# AN ITERATIVE METHOD FOR EQUILIBRIUM, VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS FOR A NONEXPANSIVE SEMIGROUP IN HILBERT SPACES 

NGUYEN THI THU THUY ${ }^{1}$


#### Abstract

The purpose of this paper is to present a new iteration method based on the hybrid method in mathematical programming, extragradient method and Mann's method for finding a common element of the solution set of equilibrium problems, the solution set of variational inequality problems for a monotone, Lipschitz continuous mapping and the set of fixed points for a nonexpansive semigroup in Hilbert spaces. We obtain a strong convergence theorem for the sequences generated by this process. The results in this paper generalize and extend some well-known strong convergence theorems in the literature.


## 1. Introduction

Let $H$ be a real Hilbert space with inner product $\langle.,$.$\rangle and norm \|$.$\| , respec-$ tively. Let $C$ be a nonempty closed convex subset of $H$. Let $A$ be a mapping of $C$ into $H$ and $G: C \times C \rightarrow \mathbb{R}$ be a bifunction, where $\mathbb{R}$ is the set of real numbers.

Recall that a mapping $A$ is called monotone if

$$
\langle A x-A y, x-y\rangle \geq 0 \text { for all } x, y \in C,
$$

strictly monotone if $\langle A x-A y, x-y\rangle>0$ for all $x \neq y, \lambda$-inverse strongly monotone mapping if

$$
\langle A x-A y, x-y\rangle \geq \lambda\|A x-A y\|^{2} \text { for all } x, y \in C, \lambda>0,
$$

and $L$-Lipschitz continuous if there exists a positive constant $L$ such that

$$
\|A x-A y\| \leq L\|x-y\| \text { for all } x, y \in C
$$

It is clear that if $A$ is $\lambda$-inverse strongly monotone, then $A$ is monotone and Lipschitz continuous.

The variational inequality problem (for short, $\mathrm{VI}(A ; C)$ ) is to find $x^{*} \in C$ such that

$$
\begin{equation*}
\left\langle A x^{*}, x-x^{*}\right\rangle \geq 0 \text { for all } x \in C . \tag{1.1}
\end{equation*}
$$

The set of solutions of the $\operatorname{VI}(C ; A)$ is denoted by $\Omega_{A}$. Due to the many applications of the variational inequality problem to several branches of mathematics, but also to mechanics, economics etc, finding its solutions is a very important

[^0]field of research. In some cases, as for strictly monotone operators $A$, the solution, if it exists, is unique. More generally the set of solutions $\Omega_{A}$ of a continuous monotone mapping $A$ is a convex subset of $C$.

Numerous problems in physics, optimization, and economics reduce to find a solution of the equilibrium problem which is for a bifunction $G(u, v)$ defined on $C \times C$ to find $u^{*} \in C$ such that

$$
\begin{equation*}
G\left(u^{*}, v\right) \geq 0 \text { for all } v \in C \tag{1.2}
\end{equation*}
$$

The set of solutions of $(\overline{1.2})$ is denoted by $\operatorname{EP}(G)$. Given a mapping $B: C \rightarrow H$, let $G(u, v)=\langle B u, v-u\rangle$ for all $u, v \in C$. Then, $w \in \operatorname{EP}(G)$ if and only if $\langle B w, v-w\rangle \geq 0$ for all $v \in C$, i.e., $w$ is a solution of the variational inequality. Some methods have been proposed to solve the equilibrium problem (1.2) (see [1]-(7). Recently, Combettes and Hirstoaga [7] introduced an iterative scheme of finding the best approximation to the initial data when $\operatorname{EP}(G)$ is nonempty and proved a strong convergence theorem.

Let $T: C \rightarrow C$ be a mapping. Recall that $T$ is nonexpansive if $\|T x-T y\| \leq$ $\|x-y\|$ for all $x, y \in C$. A point $x \in C$ is a fixed point of $T$ provided $T x=x$. Denote by $\mathrm{F}(T)$ the set of fixed points of $T$, that is, $\mathrm{F}(T)=\{x \in C: T x=x\}$. We know that $\mathrm{F}(T)$ is nonempty if $C$ is bounded (see [8]). We denote by $\mathcal{R}_{+}$ the set of nonegative numbers. Also, recall that a family $\left\{T(s): s \in \mathcal{R}_{+}\right\}$of mapping from $C$ into itself is called a nonexpansive semigroup on $C$ if it satisfies the following conditions:
(1) for each $s \in \mathcal{R}_{+}, T(s)$ is a nonexpansive mapping on $C$;
(2) $T(0) x=x$ for all $x \in C$;
(3) $T\left(s_{1}+s_{2}\right)=T\left(s_{1}\right) \circ T\left(s_{2}\right)$ for all $s_{1}, s_{2} \in \mathcal{R}_{+}$;
(4) for each $x \in C$, the mapping $T()$.$x from \mathcal{R}_{+}$into $C$ is continuous.

We denote by $\mathcal{F}=\cap_{s \geq 0} \mathrm{~F}(T(s))$ the set of all common fixed points of $\{T(s)$ : $\left.s \in \mathcal{R}_{+}\right\}$. We know that $\mathcal{F}$ is nonempty if $C$ is bounded (see [9]).

Takahashi and Toyoda [10] considered the problem of finding a solution of the variational inequality which is also a fixed point of some mapping. More precisely, given a nonempty closed convex subset $C$ of $H$, a nonexpansive mapping $T: C \rightarrow C$ and an $\lambda$-inverse strongly monotone mapping $A: C \rightarrow H$, in order to find an element $p \in \mathrm{~F}(T) \cap \Omega_{A}$ they introduced the following iterative scheme

$$
\begin{align*}
x_{0} & \in C \text { chosen arbitrarily }, \\
x_{k+1} & =\alpha_{k} x_{k}+\left(1-\alpha_{k}\right) T P_{C}\left(x_{k}-\lambda_{k} A x_{k}\right) \tag{1.3}
\end{align*}
$$

for all $k \geq 0$, where $\left\{\alpha_{k}\right\}$ is a sequence in $(0,1)$ and $\left\{\lambda_{k}\right\}$ is a sequence in $(0,2 \lambda)$ and $P_{C}$ is the metric projection of $H$ onto $C$. They proved that if $\mathrm{F}(T) \cap \Omega_{A} \neq \emptyset$, then the sequence $\left\{x_{k}\right\}$ defined by (1.3) converges weakly to same point $p \in$ $\mathrm{F}(T) \cap \Omega_{A}$. Later on, in order to achieve strong convergence to an element of $\mathrm{F}(T) \cap \Omega_{A}$ under the same assumptions, Iiduka and Takahashi [11] modified the iterative scheme by using the hybrid method in mathematical programming as
follows

$$
\begin{align*}
x_{0} & \in C \text { chosen arbitrarily, } \\
y_{k} & =\alpha_{k} x_{k}+\left(1-\alpha_{k}\right) T P_{C}\left(x_{k}-\lambda_{k} A x_{k}\right), \\
C_{k} & =\left\{z \in C:\left\|z-y_{k}\right\| \leq\left\|z-x_{k}\right\|\right\},  \tag{1.4}\\
Q_{k} & =\left\{z \in C:\left\langle z-x_{k}, x_{0}-x_{k}\right\rangle \leq 0\right\}, \\
x_{k+1} & =P_{C_{k} \cap Q_{k}}\left(x_{0}\right),
\end{align*}
$$

for all $k \geq 0$, where $0 \leq \alpha_{k} \leq c<1$ and $0<a \leq \lambda_{k} \leq b<2 \lambda$. They showed that if $\mathrm{F}(T) \cap \Omega_{A} \neq \emptyset$, then the sequence $\left\{x_{k}\right\}$ defined by (1.4) converges strongly to $P_{F(T) \cap \Omega_{A}}\left(x_{0}\right)$. To overcome the restriction of the above methods to the class of $\lambda$-inverse strongly monotone mappings, by combining a hybrid-type method with an extragradient-type method of Korpelevich [12, Nadezhkina and Takahashi [13] introduced the following iterative method for finding an element of $\mathrm{F}(T) \cap \Omega_{A}$ and established the strong convergence theorem under Lipschitz and monotone assumptions of the mapping $A$ :

$$
\begin{align*}
x_{0} & \in C \text { chosen arbitrarily, } \\
y_{k} & =P_{C}\left(x_{k}-\lambda_{k} A x_{k}\right), \\
z_{k} & =\alpha_{k} x_{k}+\left(1-\alpha_{k}\right) T P_{C}\left(x_{k}-\lambda_{k} A y_{k}\right), \\
C_{k} & =\left\{z \in C:\left\|z-z_{k}\right\| \leq\left\|z-x_{k}\right\|\right\},  \tag{1.5}\\
Q_{k} & =\left\{z \in C:\left\langle z-x_{k}, x_{0}-x_{k}\right\rangle \leq 0\right\}, \\
x_{k+1} & =P_{C_{k} \cap Q_{k}}\left(x_{0}\right), k \geq 0,
\end{align*}
$$

where $k \geq 0,\left\{\alpha_{k}\right\} \subset[a, b]$ for some $a, b \in(0,1 / L)$ and $\left\{\lambda_{k}\right\} \subset[0, c]$ for some $c \in[0,1)$. They proved that if $\mathrm{F}(T) \cap \Omega_{A} \neq \emptyset$, then the sequence $\left\{x_{k}\right\},\left\{y_{k}\right\},\left\{z_{k}\right\}$ defined by (1.5) converge strongly to the same point $z=P_{F(T) \cap \Omega_{A}}\left(x_{0}\right)$.

Tada and Takahashi [14] introduced the following iterative scheme by the hybrid method:

$$
\begin{align*}
x_{0} & \in H \text { chosen arbitrarily, } \\
u_{k} & \in C, G\left(u_{k}, y\right)+\frac{1}{r_{k}}\left\langle u_{k}-x_{k}, y-u_{k}\right\rangle \geq 0, \forall y \in C, \\
y_{k} & =\left(1-\alpha_{k}\right) x_{k}+\alpha_{k} T u_{k},  \tag{1.6}\\
C_{k} & =\left\{z \in H:\left\|z_{k}-z\right\| \leq\left\|x_{k}-z\right\|\right\}, \\
Q_{k} & =\left\{z \in H:\left\langle x_{k}-z, x_{0}-x_{k}\right\rangle \geq 0\right\}, \\
x_{k+1} & =P_{C_{k} \cap Q_{k}}\left(x_{0}\right), k \geq 0,
\end{align*}
$$

for finding a common element of the set of solution (1.2) and the set of fixed points of a nonexpansive mapping in a Hilbert. They proved that under certain appropriate conditions imposed on $\left\{\alpha_{k}\right\}$ and $\left\{r_{k}\right\}$, the sequences $\left\{x_{k}\right\}$ and $\left\{u_{k}\right\}$ generated by (1.6) converge strongly to $P_{\mathrm{F}(T) \cap \mathrm{EP}(Q)} x_{0}$. Generally speaking, the algorithm suggested by Tada and Takahashi is based on two well-known types of methods, namely, on the Mann iterative methods and the so-called hybrid for solving fixed point problem.

In 2002, Suzuki [15] was the first to introduce the following implicit iteration process in Hilbert spaces:

$$
\begin{align*}
& x_{0} \in C \text { chosen arbitrarily, } \\
& x_{k}=\alpha_{k} x_{0}+\left(1-\alpha_{k}\right) T\left(t_{k}\right) x_{k}, k \geq 1, \tag{1.7}
\end{align*}
$$

where $\left\{\alpha_{k}\right\}$ and $\left\{t_{k}\right\}$ are sequences of real numbers satisfying $0<\alpha_{k}<1, t_{k}>0$ and $\lim _{k} t_{k}=\lim _{k} \alpha_{k} / t_{k}=0$ for the nonexpansive semigroup. If $\mathcal{F} \neq \emptyset$, then the sequence $\left\{x_{k}\right\}$ defined by (1.7) converges strongly to the element of $\mathcal{F}$ nearest to $x_{0}$.

He and Chen [16] is proved a strong convergence theorem for nonexpansive semigroups in Hilbert spaces by hybrid method in the mathematical programming:

$$
\begin{align*}
x_{0} & \in C \text { chosen arbitrarily, } \\
y_{k} & =\alpha_{k} x_{k}+\left(1-\alpha_{k}\right) T\left(t_{k}\right) x_{k}, \\
C_{k} & =\left\{z \in C:\left\|y_{k}-z\right\| \leq\left\|x_{k}-z\right\|\right\},  \tag{1.8}\\
Q_{k} & =\left\{z \in C:\left\langle x_{k}-z, x_{0}-x_{k}\right\rangle \geq 0\right\}, \\
x_{k+1} & =P_{C_{k} \cap Q_{k}}\left(x_{0}\right), k \geq 0,
\end{align*}
$$

where $\alpha_{k} \in[0, a)$ for some $a \in[0,1)$ and $t_{k} \geq 0, \lim _{k \rightarrow \infty} t_{k}=0$.
In 2008, Seajung [17] showed that the proof of the main result in [16] is very questionable and corrected this fact under some additional restriction on the parameter $t_{k}$ :

$$
\begin{equation*}
\liminf _{k} t_{k}=0, \limsup _{k} t_{k}>0, \text { and } \lim _{k}\left(t_{k+1}-t_{k}\right)=0 . \tag{1.9}
\end{equation*}
$$

In 2011, Buong [18] solved the problem of finding a common element of the set of solution (1.1) and the set of common fixed points of a nonexpansive semigroup $\left\{T(s), s \in \overline{\mathcal{R}_{+}}\right\}$on $C$ for any monotone Lipschitz continuous mapping $A$ by the following algorithm

$$
\begin{align*}
x_{0} & \in H \text { chosen arbitrarily, } \\
y_{k} & =P_{C}\left(x_{k}-\lambda_{k} A P_{C}\left(x_{k}\right)\right), \\
z_{k} & =x_{k}-\mu_{k}\left[x_{k}-T_{k} P_{C}\left(x_{k}-\lambda_{k} A y_{k}\right)\right], \\
H_{k} & =\left\{z \in H:\left\|z_{k}-z\right\| \leq\left\|x_{k}-z\right\|\right\},  \tag{1.10}\\
W_{k} & =\left\{z \in H:\left\langle x_{k}-x_{0}, z-x_{k}\right\rangle \leq 0\right\}, \\
x_{k+1} & =P_{H_{k} \cap W_{k}}\left(x_{0}\right), k \geq 0,
\end{align*}
$$

where $\left\{\lambda_{k}\right\} \subset[a, b]$ for some $a, b \in[0,1 / L],\left\{\mu_{k}\right\} \subset[c, 1]$ for some $c \in(0,1)$ and $\left\{t_{k}\right\}$ is a sequence of positive real numbers satisfying condition (1.9) and $T_{k} x=T\left(t_{k}\right) x$ for $x \in C$. If $\mathcal{F} \cap \Omega_{A} \neq \emptyset$, then the sequences $\left\{x_{k}\right\},\left\{y_{k}\right\},\left\{z_{k}\right\}$ defined by (1.10) converge strongly to the same point $z_{0}=P_{\mathcal{F} \cap \Omega_{A}}\left(x_{0}\right)$.

On the other hand, in 2011, Buong and Duong [19] introduced a viscosity approximation method for finding a common element of the set of solution (1.1) and the set of solution (1.2). Ceng and Yao [20] investigated the problem of finding a common element of the set of solutions of a mixed equilibrium problem and the set of common fixed points of finitely many nonexpansive mappings in a Hilbert space. The authors's result is the improvements and extension of Takahashi and

Takahashi 21]. Plubtieng and Punpaeng [22] introduced an iterative process based on the extragradient method for finding the common element of the set of fixed points of a nonexpansive mapping, the set of an equilibrium problem and the set of solutions of variational inequality problem for an $\lambda$-inverse strongly monotone mapping. In [23] Penga and Yao introduced two iterative process by the extragradient-like methods for finding a common element of the set of solutions of a generalized equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings and the set of solutions of the variational inequality for a monotone, Lipschitz-continuous mapping in a Hilbert space.

In this paper, motivated the above results we give a new algorithm for finding a common element of the set of solutions of an equilibrium problem, the set of fixed points of a nonexpansive semigroup and the set of solutions of the variational inequality for a monotone, Lipschitz continuous mapping in a Hilbert space.

For this purpose, we consider the following algorithm

$$
\begin{aligned}
x_{0} & \in H \text { chosen arbitrarily, } \\
u_{k} & \in C: G\left(u_{k}, y\right)+\frac{1}{r_{k}}\left\langle u_{k}-x_{k}, y-u_{k}\right\rangle \geq 0, \forall y \in C, \\
y_{k} & =P_{C}\left(u_{k}-\lambda_{k} A u_{k}\right), \\
z_{k} & =\left(1-\mu_{k}\right) x_{k}+\mu_{k} T_{k} P_{C}\left(u_{k}-\lambda_{k} A y_{k}\right), \\
H_{k} & =\left\{z \in H:\left\|z_{k}-z\right\| \leq\left\|x_{k}-z\right\|\right\}, \\
W_{k} & =\left\{z \in H:\left\langle x_{k}-z, x_{0}-x_{k}\right\rangle \geq 0\right\}, \\
x_{k+1} & =P_{H_{k} \cap W_{k}}\left(x_{0}\right), k \geq 0,
\end{aligned}
$$

where $T_{k}$ is defined

$$
\begin{align*}
T_{k} x & =T\left(s_{k}\right) x, \forall x \in C \text { and } \\
\lim \inf _{k} s_{k} & =0, \lim \sup _{k} s_{k}>0, \lim _{k}\left(s_{k+1}-s_{k}\right)=0, \tag{1.12}
\end{align*}
$$

or $T_{k}$ is defined by

$$
\begin{equation*}
T_{k} x=\frac{1}{s_{k}} \int_{0}^{s_{k}} T(s) x d s, \forall x \in C \text { and } \lim _{k \rightarrow \infty} s_{k}=+\infty \tag{1.13}
\end{equation*}
$$

respectively. The strong convergence of (1.11) with (1.12) or (1.13) is proved in the Section 3. In Section 2, we give some preliminaries.

## 2. Preliminaries

Let $H$ be a real Hilbert space with inner product $\langle.,$.$\rangle and norm \|$.$\| , respec-$ tively. When $\left\{x_{n}\right\}$ is a sequence in $H, x_{n} \rightharpoonup x$ implies that $\left\{x_{n}\right\}$ converges weakly to $x$ and $x_{n} \rightarrow x$ means the strong convergence.

We need the following facts to prove our results.
Lemma 2.1. [24] Let $H$ be a real Hilbert space. Then:
(i) $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+2\langle x, y\rangle$;
(ii) $\|t x+(1-t) y\|^{2}=t\|x\|^{2}+(1-t)\|y\|^{2}-t(1-t)\|x-y\|^{2}, \forall t \in[0,1], \forall x, y \in H$;
(iii) $\|x-y\|^{2} \geq\left\|x-P_{C}(x)\right\|^{2}+\left\|y-P_{C}(x)\right\|^{2}$ for any $x \in H$ and for all $y \in C$, where $C$ is a nonempty closed convex subset in $H$.

Lemma 2.2. [24] Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$. For any $x \in H$, there exists a unique $z \in C$ such that $\|z-x\| \leq\|y-x\|$ for all $y \in C$, and

$$
\begin{equation*}
z \in P_{C}(x) \text { if and only if }\langle z-x, y-z\rangle \geq 0 \text { for all } y \in C \text {, } \tag{2.1}
\end{equation*}
$$

where $P_{C}$ is the metric projection of $H$ onto $C$.
Let $A$ be a monotone mapping of $C$ into $H$. In the context of the variational inequality problem, the characterization of a projection in Lemma 2.2 implies the following:

$$
u \in \Omega_{A} \Leftrightarrow u=P_{C}(u-k A u), k>0 .
$$

Lemma 2.3. [25] Every Hilbert space $H$ has Randon-Riesz property or KadecKlee property, that is, for a sequence $\left\{x_{n}\right\} \subset H$ with $x_{n} \rightharpoonup x$ and $\left\|x_{n}\right\| \rightarrow\|x\|$, then there hodls $x_{n} \rightarrow x$.

A set-valued mapping $B: H \rightarrow 2^{H}$ is called monotone if for all $x, y \in H$, $f \in B x$ and $g \in B y$ imply $\langle f-g, x-y\rangle \geq 0$. A monotone mapping $B: H \rightarrow 2^{H}$ is maximal if its graph $\operatorname{Gr}(B)$ of $B$ is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping $B$ is maximal if and only if for $(x, f) \in H \times H,\langle f-g, x-y\rangle \geq 0$ for every $(y, g) \in \operatorname{Gr}(B)$ implies $f \in B x$. Let $A$ be a monotone, $\lambda$-Lipschitz continuous mapping of $C$ into $H$ and let $N_{C} x$ be normal cone to $C$ at $x \in C$, i.e. $N_{C} x=\{y \in H:\langle y, x-u\rangle \geq 0, \forall u \in$ $C\}$. Define

$$
B x=\left\{\begin{array}{lll}
A x+N_{C} x, & \text { if } & x \in C \\
\emptyset, & \text { if } \quad x \notin C .
\end{array}\right.
$$

Then $B$ is maximal monotone and $0 \in B x$ if and only if $x \in \Omega_{A}$ (see [26]).
For solving the equilibrium problem for a bifunction $G: C \times C \rightarrow \mathbb{R}$, assume that $G$ satisfies the following set of standard properties:
(A1) $G(u, u)=0$ for all $u \in C$;
(A2) $G$ is monotone, i.e., $G(u, v)+G(v, u) \leq 0$ for all $(u, v) \in C \times C$;
(A3) For every $u \in C, G(u,):. C \rightarrow \mathbb{R}$ is weakly lower semicontinuous and convex;
(A4) $\overline{\lim }_{t \rightarrow+0} G((1-t) u+t z, v) \leq G(u, v)$ for all $(u, z, v) \in C \times C \times C$.
The following lemma appears in [1].
Lemma 2.4. [1] Let $C$ be a nonempty closed convex subset of $H$ and $G$ be a bifunction of $C \times C$ into $\mathbb{R}$ satisfying conditions (A1)-(A4). Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
\begin{equation*}
G(z, v)+\frac{1}{r}\langle z-x, v-z\rangle \geq 0 \text { for all } v \in C \tag{2.2}
\end{equation*}
$$

The following lemma was also given in [7].
Lemma 2.5. [7] Assume that $G: C \times C \rightarrow \mathbb{R}$ satisfies conditions (A1)-(A4). For $r>0$ and $x \in H$, define a mapping $T^{r}: H \rightarrow C$ as follows:

$$
\begin{equation*}
T^{r}(x)=\left\{u \in C: G(u, v)+\frac{1}{r}\langle u-x, v-u\rangle \geq 0, \forall v \in C\right\} . \tag{2.3}
\end{equation*}
$$

Then, the following statements hold:
(i) $T^{r}$ is single-valued;
(ii) $T^{r}$ is firmly nonexpansive, i.e., for any $x, y \in H$,

$$
\left\|T^{r}(x)-T^{r}(y)\right\|^{2} \leq\left\langle T^{r}(x)-T^{r}(y), x-y\right\rangle ;
$$

(iii) $\mathrm{F}\left(T^{r}\right)=\mathrm{EP}(G)$;
(iv) $\mathrm{EP}(G)$ is closed and convex.

Lemma 2.6. 27] Let $C$ be a nonempty bounded closed convex subset of $H$ and let $\left\{T(t): t \in \mathcal{R}_{+}\right\}$be a nonexpansive semigroup on $C$. Then, for any $h \geq 0$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup _{y \in C}\left\|T(h)\left(\frac{1}{t} \int_{0}^{t} T(s) y d s\right)-\frac{1}{t} \int_{0}^{t} T(s) y d s\right\|=0 \tag{2.4}
\end{equation*}
$$

Lemma 2.7. 25] (Demiclosedness Principle) If $C$ is a closed convex subset of $H$, $T$ is a nonexpansive mapping on $C,\left\{x_{n}\right\}$ is a sequence in $C$ such that $x_{n} \rightharpoonup x \in C$ and $x_{n}-T x_{n} \rightarrow 0$, then $x-T x=0$.

It is also known that $H$ satisfies Opial's condition. See following definition in [28].

Definition 2.8. A Banach space $X$ is said to satisfy Opial's condition if whenever $\left\{x_{k}\right\}$ is a sequence in $X$ which converges weakly to $x$, as $k \rightarrow \infty$, then

$$
\limsup _{k \rightarrow \infty}\left\|x_{k}-x\right\|<\limsup _{k \rightarrow \infty}\left\|x_{k}-y\right\|, \quad \forall y \in X, \quad \text { with } x \neq y
$$

## 3. Main Results

Now, we are in a position to prove the following results.
Theorem 3.1. Let $C$ be a nonempty closed convex subset in a real Hilbert space $H,\left\{T(s): s \in \mathcal{R}_{+}\right\}$be a nonexpansive semigroup on $C, G$ be a bifunction from $C \times C$ to $\mathbb{R}$ satisfying conditions $(A 1)-(A 4)$, and $A: C \rightarrow H$ be a monotone L-Lipschitz continuous mapping such that $\mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A} \neq \emptyset$. Let $\left\{x_{k}\right\},\left\{u_{k}\right\}$, $\left\{y_{k}\right\}$ and $\left\{z_{k}\right\}$ be sequences generated by 1.11 for every $k \geq 0$, where $\left\{\mu_{k}\right\} \subset$ $[a, 1]$ for some $a \in(0,1),\left\{r_{k}\right\} \subset(0, \infty)$ satisfies $\liminf _{k \rightarrow \infty} r_{k}>0,\left\{\lambda_{k}\right\} \subset[b, c]$ for some $b, c \in(0,1 / \sqrt{2} L)$ and $T_{k}$ with $\left\{s_{k}\right\}$ satisfies (1.12) or 1.13 . Then, $\left\{x_{k}\right\},\left\{u_{k}\right\},\left\{y_{k}\right\}$ and $\left\{z_{k}\right\}$ converge strongly to an element $p \in \mathcal{F} \cap \overline{\mathrm{EP}}(G) \cap \Omega_{A}$.

Proof. First, we consider the case that $T_{k}$ with $\left\{s_{k}\right\}$ satisfies (1.12).
It is obvious that $H_{k}$ is closed and $W_{k}$ is closed and convex for every $k \geq 0$. It follows that $H_{k}$ is convex for every $k \geq 0$ because $\left\|z-z_{k}\right\| \leq\left\|z-x_{k}\right\|$ is equivalent to

$$
\begin{equation*}
\left\langle z_{k}-x_{k}, x_{k}-z\right\rangle \leq-\frac{1}{2}\left\|z_{k}-x_{k}\right\|^{2} \tag{3.1}
\end{equation*}
$$

so, $H_{k} \cap W_{k}$ is closed and convex for every $k \geq 0$. So that the $\left\{x_{k}\right\}$ is well defined for every $k \geq 0$.

We have $\mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A} \subset H_{k} \cap W_{k}$ for every $k \geq 0$. Indeed, for each $u \in \mathcal{F} \cap$ $\operatorname{EP}(G) \cap \Omega_{A}$, by putting $u_{k}=T^{r_{k}} x_{k}$ and using Lemma 2.5 we have that

$$
\begin{equation*}
\left\|u_{k}-u\right\|=\left\|T^{r_{k}} x_{k}-T^{r_{k}} u\right\| \leq\left\|x_{k}-u\right\| \tag{3.2}
\end{equation*}
$$

Putting $t_{k}=P_{C}\left(u_{k}-\lambda_{k} A y_{k}\right)$ for every $k \geq 0$. Using $(i)$ in Lemma 2.1, (2.1) in Lemma 2.2 with $x=u_{k}-\lambda_{k} A y_{k}$ and $y=u$, it follows from the monotonicity of $A$ and $u \in \Omega_{A}$ we obtain

$$
\begin{align*}
\left\|t_{k}-u\right\|^{2} \leq & \left\|u_{k}-\lambda_{k} A y_{k}-u\right\|^{2}-\left\|u_{k}-\lambda_{k} A y_{k}-t_{k}\right\|^{2} \\
\leq & \left\|u_{k}-u\right\|^{2}-\left\|u_{k}-t_{k}\right\|^{2}+2 \lambda_{k}\left\langle A y_{k}, u-t_{k}\right\rangle \\
= & \left\|u_{k}-u\right\|^{2}-\left\|u_{k}-t_{k}\right\|^{2}+2 \lambda_{k}\left[\left\langle A y_{k}-A u, u-y_{k}\right\rangle\right. \\
& \left.\quad+\left\langle A u, u-y_{k}\right\rangle+\left\langle A y_{k}, y_{k}-t_{k}\right\rangle\right] \\
\leq & \left\|u_{k}-u\right\|^{2}-\left\|u_{k}-t_{k}\right\|^{2}+2 \lambda_{k}\left\langle A y_{k}, y_{k}-t_{k}\right\rangle  \tag{3.3}\\
= & \left\|u_{k}-u\right\|^{2}-\left\|u_{k}-y_{k}\right\|^{2}-2\left\langle u_{k}-y_{k}, y_{k}-t_{k}\right\rangle \\
& \quad-\left\|y_{k}-t_{k}\right\|^{2}+2 \lambda_{k}\left\langle A y_{k}, y_{k}-t_{k}\right\rangle \\
= & \left\|u_{k}-u\right\|^{2}-\left\|u_{k}-y_{k}\right\|^{2}-\left\|y_{k}-t_{k}\right\|^{2} \\
& \quad+2\left\langle u_{k}-\lambda_{k} A y_{k}-y_{k}, t_{k}-y_{k}\right\rangle
\end{align*}
$$

Since $y_{k}=P_{C}\left(u_{k}-\lambda_{k} A u_{k}\right)$ in (1.11), $A$ is $L$-Lipschitz continuous and (2.1) we have

$$
\begin{align*}
2\left\langle u_{k}-\lambda_{k} A y_{k}-y_{k}, t_{k}-y_{k}\right\rangle= & 2\left\langle u_{k}-\lambda_{k} A u_{k}-y_{k}, t_{k}-y_{k}\right\rangle \\
& +2 \lambda_{k}\left\langle A u_{k}-A y_{k}, t_{k}-y_{k}\right\rangle \\
\leq & 2 \lambda_{k}\left\langle A u_{k}-A y_{k}, t_{k}-y_{k}\right\rangle  \tag{3.4}\\
\leq & 2 \lambda_{k} L\left\|u_{k}-y_{k}\right\|\left\|y_{k}-t_{k}\right\|
\end{align*}
$$

Using monotonicity of $A,\left\{\lambda_{k}\right\} \in(0,1 / \sqrt{2} L)$ and $P_{C}$ is a nonexpansive mapping, it follows from (3.3) and (3.4) that

$$
\begin{align*}
\left\|t_{k}-u\right\|^{2} \leq & \left\|u_{k}-u\right\|^{2}-\left\|u_{k}-y_{k}\right\|^{2}-\left\|y_{k}-t_{k}\right\|^{2} \\
& +2 \lambda_{k} L\left\|u_{k}-y_{k}\right\|\left\|y_{k}-t_{k}\right\| \\
\leq & \left\|u_{k}-u\right\|^{2}-\left\|u_{k}-y_{k}\right\|^{2} \\
& +2 \lambda_{k} L\left\|u_{k}-y_{k}\right\|\left\|P_{C}\left(u_{k}-\lambda_{k} A u_{k}\right)-P_{C}\left(u_{k}-\lambda_{k} A y_{k}\right)\right\|  \tag{3.5}\\
\leq & \left\|u_{k}-u\right\|^{2}+\left(2 \lambda_{k}^{2} L^{2}-1\right)\left\|u_{k}-y_{k}\right\|^{2} \\
\leq & \left\|u_{k}-u\right\|^{2}
\end{align*}
$$

By the convexity of $\|.\|^{2}$, properties of $P_{C}$ and $T_{k}$, it follows from (3.2) and (3.5) that

$$
\begin{align*}
\left\|z_{k}-u\right\|^{2} & =\left\|\left(1-\mu_{k}\right)\left(x_{k}-u\right)+\mu_{k}\left(T_{k} t_{k}-u\right)\right\|^{2} \\
& \leq\left(1-\mu_{k}\right)\left\|x_{k}-u\right\|^{2}+\mu_{k}\left\|T_{k} t_{k}-T_{k} u\right\|^{2} \\
& \leq\left(1-\mu_{k}\right)\left\|x_{k}-u\right\|^{2}+\mu_{k}\left\|t_{k}-u\right\|^{2} \\
& \leq\left(1-\mu_{k}\right)\left\|x_{k}-u\right\|^{2}+\mu_{k}\left\|u_{k}-u\right\|^{2}  \tag{3.6}\\
& \leq\left(1-\mu_{k}\right)\left\|x_{k}-u\right\|^{2}+\mu_{k}\left\|x_{k}-u\right\|^{2} \\
& \leq\left\|x_{k}-u\right\|^{2}, \quad \forall k \geq 0
\end{align*}
$$

It follows from (3.6) that $\left\|z_{k}-u\right\| \leq\left\|x_{k}-u\right\|$, so $u \in H_{k}$. Hence $\mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A} \subset$ $H_{k}$ for all $k \geq 0$.

Next we show $\mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A} \subset H_{k} \cap W_{k}$ for all $k \geq 0$. Indeed, in the case that $k=0$, we have $x_{0} \in C$ and $W_{0}=H$. Consequently, $\mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A} \subset H_{0} \cap W_{0}$. Suppose that $x_{i}$ is given and $\mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A} \subset H_{i} \cap W_{i}$ for some $i \geq 0$. We have to prove that $\mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A} \subset H_{i+1} \cap W_{i+1}$. Since $\mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A}$ is nonempty closed convex subset of $H$. So there exists a unique element $x_{i+1} \in \mathcal{F} \cap$ $\operatorname{EP}(G) \cap \Omega_{A}$ such that $x_{i+1}=P_{\mathcal{F} \cap E P(G) \cap \Omega_{A}}\left(x_{0}\right)$. By Lemma 2.2, we have for every $z \in \mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A}$ that

$$
\begin{equation*}
\left\langle x_{i+1}-z, x_{0}-x_{i+1}\right\rangle \geq 0 \tag{3.7}
\end{equation*}
$$

and hence $z \in W_{i+1}$. Finally, $z \in H_{i+1} \cap W_{i+1}$ and the $\mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A} \subset H_{k} \cap W_{k}$ holds for all $k \geq 0$.

Next, we shall show that the $\left\{x_{k}\right\}$ generated by (1.11) is bounded.
Since $\mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A}$ is a nonempty closed convex subset of $C$, there exists a unique element $z_{0} \in \mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A}$ such that $z_{0}=P_{\mathcal{F} \cap E P(G) \cap \Omega_{A}}\left(x_{0}\right)$. Now, from $x_{k+1}=P_{H_{k} \cap W_{k}}\left(x_{0}\right)$ we obtain that

$$
\begin{equation*}
\left\|x_{k+1}-x_{0}\right\| \leq\left\|z-x_{0}\right\|, \forall z \in H_{k} \cap W_{k} \tag{3.8}
\end{equation*}
$$

As $z_{0} \in \mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A} \subset H_{k} \cap W_{k}$, we get

$$
\left\|x_{k+1}-x_{0}\right\| \leq\left\|z_{0}-x_{0}\right\|
$$

for each $k \geq 0$. Hence, the sequence $\left\{x_{k}\right\}$ is bounded.
We shall show that $\left\{x_{k}\right\},\left\{u_{k}\right\},\left\{y_{k}\right\}$ and $\left\{z_{k}\right\}$ converge strongly to an element $p \in \mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A}$. Since $x_{k}=P_{W_{k}}\left(x_{0}\right)$ and $x_{k+1} \in W_{k}$, it follows from Lemma 2.2 that,

$$
\begin{equation*}
\left\|x_{k}-x_{0}\right\| \leq\left\|x_{k+1}-x_{0}\right\| \tag{3.9}
\end{equation*}
$$

for all $k \geq 0$. Then, there exists $\lim _{k \rightarrow \infty}\left\|x_{k}-x_{0}\right\|=c$. Since $x_{k}=P_{W_{k}}\left(x_{0}\right)$ and $x_{k+1} \in W_{k}$, from (ii) in Lemma 2.1 we have

$$
\begin{align*}
\left\|x_{k}-x_{0}\right\|^{2} & \leq\left\|\frac{x_{k}+x_{k+1}}{2}-x_{0}\right\|^{2} \\
& \leq\left\|\frac{x_{k}-x_{0}}{2}+\frac{x_{k+1}-x_{0}}{2}\right\|^{2}  \tag{3.10}\\
& \leq \frac{\left\|x_{k}-x_{0}\right\|^{2}}{2}+\frac{\left\|x_{k+1}-x_{0}\right\|^{2}}{2}-\frac{\left\|x_{k}-x_{k+1}\right\|^{2}}{4}
\end{align*}
$$

So, we get

$$
\begin{equation*}
\left\|x_{k}-x_{k+1}\right\|^{2} \leq 2\left(\left\|x_{k+1}-x_{0}\right\|^{2}-\left\|x_{k}-x_{0}\right\|^{2}\right) \tag{3.11}
\end{equation*}
$$

Since $\lim _{k \rightarrow \infty}\left\|x_{k}-x_{0}\right\|=c$, we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{k}-x_{k+1}\right\|=0 \tag{3.12}
\end{equation*}
$$

From $x_{k+1} \in H_{k}$, we have

$$
\begin{equation*}
\left\|z_{k}-x_{k}\right\| \leq\left\|x_{k}-x_{k+1}\right\|+\left\|x_{k+1}-z_{k}\right\| \leq 2\left\|x_{k}-x_{k+1}\right\| \tag{3.13}
\end{equation*}
$$

It follows from 3.12 and 3.13 that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|z_{k}-x_{k}\right\|=0 \tag{3.14}
\end{equation*}
$$

Now from (3.6) we can write

$$
\begin{equation*}
\left\|z_{k}-u\right\|^{2}-\left\|x_{k}-u\right\|^{2} \leq \mu_{k}\left[\left\|T_{k} t_{k}-u\right\|^{2}-\left\|x_{k}-u\right\|^{2}\right] \leq 0 \tag{3.15}
\end{equation*}
$$

On the other hand, by Lemma 2.1 we have

$$
\begin{equation*}
\left\|z_{k}-u\right\|^{2}-\left\|x_{k}-u\right\|^{2}=\left\|z_{k}-x_{k}\right\|^{2}+2\left\langle z_{k}-x_{k}, x_{k}-u\right\rangle . \tag{3.16}
\end{equation*}
$$

It follows from (3.14)-(3.16) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mu_{k}\left[\left\|T_{k} t_{k}-u\right\|^{2}-\left\|x_{k}-u\right\|^{2}\right]=0 \tag{3.17}
\end{equation*}
$$

Since $\left\{\mu_{k}\right\} \subset[a, 1]$ for some $a \in(0,1)$, we have that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left[\left\|T_{k} t_{k}-u\right\|^{2}-\left\|x_{k}-u\right\|^{2}\right]=0 \tag{3.18}
\end{equation*}
$$

By (3.2), (3.5), (3.18) and the nonexpansive property of $T_{k}$, we get

$$
\begin{equation*}
0=\lim _{k \rightarrow \infty}\left[\left\|T_{k} t_{k}-u\right\|^{2}-\left\|x_{k}-u\right\|^{2}\right] \leq \lim _{k \rightarrow \infty}\left[\left\|t_{k}-u\right\|^{2}-\left\|x_{k}-u\right\|^{2}\right] \leq 0 \tag{3.19}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left[\left\|t_{k}-u\right\|^{2}-\left\|x_{k}-u\right\|^{2}\right]=0 \tag{3.20}
\end{equation*}
$$

On the other hand, from (ii) in Lemma 2.5 we have for every $u \in \mathcal{F} \cap E P(G) \cap \Omega_{A}$ that

$$
\begin{align*}
\left\|u_{k}-u\right\|^{2} & =\left\|T^{r_{k}} x_{k}-T^{r_{k}} u\right\|^{2} \\
& \leq\left\langle T^{r_{k}} x_{k}-T^{r_{k}} u, x_{k}-u\right\rangle \\
& =\left\langle u_{k}-u, x_{k}-u\right\rangle  \tag{3.21}\\
& \leq \frac{1}{2}\left[\left\|u_{k}-u\right\|^{2}+\left\|x_{k}-u\right\|^{2}-\left\|u_{k}-x_{k}\right\|^{2}\right] .
\end{align*}
$$

Thus,

$$
\begin{equation*}
\left\|u_{k}-u\right\|^{2} \leq\left\|x_{k}-u\right\|^{2}-\left\|u_{k}-x_{k}\right\|^{2} . \tag{3.22}
\end{equation*}
$$

By the convexity of $\|\cdot\|^{2}$, the properties of $P_{C}$ and $T_{k}$, it follows from (3.6) and (3.22) that

$$
\begin{align*}
\left\|z_{k}-u\right\|^{2} & \leq\left(1-\mu_{k}\right)\left\|x_{k}-u\right\|^{2}+\mu_{k}\left\|u_{k}-u\right\|^{2} \\
& \leq\left(1-\mu_{k}\right)\left\|x_{k}-u\right\|^{2}+\mu_{k}\left[\left\|x_{k}-u\right\|^{2}-\left\|u_{k}-x_{k}\right\|^{2}\right]  \tag{3.23}\\
& \leq\left\|x_{k}-u\right\|^{2}-\mu_{k}\left\|u_{k}-x_{k}\right\|^{2} .
\end{align*}
$$

Again, since $\mu_{k} \in[a, 1]$ for some $a \in(0,1)$ and (3.23) we have

$$
\begin{align*}
a\left\|u_{k}-x_{k}\right\|^{2} & \leq\left\|x_{k}-u\right\|^{2}-\left\|z_{k}-u\right\|^{2}  \tag{3.24}\\
& \leq\left(\left\|x_{k}-u\right\|+\left\|z_{k}-u\right\|\right)\left\|z_{k}-x_{k}\right\| .
\end{align*}
$$

This together with (3.14) and the condition on $\left\{r_{k}\right\}$ implies that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|u_{k}-x_{k}\right\|=0 \text { and } \lim _{k \rightarrow \infty} \frac{\left\|u_{k}-x_{k}\right\|}{r_{k}}=0 . \tag{3.25}
\end{equation*}
$$

As $\left\{x_{k}\right\}$ is bounded, there exists a subsequence $\left\{x_{k_{j}}\right\}$ of $\left\{x_{k}\right\}$ converging weakly to some element $p$. From (3.25), we obtain also that $\left\{u_{k_{j}}\right\}$ converges weakly to $p$. Since $\left\{u_{k_{j}}\right\} \subset C$ and $C$ is a closed convex subset in $H$, we obtain $p \in C$.

Now, we shall show that $p \in \mathcal{F} \cap \operatorname{EP}(G) \cap \Omega_{A}$.

First, we shall prove that $p \in \operatorname{EP}(G)$. By $u_{k}=T^{r_{k}} x_{k}$, we have

$$
\begin{equation*}
G\left(u_{k}, y\right)+\frac{1}{r_{k}}\left\langle u_{k}-x_{k}, y-u_{k}\right\rangle \geq 0, \forall y \in C . \tag{3.26}
\end{equation*}
$$

It follows from condition (A2) and (3.26) that

$$
\begin{equation*}
\frac{1}{r_{k}}\left\langle u_{k}-x_{k}, y-u_{k}\right\rangle \geq G\left(y, u_{k}\right), \forall y \in C \tag{3.27}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left\langle\frac{u_{k_{j}}-x_{k_{j}}}{r_{k_{j}}}, y-u_{k_{j}}\right\rangle \geq G\left(y, u_{k_{j}}\right), \forall y \in C . \tag{3.28}
\end{equation*}
$$

From condition (A3), (3.25) and (3.28), we have

$$
\begin{equation*}
0 \geq G(y, p), \forall y \in C \tag{3.29}
\end{equation*}
$$

So, $G(p, y) \geq 0$, for all $y \in C$. It means that $p \in \operatorname{EP}(G)$.
Further, we show that $p \in \Omega_{A}$. Set $B v=A v+N_{C} v$ for $v \in C$ where

$$
\begin{equation*}
N_{C} v=\{w \in H:\langle v-u, w\rangle \geq 0, \forall u \in C\} \tag{3.30}
\end{equation*}
$$

and $B v=\emptyset$ for $v \notin C$. Then $B$ is a maximal monotone mapping and $0 \in B v$ if and only if $v \in \Omega_{A}$ (see [26]). Let $(v, w) \in G(B)$. Then we have $w \in B v=A v+N_{C} v$ and $w-A v \in N_{C} v$ which is equivalent to

$$
\begin{equation*}
\langle v-u, w-A v\rangle \geq 0, \forall u \in C . \tag{3.31}
\end{equation*}
$$

Consequently, from $t_{k}=P_{C}\left(u_{k}-\lambda_{k} A y_{k}\right), v \in C$ and Lemma 2.2, we have that

$$
\begin{equation*}
\left\langle t_{k}-v, u_{k}-\lambda_{k} A y_{k}-t_{k}\right\rangle \geq 0 . \tag{3.32}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left\langle v-t_{k},\left(t_{k}-u_{k}\right) / \lambda_{k}+A y_{k}\right\rangle \geq 0 . \tag{3.33}
\end{equation*}
$$

It follows from (3.31) and monotonicity of $A$ that

$$
\begin{align*}
\left\langle v-t_{k_{i}}, w\right\rangle \geq & \left\langle v-t_{k_{i}}, A v\right\rangle \\
\geq & \left\langle v-t_{k_{i}}, A v\right\rangle-\left\langle v-t_{k_{i}},\left(t_{k_{i}}-u_{k_{i}}\right) / \lambda_{k_{i}}+A y_{k_{i}}\right\rangle \\
\geq & \left\langle v-t_{k_{i}}, A v-A t_{k_{i}}\right\rangle+\left\langle v-t_{k_{i}}, A t_{k_{i}}-A y_{k_{i}}\right\rangle  \tag{3.34}\\
& -\left\langle v-t_{k_{i}},\left(t_{k_{i}}-u_{k_{i}}\right) / \lambda_{k_{i}}\right\rangle \\
\geq & \left\langle v-t_{k_{i}}, A t_{k_{i}}-A y_{k_{i}}\right\rangle-\left\langle v-t_{k_{i}},\left(t_{k_{i}}-u_{k_{i}}\right) / \lambda_{k_{i}}\right\rangle .
\end{align*}
$$

From (3.2) and (3.5) we obtain

$$
\begin{equation*}
\left(1-2 \lambda_{k}^{2} L^{2}\right)\left\|u_{k}-y_{k}\right\|^{2} \leq\left\|x_{k}-u\right\|^{2}-\left\|t_{k}-u\right\|^{2} . \tag{3.35}
\end{equation*}
$$

It follows from (3.20), (3.35) and the condition $\left\{\lambda_{k}\right\} \subset(0,1 / \sqrt{2} L)$ that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|u_{k}-y_{k}\right\|=0 \tag{3.36}
\end{equation*}
$$

Since $y_{k}=P_{C}\left(u_{k}-\lambda_{k} A u_{k}\right), t_{k}=P_{C}\left(u_{k}-\lambda_{k} A y_{k}\right)$, it follows from (3.36) and properties of $P_{C}$ and $A$ that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|y_{k}-t_{k}\right\|=0 \tag{3.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|A y_{k}-A t_{k}\right\|=\lim _{k \rightarrow \infty}\left\|y_{k}-t_{k}\right\|=0 \tag{3.38}
\end{equation*}
$$

Hence, after passing $i \rightarrow \infty$ in (3.34), using (3.36), (3.37) and (3.38) we obtain that $\langle v-p, w\rangle \geq 0$ for all $v \in C$. Since $B$ is maximal monotone, $p \in B^{-1} 0$. It means that $p \in \Omega_{A}$.

Next we show that $p \in \mathcal{F}$.
By using properties of $P_{C}$ and $T_{k}$ and $u_{k} \in C$, it follows from (1.11) that

$$
\begin{align*}
a\left\|u_{k}-T_{k} u_{k}\right\| \leq & \mu_{k}\left\|u_{k}-T_{k} u_{k}\right\| \leq \mu_{k}\left(\left\|u_{k}-T_{k} t_{k}\right\|+\left\|T_{k} t_{k}-T_{k} u_{k}\right\|\right) \\
= & \left\|\left(1-\mu_{k}\right) P_{C}\left(x_{k}\right)+\mu_{k} P_{C}\left(u_{k}\right)-P_{C}\left(u_{k}\right)+u_{k}-z_{k}\right\| \\
\quad & \quad+\mu_{k}\left\|t_{k}-u_{k}\right\| \\
\leq & \left(1-\mu_{k}\right)\left\|P_{C}\left(x_{k}\right)-P_{C}\left(u_{k}\right)\right\|+\left\|u_{k}-z_{k}\right\|  \tag{3.39}\\
& \quad+\mu_{k}\left\|t_{k}-u_{k}\right\| \\
\leq & \left(1-\mu_{k}\right)\left\|x_{k}-u_{k}\right\|+\left\|u_{k}-z_{k}\right\|+\mu_{k}\left\|t_{k}-u_{k}\right\| \\
\leq & \left\|x_{k}-u_{k}\right\|+\left\|u_{k}-x_{k}\right\|+\left\|x_{k}-z_{k}\right\|+\mu_{k}\left\|t_{k}-u_{k}\right\| \\
\leq & 2\left\|x_{k}-u_{k}\right\|+\left\|x_{k}-z_{k}\right\|+\mu_{k}\left\|t_{k}-u_{k}\right\| .
\end{align*}
$$

Therefore, from (3.14), (3.25), (3.36) and (3.37) it implies that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|u_{k}-T_{k} u_{k}\right\|=0 \tag{3.40}
\end{equation*}
$$

From (3.40) and as in [16], without loss of generality, let

$$
\begin{equation*}
\lim _{j \rightarrow \infty} s_{k_{j}}=0 ; \lim _{j \rightarrow \infty} \frac{\left\|u_{k_{j}}-T_{k_{j}} u_{k_{j}}\right\|}{s_{k_{j}}}=0 . \tag{3.41}
\end{equation*}
$$

Now, we prove that $p=T(s) p$ for a fixed $s>0$. It is easy to see that

$$
\begin{align*}
& \left\|u_{k_{j}}-T(s) p\right\| \leq \sum_{l=0}^{\left[s / s_{k_{j}}\right]-1}\left\|T\left(s_{k_{j}}\right) u_{k_{j}}-T\left((l+1) s_{k_{j}}\right) u_{k_{j}}\right\| \\
& \quad+\left\|T\left(\left[\frac{s}{s_{k_{j}}}\right] s_{k_{j}}\right) u_{k_{j}}-T\left(\left[\frac{s}{s_{k_{j}}}\right] s_{k_{j}}\right) p\right\|+\left\|T\left(\left[\frac{s}{s_{k_{j}}}\right] s_{k_{j}}\right) p-T(s) p\right\|  \tag{3.42}\\
& \quad \leq\left[\frac{s}{s_{k_{j}}}\right]\left\|u_{k_{j}}-T\left(s_{k_{j}}\right) u_{k_{j}}\right\|+\left\|u_{k_{j}}-p\right\|+\left\|T\left(s-\left[\frac{s}{s_{k_{j}}}\right] s_{k_{j}}\right) p-p\right\| .
\end{align*}
$$

Therefore,

$$
\begin{align*}
\left\|u_{k_{j}}-T(s) p\right\| & \leq \frac{s}{s_{k_{j}}}\left\|u_{k_{j}}-T\left(s_{k_{j}}\right) u_{k_{j}}\right\|  \tag{3.43}\\
& +\left\|u_{k_{j}}-p\right\|+\sup \left\{\|T(s) p-p\|: 0 \leq s \leq s_{k_{j}}\right\} .
\end{align*}
$$

This fact and (3.41) imply that

$$
\begin{equation*}
\underset{j \rightarrow \infty}{\limsup }\left\|u_{k_{j}}-T(s) p\right\| \leq \limsup _{j \rightarrow \infty}\left\|u_{k_{j}}-p\right\| . \tag{3.44}
\end{equation*}
$$

As every Hilbert space satisfies Opial's condition, we have $T(s) p=p$. Therefore, $p \in \mathcal{F}$. Thus, (3.8) with $z$ replaced by $z_{0}=P_{\mathcal{F} \cap E P(G) \cap \Omega_{A}}\left(x_{0}\right)$ and the weakly
lower semicontinuity of the norm guarantee that

$$
\begin{align*}
\left\|x_{0}-z_{0}\right\| & \leq\left\|x_{0}-p\right\| \leq \liminf _{j \rightarrow \infty}\left\|x_{0}-x_{k_{j}}\right\| \\
& \leq \limsup _{j \rightarrow \infty}\left\|x_{0}-x_{k_{j}}\right\| \leq\left\|x_{0}-z_{0}\right\| . \tag{3.45}
\end{align*}
$$

Hence, we obtain

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|x_{k_{j}}-x_{0}\right\|=\left\|x_{0}-p\right\|=\left\|x_{0}-z_{0}\right\| . \tag{3.46}
\end{equation*}
$$

It means that

$$
\begin{equation*}
x_{k_{j}} \rightarrow p=z_{0}, \tag{3.47}
\end{equation*}
$$

and all sequence $\left\{x_{k}\right\}$ converges strongly to $p$ as $k \rightarrow \infty$. So, the strong convergence of the sequences $\left\{z_{k}\right\}$ and $\left\{u_{k}\right\}$ to $z_{0}$ is followed from (3.14) and (3.25), respectively. The strong convergence of the sequences $\left\{y_{k}\right\}$ is followed from the property of $\left\{u_{k}\right\}$ and (3.36).

For the case that $T_{k}$ is defined by (1.13), we need only to prove $p \in \mathcal{F}$ from (3.40). For this purpose, we have for each $h>0$ the following estimate:

$$
\begin{align*}
\left\|T(h) u_{k}-u_{k}\right\| \leq & \left\|T(h) u_{k}-T(h)\left(\frac{1}{s_{k}} \int_{0}^{s_{k}} T(s) u_{k} d s\right)\right\| \\
& +\left\|T(h)\left(\frac{1}{s_{k}} \int_{0}^{s_{k}} T(s) u_{k} d s\right)-\frac{1}{s_{k}} \int_{0}^{s_{k}} T(s) u_{k} d s\right\| \\
& +\left\|\frac{1}{s_{k}} \int_{0}^{s_{k}} T(s) u_{k} d s-u_{k}\right\|  \tag{3.48}\\
\leq 2 & \left\|\frac{1}{s_{k}} \int_{0}^{s_{k}} T(s) u_{k} d s-u_{k}\right\| \\
& +\left\|T(h)\left(\frac{1}{s_{k}} \int_{0}^{s_{k}} T(s) u_{k} d s\right)-\frac{1}{s_{k}} \int_{0}^{s_{k}} T(s) u_{k} d s\right\| .
\end{align*}
$$

By Lemma 2.6, we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|T(h)\left(\frac{1}{s_{k}} \int_{0}^{s_{k}} T(s) u_{k} d s\right)-\frac{1}{s_{k}} \int_{0}^{s_{k}} T(s) u_{k} d s\right\|=0 \tag{3.49}
\end{equation*}
$$

for every $h \in(0, \infty)$ and hence, by (3.40), (3.48) and (3.49), we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|T(h) u_{k}-u_{k}\right\|=0 \tag{3.50}
\end{equation*}
$$

for each $h>0$. By Lemma 2.7, this implies $p \in F(T(h))$ for all $h>0$. As for the case (1.12), we also obtain that the sequences $\left\{x_{k}\right\},\left\{u_{k}\right\},\left\{y_{k}\right\}$ and $\left\{z_{k}\right\}$ defined by (1.11) with 1.13) converge strongly to $p$ as $k \rightarrow \infty$.

Putting $T(s)=T$ for all $s>0$ we obtain the strong convergence for equilibrium problems, variational inequalities problems and fixed point problems for nonexpansive in Hilbert spaces.

Corollary 3.2. Let $C$ be a nonempty closed convex subset in a real Hilbert space $H$. Let $T$ be a nonexpansive mapping on $C$, let $G$ be a bifunction from $C \times C$ to $\mathbb{R}$ satisfying conditions (A1)-(A4), and let $A: C \rightarrow H$ be a monotone L-Lipschitz
continuous mapping such that $F(T) \cap E P(G) \cap \Omega_{A} \neq \emptyset$. Let $\left\{x_{k}\right\},\left\{u_{k}\right\},\left\{y_{k}\right\}$ and $\left\{z_{k}\right\}$ be sequences generated by

$$
\begin{align*}
x_{0} & \in H \text { chosen arbitrarily, } \\
u_{k} & \in C: G\left(u_{k}, y\right)+\frac{1}{r_{k}}\left\langle u_{k}-x_{k}, y-u_{k}\right\rangle \geq 0, \forall y \in C, \\
y_{k} & =P_{C}\left(u_{k}-\lambda_{k} A u_{k}\right), \\
z_{k} & =\left(1-\mu_{k}\right) x_{k}+\mu_{k} T P_{C}\left(u_{k}-\lambda_{k} A y_{k}\right),  \tag{3.51}\\
H_{k} & =\left\{z \in H:\left\|z_{k}-z\right\| \leq\left\|x_{k}-z\right\|\right\}, \\
W_{k} & =\left\{z \in H:\left\langle x_{k}-z, x_{0}-x_{k}\right\rangle \geq 0\right\}, \\
x_{k+1} & =P_{H_{k} \cap W_{k}}\left(x_{0}\right), k \geq 0,
\end{align*}
$$

where $\left\{\mu_{k}\right\} \subset[a, 1]$ for some $a \in(0,1)$ and $\left\{r_{k}\right\} \subset(0, \infty)$ satisfies $\lim _{\inf }{ }_{k \rightarrow \infty} r_{k}>$ $0,\left\{\lambda_{k}\right\} \subset[b, c]$ for some $b, c \in(0 ; 1 / \sqrt{2} L)$. Then, the sequences $\left\{x_{k}\right\},\left\{u_{k}\right\},\left\{y_{k}\right\}$ and $\left\{z_{k}\right\}$ converge strongly to an element $p \in F(T) \cap E P(G) \cap \Omega_{A}$.

Corollary 3.3. Let $C$ be a nonempty closed convex subset in a real Hilbert space H. Let $\left\{T(s): s \in \mathcal{R}_{+}\right\}$be a nonexpansive semigroup on $C$ and let $A: C \rightarrow H$ be a monotone L-Lipschitz continuous mapping such that $\mathcal{F} \cap \Omega_{A} \neq \emptyset$. Let $\left\{x_{k}\right\}$, $\left\{u_{k}\right\},\left\{y_{k}\right\}$ and $\left\{z_{k}\right\}$ be sequences generated by

$$
\begin{align*}
x_{0} & \in H \text { chosen arbitrarily, } \\
u_{k} & =P_{C}\left(x_{k}\right), \\
y_{k} & =P_{C}\left(u_{k}-\lambda_{k} A u_{k}\right), \\
z_{k} & =\left(1-\mu_{k}\right) u_{k}+\mu_{k} T_{k} P_{C}\left(u_{k}-\lambda_{k} A y_{k}\right),  \tag{3.52}\\
H_{k} & =\left\{z \in H:\left\|z_{k}-z\right\| \leq\left\|x_{k}-z\right\|\right\}, \\
W_{k} & =\left\{z \in H:\left\langle x_{k}-z, x_{0}-x_{k}\right\rangle \geq 0\right\}, \\
x_{k+1} & =P_{H_{k} \cap W_{k}}\left(x_{0}\right), k \geq 0,
\end{align*}
$$

where $\left\{\mu_{k}\right\} \subset[a, 1]$ for some $a \in(0,1),\left\{r_{k}\right\} \subset(0, \infty)$ satisfies $\lim _{\inf }{ }_{k \rightarrow \infty} r_{k}>0$, $\left\{\lambda_{k}\right\} \subset[b, c]$ for some $b, c \in(0 ; 1 / \sqrt{2} L)$ and $T_{k}$ is defined by (1.12) or 1.13). Then, the sequences $\left\{x_{k}\right\},\left\{u_{k}\right\},\left\{y_{k}\right\}$ and $\left\{z_{k}\right\}$ converge strongly to an element $p \in \mathcal{F} \cap \Omega_{A}$.

Proof. Obviously, if $G(u, v) \equiv 0$ then $u_{k}$ is defined by

$$
\left\langle u_{k}-x_{k}, y-u_{k}\right\rangle \geq 0, \forall y \in C
$$

which is equivalent to $u_{k}=P_{C}\left(x_{k}\right)$. So, the conclusion of Corollary 3.3 is proved similar Theorem 3.1.

Putting $G(u, v) \equiv 0$ for all $u, v \in C$ and $A \equiv 0$, we obtain the following algorithm for finding a common fixed point of a nonexpansive semigroup $\{T(s)$ : $\left.s \in \mathcal{R}_{+}\right\}$on $C$.

Corollary 3.4. Let $C$ be a nonempty closed convex subset in a real Hilbert space H. Let $\left\{T(s): s \in \mathcal{R}_{+}\right\}$be a nonexpansive semigroup on $C$ such that $\mathcal{F} \neq \emptyset$. Let
$\left\{x_{k}\right\},\left\{u_{k}\right\}$ and $\left\{z_{k}\right\}$ be sequences generated by

$$
\begin{align*}
x_{0} & \in H \text { chosen arbitrarily, } \\
u_{k} & =P_{C}\left(x_{k}\right), \\
z_{k} & =\left(1-\mu_{k}\right) u_{k}+\mu_{k} T_{k} u_{k}, \\
H_{k} & =\left\{z \in H:\left\|z_{k}-z\right\| \leq\left\|x_{k}-z\right\|\right\},  \tag{3.53}\\
W_{k} & =\left\{z \in H:\left\langle x_{k}-z, x_{0}-x_{k}\right\rangle \geq 0\right\}, \\
x_{k+1} & =P_{H_{k} \cap W_{k}}\left(x_{0}\right), k \geq 0,
\end{align*}
$$

where $\left\{\mu_{k}\right\} \subset[a, 1]$ for some $a \in(0,1), T_{k}=T\left(s_{k}\right)$ and $\left\{s_{k}\right\}$ satisfies condition (1.12). Then, the sequences $\left\{x_{k}\right\},\left\{u_{k}\right\}$ and $\left\{z_{k}\right\}$ converge strongly to an element $p \in \mathcal{F}$.

## References

[1] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Mathematics Students, 63(1994), 123-145.
[2] S.D. Flam, A.S. Antipin, Equilibrium programming using proximal-like algorithms, Mathematical Programming, 78(1997), 29-41.
[3] I.V. Konnov and O.V. Pinyagina, D-gap functions and descent methods for a class of monotone equilibrium problems, Lobachevskii Journal of Mathematics, 13(2003), 57-65.
[4] I.V. Konnov and O.V. Pinyagina, D-gap functions for a class of monotone equilibrium problems in Banach spaces, Computational Methods in Applied Mathematics, 3(2)(2003), 274-286.
[5] G. Mastroeni, Gap functions for equilibrium problems, Journal of Global of Optimization, 27(4)(2003), 411-426.
[6] O. Chadli, I.V. Konnov, and J.C. Yao, Descent methods for equilibrium problems in Banach spaces, Computers and Mathematics with Applications, 48(2004), 609-616.
[7] P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, Journal of Nonlinear and Convex Analysis, 6(1)(2005), 117-136.
[8] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama (2000).
[9] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proceedings of the National Academy of Sciences of the United States of America, 54(1965), 1041-1044.
[10] W. Takahashi, and M. Toyoda, Weak convergence theorem for nonexpansive mappings and monotone mappings, Journal of Optimization Theory and Applications, 118(2)(2003), 417428.
[11] H. Iiduka, and W. Takahashi, Strong convergence theorems for nonexpansive nonself mappings and inverse-strongly monotone mappings, Journal of Convex Analysis, 11(1)(2004), 69-79.
[12] G.M. Korpelevich, The extragradient method for finding sadle points and other problems, Ekonomika i Mathematitcheskie Metody, 12(4)(1976), 747-756.
[13] N. Nadezhkina, and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz continuous monotone mappings, SIAM Journal on Optimization, 16(4)(2006), 1230-1241.
[14] A. Tada and W. Takahashi, Weak and strong convergence theorems for nonexpansive mapping and equilibrium problem, Journal of Optimization Theory and Applications, 133(2007), 359-370.
[15] T. Suzuki, On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proceedings of the American Mathematical Society, 131(7)(2002), 21332136.
[16] H. He and R. Chen, Strong convergence theorems of the CQ method for nonexpansive semigroups, Fixed Point Theory and Applications, vol. 2007, Article ID 59735, 8 pages, 2007.
[17] S. Saejung, Strong convergence theorems for nonexpansive semigroups without Bochner integrals, Fixed Point Theory and Applications, vol. 2008, Article ID 745010, 7 pages, 2008.
[18] Ng. Buong, Strong convergence of a method for variational inequality problems and fixed point problems of a nonexpansive semigroup in Hilbert spaces, Journal of Applied Mathematics and Informatics, 20(1-2)(2011), 61-74.
[19] Ng. Buong and Ng. D. Duong, A method for a solution of equilibrium problem and fixed point problem of a nonexpansive semigroup in Hilbert spaces, Fixed Point Theory and Applications, 2011, Article ID 208434, 16 pages doi:10.1155/2011/208434.
[20] L.C. Ceng and J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, Journal of Computational and Applied Mathematics, 214(2008), 186-201.
[21] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, Journal of Mathematical Analysis and Applications, (2006), doi:10.1016/j.jmaa.2006.08.036.
[22] S. Plubtieng and R. Punpaeng, A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings, Applied Mathematics and Computation, 197(2008), 548-558.
[23] J.-W. Penga and J.-C. Yao, Some new extragradient-like methods for generalized equilibrium problems, fixed point problems and variational inequality problems, Optimization Methods and Software, 25(5)(2010), 677-698.
[24] G. Marino and H. K. Xu, Weak and strong convergence theorems for stric pseudocontractions in Hilbert spaces, Journal of Mathematical Analysis and Applications, 329(2007), 336-346.
[25] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge 1990.
[26] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Transactions of the American Mathematical Society, 149(1970), 75-88.
[27] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, Journal of Mathematical Analysis and Applications, 211(1997), 71-83.
[28] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bulletin of the American Mathematical Society, 73(1967), 591-597.


[^0]:    MSC(2010): 41A65, 47H17, 47H20.
    Keywords: Extragradient • Equilibrium • Variational inequality • Common fixed points • Nonexpansive semigroup.
    ${ }^{1}$ Department of Mathematics, College of Sciences, Thainguyen University, Thainguyen, Vietnam. Email: thuthuy220369@gmail.com.

