, xk − u〉.

It follows from (3.14)-(3.16) that

(3.17) lim
k→∞

µk[‖Tktk − u‖2 − ‖xk − u‖2] = 0.

Since {µk} ⊂ [a, 1] for some a ∈ (0, 1), we have that

(3.18) lim
k→∞

[‖Tktk − u‖2 − ‖xk − u‖2] = 0.

By (3.2), (3.5), (3.18) and the nonexpansive property of Tk, we get

(3.19) 0 = lim
k→∞

[‖Tktk − u‖2 − ‖xk − u‖2] ≤ lim
k→∞

[‖tk − u‖2 − ‖xk − u‖2] ≤ 0.

Therefore,

(3.20) lim
k→∞

[‖tk − u‖2 − ‖xk − u‖2] = 0.

On the other hand, from (ii) in Lemma 2.5 we have for every u ∈ F∩EP (G)∩ΩA

that

‖uk − u‖2 = ‖T rkxk − T rku‖2

≤ 〈T rkxk − T rku, xk − u〉
= 〈uk − u, xk − u〉

≤ 1

2
[‖uk − u‖2 + ‖xk − u‖2 − ‖uk − xk‖2].

(3.21)

Thus,

(3.22) ‖uk − u‖2 ≤ ‖xk − u‖2 − ‖uk − xk‖2.

By the convexity of ‖.‖2, the properties of PC and Tk, it follows from (3.6) and
(3.22) that

‖zk − u‖2 ≤ (1− µk)‖xk − u‖2 + µk‖uk − u‖2

≤ (1− µk)‖xk − u‖2 + µk[‖xk − u‖2 − ‖uk − xk‖2]

≤ ‖xk − u‖2 − µk‖uk − xk‖2.
(3.23)

Again, since µk ∈ [a, 1] for some a ∈ (0, 1) and (3.23) we have

a‖uk − xk‖2 ≤ ‖xk − u‖2 − ‖zk − u‖2

≤ (‖xk − u‖+ ‖zk − u‖)‖zk − xk‖.
(3.24)

This together with (3.14) and the condition on {rk} implies that

(3.25) lim
k→∞

‖uk − xk‖ = 0 and lim
k→∞

‖uk − xk‖
rk

= 0.

As {xk} is bounded, there exists a subsequence {xkj} of {xk} converging weakly
to some element p. From (3.25), we obtain also that {ukj} converges weakly to
p. Since {ukj} ⊂ C and C is a closed convex subset in H, we obtain p ∈ C.

Now, we shall show that p ∈ F∩ EP(G) ∩ ΩA.
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First, we shall prove that p ∈ EP(G). By uk = T rkxk, we have

(3.26) G(uk, y) +
1

rk
〈uk − xk, y − uk〉 ≥ 0, ∀y ∈ C.

It follows from condition (A2) and (3.26) that

(3.27)
1

rk
〈uk − xk, y − uk〉 ≥ G(y, uk), ∀y ∈ C.

Therefore,

(3.28) 〈
ukj − xkj

rkj
, y − ukj 〉 ≥ G(y, ukj ), ∀y ∈ C.

From condition (A3), (3.25) and (3.28), we have

(3.29) 0 ≥ G(y, p), ∀y ∈ C.

So, G(p, y) ≥ 0, for all y ∈ C. It means that p ∈ EP(G).
Further, we show that p ∈ ΩA. Set Bv = Av +NCv for v ∈ C where

(3.30) NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C}

and Bv = ∅ for v /∈ C. Then B is a maximal monotone mapping and 0 ∈ Bv if and
only if v ∈ ΩA (see [26]). Let (v, w) ∈ G(B). Then we have w ∈ Bv = Av+NCv
and w −Av ∈ NCv which is equivalent to

(3.31) 〈v − u,w −Av〉 ≥ 0, ∀u ∈ C.

Consequently, from tk = PC(uk − λkAyk), v ∈ C and Lemma 2.2, we have that

(3.32) 〈tk − v, uk − λkAyk − tk〉 ≥ 0.

Therefore,

(3.33) 〈v − tk, (tk − uk)/λk +Ayk〉 ≥ 0.

It follows from (3.31) and monotonicity of A that

〈v − tki , w〉 ≥ 〈v − tki , Av〉
≥ 〈v − tki , Av〉 − 〈v − tki , (tki − uki)/λki +Ayki〉
≥ 〈v − tki , Av −Atki〉+ 〈v − tki , Atki −Ayki〉
− 〈v − tki , (tki − uki)/λki〉
≥ 〈v − tki , Atki −Ayki〉 − 〈v − tki , (tki − uki)/λki〉.

(3.34)

From (3.2) and (3.5) we obtain

(1− 2λ2
kL

2)‖uk − yk‖2 ≤ ‖xk − u‖2 − ‖tk − u‖2.(3.35)

It follows from (3.20), (3.35) and the condition {λk} ⊂ (0, 1/
√

2L) that

(3.36) lim
k→∞

‖uk − yk‖ = 0.

Since yk = PC(uk − λkAuk), tk = PC(uk − λkAyk), it follows from (3.36) and
properties of PC and A that

(3.37) lim
k→∞

‖yk − tk‖ = 0,
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and

(3.38) lim
k→∞

‖Ayk −Atk‖ = lim
k→∞

‖yk − tk‖ = 0.

Hence, after passing i → ∞ in (3.34), using (3.36), (3.37) and (3.38) we obtain
that 〈v − p, w〉 ≥ 0 for all v ∈ C. Since B is maximal monotone, p ∈ B−10. It
means that p ∈ ΩA.

Next we show that p ∈ F .
By using properties of PC and Tk and uk ∈ C, it follows from (1.11) that

a‖uk − Tkuk‖ ≤ µk‖uk − Tkuk‖ ≤ µk
(
‖uk − Tktk‖+ ‖Tktk − Tkuk‖

)
= ‖(1− µk)PC(xk) + µkPC(uk)− PC(uk) + uk − zk‖

+ µk‖tk − uk‖
≤ (1− µk)‖PC(xk)− PC(uk)‖+ ‖uk − zk‖

+ µk‖tk − uk‖
≤ (1− µk)‖xk − uk‖+ ‖uk − zk‖+ µk‖tk − uk‖
≤ ‖xk − uk‖+ ‖uk − xk‖+ ‖xk − zk‖+ µk‖tk − uk‖
≤ 2‖xk − uk‖+ ‖xk − zk‖+ µk‖tk − uk‖.

(3.39)

Therefore, from (3.14), (3.25), (3.36) and (3.37) it implies that

(3.40) lim
k→∞

‖uk − Tkuk‖ = 0.

From (3.40) and as in [16], without loss of generality, let

(3.41) lim
j→∞

skj = 0; lim
j→∞

‖ukj − Tkjukj‖
skj

= 0.

Now, we prove that p = T (s)p for a fixed s > 0. It is easy to see that

‖ukj − T (s)p‖ ≤
[s/skj ]−1∑

l=0

‖T (lskj )ukj − T ((l + 1)skj )ukj‖

+

∥∥∥∥T([ s

skj

]
skj

)
ukj − T

([
s

skj

]
skj

)
p

∥∥∥∥+

∥∥∥∥T([ s

skj

]
skj

)
p− T (s)p

∥∥∥∥
≤
[
s

skj

]
‖ukj − T (skj )ukj‖+ ‖ukj − p‖+

∥∥∥∥T(s− [ s

skj

]
skj

)
p− p

∥∥∥∥.
(3.42)

Therefore,

‖ukj − T (s)p‖ ≤ s

skj
‖ukj − T (skj )ukj‖

+ ‖ukj − p‖+ sup{‖T (s)p− p‖ : 0 ≤ s ≤ skj}.
(3.43)

This fact and (3.41) imply that

(3.44) lim sup
j→∞

‖ukj − T (s)p‖ ≤ lim sup
j→∞

‖ukj − p‖.

As every Hilbert space satisfies Opial’s condition, we have T (s)p = p. Therefore,
p ∈ F . Thus, (3.8) with z replaced by z0 = PF∩EP (G)∩ΩA

(x0) and the weakly
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lower semicontinuity of the norm guarantee that

‖x0 − z0‖ ≤ ‖x0 − p‖ ≤ lim inf
j→∞

‖x0 − xkj‖

≤ lim sup
j→∞

‖x0 − xkj‖ ≤ ‖x0 − z0‖.
(3.45)

Hence, we obtain

(3.46) lim
j→∞

‖xkj − x0‖ = ‖x0 − p‖ = ‖x0 − z0‖.

It means that

(3.47) xkj → p = z0,

and all sequence {xk} converges strongly to p as k →∞. So, the strong conver-
gence of the sequences {zk} and {uk} to z0 is followed from (3.14) and (3.25),
respectively. The strong convergence of the sequences {yk} is followed from the
property of {uk} and (3.36).

For the case that Tk is defined by (1.13), we need only to prove p ∈ F from
(3.40). For this purpose, we have for each h > 0 the following estimate:

‖T (h)uk − uk‖ ≤
∥∥∥∥T (h)uk − T (h)

(
1

sk

∫ sk

0
T (s)ukds

)∥∥∥∥
+

∥∥∥∥T (h)

(
1

sk

∫ sk

0
T (s)ukds

)
− 1

sk

∫ sk

0
T (s)ukds

∥∥∥∥
+

∥∥∥∥ 1

sk

∫ sk

0
T (s)ukds− uk

∥∥∥∥
≤ 2

∥∥∥∥ 1

sk

∫ sk

0
T (s)ukds− uk

∥∥∥∥
+

∥∥∥∥T (h)

(
1

sk

∫ sk

0
T (s)ukds

)
− 1

sk

∫ sk

0
T (s)ukds

∥∥∥∥.

(3.48)

By Lemma 2.6, we get

(3.49) lim
k→∞

∥∥∥∥T (h)

(
1

sk

∫ sk

0
T (s)ukds

)
− 1

sk

∫ sk

0
T (s)ukds

∥∥∥∥= 0,

for every h ∈ (0,∞) and hence, by (3.40), (3.48) and (3.49), we obtain

(3.50) lim
k→∞

‖T (h)uk − uk‖ = 0

for each h > 0. By Lemma 2.7, this implies p ∈ F (T (h)) for all h > 0. As for the
case (1.12), we also obtain that the sequences {xk}, {uk}, {yk} and {zk} defined
by (1.11) with (1.13) converge strongly to p as k →∞. �

Putting T (s) = T for all s > 0 we obtain the strong convergence for equi-
librium problems, variational inequalities problems and fixed point problems for
nonexpansive in Hilbert spaces.

Corollary 3.2. Let C be a nonempty closed convex subset in a real Hilbert space
H. Let T be a nonexpansive mapping on C, let G be a bifunction from C ×C to
R satisfying conditions (A1)-(A4), and let A : C → H be a monotone L-Lipschitz
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continuous mapping such that F (T )∩ EP(G)∩ΩA 6= ∅. Let {xk}, {uk}, {yk} and
{zk} be sequences generated by

x0 ∈ H chosen arbitrarily,

uk ∈ C : G(uk, y) +
1

rk
〈uk − xk, y − uk〉 ≥ 0, ∀y ∈ C,

yk = PC(uk − λkAuk),

zk = (1− µk)xk + µkTPC(uk − λkAyk),

Hk = {z ∈ H : ‖zk − z‖ ≤ ‖xk − z‖},
Wk = {z ∈ H : 〈xk − z, x0 − xk〉 ≥ 0},
xk+1 = PHk∩Wk

(x0), k ≥ 0,

(3.51)

where {µk} ⊂ [a, 1] for some a ∈ (0, 1) and {rk} ⊂ (0,∞) satisfies lim infk→∞ rk >
0, {λk} ⊂ [b, c] for some b, c ∈ (0; 1/

√
2L). Then, the sequences {xk}, {uk}, {yk}

and {zk} converge strongly to an element p ∈ F (T )∩ EP(G) ∩ ΩA.

Corollary 3.3. Let C be a nonempty closed convex subset in a real Hilbert space
H. Let {T (s) : s ∈ R+} be a nonexpansive semigroup on C and let A : C → H
be a monotone L-Lipschitz continuous mapping such that F ∩ΩA 6= ∅. Let {xk},
{uk}, {yk} and {zk} be sequences generated by

x0 ∈ H chosen arbitrarily,

uk = PC(xk),

yk = PC(uk − λkAuk),

zk = (1− µk)uk + µkTkPC(uk − λkAyk),

Hk = {z ∈ H : ‖zk − z‖ ≤ ‖xk − z‖},
Wk = {z ∈ H : 〈xk − z, x0 − xk〉 ≥ 0},
xk+1 = PHk∩Wk

(x0), k ≥ 0,

(3.52)

where {µk} ⊂ [a, 1] for some a ∈ (0, 1), {rk} ⊂ (0,∞) satisfies lim infk→∞ rk > 0,
{λk} ⊂ [b, c] for some b, c ∈ (0; 1/

√
2L) and Tk is defined by (1.12) or (1.13).

Then, the sequences {xk}, {uk}, {yk} and {zk} converge strongly to an element
p ∈ F ∩ ΩA.

Proof. Obviously, if G(u, v) ≡ 0 then uk is defined by

〈uk − xk, y − uk〉 ≥ 0, ∀y ∈ C

which is equivalent to uk = PC(xk). So, the conclusion of Corollary 3.3 is proved
similar Theorem 3.1. �

Putting G(u, v) ≡ 0 for all u, v ∈ C and A ≡ 0, we obtain the following
algorithm for finding a common fixed point of a nonexpansive semigroup {T (s) :
s ∈ R+} on C.

Corollary 3.4. Let C be a nonempty closed convex subset in a real Hilbert space
H. Let {T (s) : s ∈ R+} be a nonexpansive semigroup on C such that F 6= ∅. Let
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{xk}, {uk} and {zk} be sequences generated by

x0 ∈ H chosen arbitrarily,

uk = PC(xk),

zk = (1− µk)uk + µkTkuk,

Hk = {z ∈ H : ‖zk − z‖ ≤ ‖xk − z‖},
Wk = {z ∈ H : 〈xk − z, x0 − xk〉 ≥ 0},
xk+1 = PHk∩Wk

(x0), k ≥ 0,

(3.53)

where {µk} ⊂ [a, 1] for some a ∈ (0, 1), Tk = T (sk) and {sk} satisfies condition
(1.12). Then, the sequences {xk}, {uk} and {zk} converge strongly to an element
p ∈ F .
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