AN ITERATIVE METHOD FOR EQUILIBRIUM,
VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS
FOR A NONEXPANSIVE SEMIGROUP IN HILBERT SPACES

NGUYEN THI THU THUY"

ABSTRACT. The purpose of this paper is to present a new iteration method
based on the hybrid method in mathematical programming, extragradient
method and Mann’s method for finding a common element of the solution set
of equilibrium problems, the solution set of variational inequality problems for
a monotone, Lipschitz continuous mapping and the set of fixed points for a
nonexpansive semigroup in Hilbert spaces. We obtain a strong convergence
theorem for the sequences generated by this process. The results in this paper
generalize and extend some well-known strong convergence theorems in the
literature.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (.,.) and norm ||.||, respec-
tively. Let C be a nonempty closed convex subset of H. Let A be a mapping of
Cinto H and G : C x C' — R be a bifunction, where R is the set of real numbers.

Recall that a mapping A is called monotone if

(Az — Ay,x —y) > 0 for all z,y € C,

strictly monotone if (Az— Ay, x—y) > 0 for all z # y, A-inverse strongly monotone
mapping if

(Az — Ay, x —y) > M|Az — Ay]||? for all z,y € C, A >0,
and L-Lipschitz continuous if there exists a positive constant L such that
|Az — Ay < L|jz — y|| for all z,y € C.

It is clear that if A is A-inverse strongly monotone, then A is monotone and
Lipschitz continuous.

The variational inequality problem (for short, VI(A;C)) is to find 2* € C such
that

(1.1) (Az*,z —2*) > 0 for all z € C.

The set of solutions of the VI(C; A) is denoted by Q4. Due to the many appli-
cations of the variational inequality problem to several branches of mathematics,
but also to mechanics, economics etc, finding its solutions is a very important
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field of research. In some cases, as for strictly monotone operators A, the solu-
tion, if it exists, is unique. More generally the set of solutions 24 of a continuous
monotone mapping A is a convex subset of C.

Numerous problems in physics, optimization, and economics reduce to find a
solution of the equilibrium problem which is for a bifunction G(u,v) defined on

C x C to find u* € C such that
(1.2) G(u*,v) >0 for all v € C.

The set of solutions of is denoted by EP(G). Given a mapping B : C — H,
let G(u,v) = (Bu,v — u) for all u,v € C. Then, w € EP(G) if and only if
(Bw,v —w) > 0 for all v € C, i.e., w is a solution of the variational inequality.
Some methods have been proposed to solve the equilibrium problem (see
[1]-[7]). Recently, Combettes and Hirstoaga [7] introduced an iterative scheme of
finding the best approximation to the initial data when EP(G) is nonempty and
proved a strong convergence theorem.

Let T : C — C be a mapping. Recall that T is nonexpansive if |Tx — Ty|| <
|z —y|| for all z,y € C. A point x € C is a fixed point of T provided Tx = z.
Denote by F(T') the set of fixed points of T, that is, F(T) = {x € C : Tz = z}.
We know that F(7T') is nonempty if C' is bounded (see [§]). We denote by R
the set of nonegative numbers. Also, recall that a family {T'(s) : s € Ry} of
mapping from C' into itself is called a nonexpansive semigroup on C' if it satisfies
the following conditions:

(1) for each s € R4, T(s) is a nonexpansive mapping on C;

(2) T(0)z =« for all z € C,

(3) T'(s1+ s2) = T(s1) o T(s2) for all s1,s2 € Ry;

(4) for each = € C, the mapping T'(.)x from R, into C is continuous.

We denote by F = Ns>oF(7'(s)) the set of all common fixed points of {T'(s) :
s € R+}. We know that F is nonempty if C' is bounded (see [9]).

Takahashi and Toyoda [10] considered the problem of finding a solution of
the variational inequality which is also a fixed point of some mapping. More
precisely, given a nonempty closed convex subset C' of H, a nonexpansive mapping
T :C — C and an A-inverse strongly monotone mapping A : C'— H, in order to
find an element p € F(T) N Q4 they introduced the following iterative scheme

xg € C chosen arbitrarily,

1.3
(1.3) Tpg1 = ogxy + (1 — ap)TPo (2, — A Axy,),

for all k£ > 0, where {ay} is a sequence in (0,1) and {)\;} is a sequence in (0, 2))
and P is the metric projection of H onto C. They proved that if F(T)NQ4 # 0,
then the sequence {x} defined by converges weakly to same point p €
F(T) N Q4. Later on, in order to achieve strong convergence to an element of
F(T) N Q4 under the same assumptions, liduka and Takahashi [11] modified the
iterative scheme by using the hybrid method in mathematical programming as



follows

zg € C chosen arbitrarily,

yr = agxp + (1 — o) T Po(x, — A\ Axy),
(1.4) Cr={z€C:|z—uyl| < |z — x|},

Qr=1{2€C:(z—xp,x0 —x) <0},

xk—‘rl = PCkﬂQk (330),

for all K > 0, where 0 < ap < c<land 0 <a < Ap <b< 2\ They showed that
if F(T) N Q4 # 0, then the sequence {z} defined by converges strongly to
Pr(ryna,(w0). To overcome the restriction of the above methods to the class of
A-inverse strongly monotone mappings, by combining a hybrid-type method with
an extragradient-type method of Korpelevich [12], Nadezhkina and Takahashi [13]
introduced the following iterative method for finding an element of F(T") N Q4
and established the strong convergence theorem under Lipschitz and monotone
assumptions of the mapping A:

xg € C chosen arbitrarily,
Yk = Po(xr — ApAxy),
zp = agrg + (1 — ag) TPo(rp — Ak Ayk),
Cr={z€C: |z =zl <llz —all},
Qr=1{2€C:(z—xp,x0 —x) <0},
zr+1 = Poyng, (20), k>0,
where k > 0, {ax} C [a,b] for some a,b € (0,1/L) and {\;} C [0,c] for some
¢ € [0,1). They proved that if F(T)NQ4 # 0, then the sequence {zx}, {yx}, {2k}
defined by converge strongly to the same point z = Pp(r)na, (x0)-

Tada and Takahashi [14] introduced the following iterative scheme by the hy-
brid method:

xg € H chosen arbitrarily,
1

up € 07 G(Uk,@/) + 7<Uk — Tk, Y — Uk) Z 07 Vy € Cv
k

(1.6) yr = (1 — ag)zp + apTuy,
Cr={2€H: |zt — 2| < [lox — 2l},
Qr={z€ H: (xy — z,x90 — 1) > 0},

zr+1 = Poyng,(20), k>0,

for finding a common element of the set of solution and the set of fixed
points of a nonexpansive mapping in a Hilbert. They proved that under certain
appropriate conditions imposed on {a} and {r;}, the sequences {z)} and {uy}
generated by converge strongly to Pr(7)ngp(Q)%0. Generally speaking, the
algorithm suggested by Tada and Takahashi is based on two well-known types
of methods, namely, on the Mann iterative methods and the so-called hybrid for
solving fixed point problem.



In 2002, Suzuki [I5] was the first to introduce the following implicit iteration
process in Hilbert spaces:

xg € C chosen arbitrarily,

1.
(1.7) xr = agxo + (1 — )T (tk)xg, k> 1,

where {ay} and {t;} are sequences of real numbers satisfying 0 < ay < 1, t > 0
and limy, ¢, = limy oy /tx = 0 for the nonexpansive semigroup. If F # (), then the
sequence {zy} defined by (|1.7)) converges strongly to the element of F nearest to
zg.

He and Chen [I6] is proved a strong convergence theorem for nonexpansive
semigroups in Hilbert spaces by hybrid method in the mathematical program-
ming;:

zg € C chosen arbitrarily,
Yk = agry + (1 — o) T (tg) o,
(1.8) Cr={2€C:|lyx — 2l < |z — 2[l},
Qr={z€C:(xy—z,x9 — ) >0},
Lk+1 = PCkﬁQk (.’EO), k Z 07

where . € [0,a) for some a € [0,1) and ¢ > 0, limg_,o, t = 0.

In 2008, Seajung [17] showed that the proof of the main result in [16] is very
questionable and corrected this fact under some additional restriction on the
parameter tg:

(1.9) lim il’k1:f ty =0, limsupt; >0, and 1i]£n(tk+1 —t) = 0.
k

In 2011, Buong [18] solved the problem of finding a common element of the set
of solution and the set of common fixed points of a nonexpansive semigroup
{T'(s), s € R4} on C for any monotone Lipschitz continuous mapping A by the
following algorithm

xg € H chosen arbitrarily,
yr = Po(xr — MAPc (1)),
2k = T — pe|rr — ThPo(zr — A\Ayr)],
Hy={2€ H: |z — 2| < [lap — 2]},
Wiy ={z¢€ H: (xy — x9,2 — zx) < 0},
Trt1 = Prnw, (20), k>0,

where {\;} C [a,b] for some a,b € [0,1/L], {ur} C [c,1] for some ¢ € (0,1)
and {tx} is a sequence of positive real numbers satisfying condition and
Trx = T(tg)x for x € C. If FNQy # 0, then the sequences {xr}, {yxr}, {2k}
defined by converge strongly to the same point zp = Prnq,, (20).

On the other hand, in 2011, Buong and Duong [19] introduced a viscosity ap-
proximation method for finding a common element of the set of solution and
the set of solution . Ceng and Yao [20] investigated the problem of finding a
common element of the set of solutions of a mixed equilibrium problem and the
set of common fixed points of finitely many nonexpansive mappings in a Hilbert
space. The authors’s result is the improvements and extension of Takahashi and

(1.10)
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Takahashi [2I]. Plubtieng and Punpaeng [22] introduced an iterative process
based on the extragradient method for finding the common element of the set of
fixed points of a nonexpansive mapping, the set of an equilibrium problem and the
set of solutions of variational inequality problem for an A-inverse strongly mono-
tone mapping. In [23] Penga and Yao introduced two iterative process by the
extragradient-like methods for finding a common element of the set of solutions
of a generalized equilibrium problem, the set of fixed points of an infinite family
of nonexpansive mappings and the set of solutions of the variational inequality
for a monotone, Lipschitz-continuous mapping in a Hilbert space.

In this paper, motivated the above results we give a new algorithm for finding
a common element of the set of solutions of an equilibrium problem, the set of
fixed points of a nonexpansive semigroup and the set of solutions of the variational
inequality for a monotone, Lipschitz continuous mapping in a Hilbert space.

For this purpose, we consider the following algorithm

xo € H chosen arbitrarily,
1
k

Yk = Po(ugp — A\ Auy),
2k = (1 = pg)wg + T Po(uk — M Ayr),
Hy={2€ H: |z — z| < [lox — 2I},
Wi ={z€ H: (xp —z,x0 — x) > 0},
Tr+1 = Praw, (20), k>0,
where T}, is defined
Trx = T(sg)x, Vo € C and
lim i%f s =0, lim Sl]ip s > 0, h]lg’l’l(Sk.f_l —s;) =0,

(1.11)

(1.12)

or T}, is defined by
1o
(1.13) Tpx = — T(s)xds, Vx € C'and lim s = 400,
Sk Jo k—o00
respectively. The strong convergence of (1.11) with (1.12) or (1.13) is proved in
the Section 3. In Section 2, we give some preliminaries.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (.,.) and norm ||.||, respec-
tively. When {z,} is a sequence in H, x,, — x implies that {x,,} converges weakly
to x and x,, — = means the strong convergence.

We need the following facts to prove our results.

Lemma 2.1. [24] Let H be a real Hilbert space. Then:

() 1z + ol]? = el + o] + 20a.9); 2

(it) [tz + (1 —t)y||* = tllz]]*+ A= t)[ly[|" —t(L = t)|lz—y[]*, V¢ € [0,1], Va,y € H;
(iii) |z — y||? > ||z — Po(2)||? + ||ly — Po(z)||? for any x € H and for ally € C,
where C' is a nonempty closed convex subset in H.



6

Lemma 2.2. [24] Let C be a nonempty closed convex subset of a real Hilbert
space H. For any x € H, there exists a unique z € C' such that ||z —z|| < ||y — z||
for ally € C, and

(2.1) z € Po(x) if and only if (z —x,y—2) >0 forally € C,
where Po is the metric projection of H onto C.

Let A be a monotone mapping of C' into H. In the context of the variational
inequality problem, the characterization of a projection in Lemma[2.2]implies the
following:

u€ Qe u=Po(u—kAu), k> 0.

Lemma 2.3. [25] FEwvery Hilbert space H has Randon-Riesz property or Kadec-
Klee property, that is, for a sequence {x,} C H with , = = and ||z, || — ||z,
then there hodls x,, — x.

A set-valued mapping B : H — 29 is called monotone if for all z,y € H,
f € Bx and g € By imply (f — g,z —y) > 0. A monotone mapping B : H — 2
is maximal if its graph Gr(B) of B is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping B is maximal if
and only if for (z, f) € Hx H, (f — g,z —y) > 0 for every (y,g) €Gr(B) implies
f € Bx. Let A be a monotone, \-Lipschitz continuous mapping of C' into H and
let Nox be normal cone to C at x € C, i.e. Nox ={y € H : (y,x —u) >0, Yu €
C'}. Define
By — Az 4+ Nex, if xeC
0, if z¢C.
Then B is maximal monotone and 0 € Bz if and only if x € Q4 (see [26]).
For solving the equilibrium problem for a bifunction G : C' x C' — R, assume
that G satisfies the following set of standard properties:
(A1) G(u,u) =0 for all u € C;
(A2) G is monotone, i.e., G(u,v) + G(v,u) <0 for all (u,v) € C x C;
(A3) For every u € C, G(u,.) : C — R is weakly lower semicontinuous and
convex;

(A4) limg 1 oG((1 — t)u + tz,v) < G(u,v) for all (u,z,v) € C x C x C.
The following lemma appears in [I].

Lemma 2.4. [I] Let C be a nonempty closed convex subset of H and G be a
bifunction of C' x C into R satisfying conditions (Al)-(A4). Let r > 0 and
x € H. Then, there exists z € C such that

(2.2) G(z,v)—kl(z—x,v—@ >0 for allv e C.
r

The following lemma was also given in [7].

Lemma 2.5. [7] Assume that G : C x C — R satisfies conditions (Al)-(A4).
Forr >0 and x € H, define a mapping T" : H — C' as follows:

(2.3) Tr(a:):{ueC:G(u,v)—i—%(u—x,v—w20, VUGC}.

Then, the following statements hold:



(i) T" is single-valued;
(ii) T" is firmly nonexpansive, i.e., for any z,y € H,
1T () = T"()|I* < (T"(x) = T"(y), = — y);
(#i1) F(T") =EP(G);
(iv) EP(Q) is closed and convez.

Lemma 2.6. [27] Let C be a nonempty bounded closed convexr subset of H and
let {T'(t) : t € R4} be a nonexpansive semigroup on C. Then, for any h >0

T(h)(i /0 tT(s)yds>—1 /0 " (s)ds

Lemma 2.7. [25] (Demiclosedness Principle) If C is a closed convex subset of H,
T is a nonexpansive mapping on C, {x,} is a sequence in C such that x,, — x € C
and r, — Tx, — 0, then x — Tx = 0.

24) R

=0.

It is also known that H satisfies Opial’s condition. See following definition in
[28].

Definition 2.8. A Banach space X 1is said to satisfy Opial’s condition if when-
ever {xy} is a sequence in X which converges weakly to x, as k — oo, then

limsup ||z — || < limsup ||z — y||, Yy € X, with z # y.

k—oo k—o0

3. MAIN RESULTS
Now, we are in a position to prove the following results.

Theorem 3.1. Let C be a nonempty closed convex subset in a real Hilbert space
H, {T(s):s € Ry} be a nonexpansive semigroup on C, G be a bifunction from
C x C to R satisfying conditions (Al)-(A4), and A : C — H be a monotone
L-Lipschitz continuous mapping such that FN EP(G)NQa # 0. Let {xy}, {ux},
{yr} and {z} be sequences generated by for every k > 0, where {j} C
la, 1] for some a € (0,1), {rp} C (0,00) satisfies iminfy_,oo 7 > 0, {\t} C [b, (]
for some b,c € (0,1/v/2L) and T}, with {s;} satisfies or (L.13). Then,

{zi}, {ur}, {yr} and {zx} converge strongly to an element p € FN EP(G) N Q4.

Proof. First, we consider the case that T}, with {sy} satisfies (1.12]).

It is obvious that Hj is closed and Wy is closed and convex for every k > 0. It
follows that Hy, is convex for every k > 0 because ||z —z;|| < ||z — k|| is equivalent
to

1
(3.1) {2k — xp, ok — 2) < —ink—kaza

so, H NWy, is closed and convex for every k > 0. So that the {z} is well defined
for every k > 0.

We have FN EP(G)NQ4 C H NWy, for every k > 0. Indeed, for each u € FN
EP(G) NQy4, by putting ux, = T xj, and using Lemma we have that

(3-2) Jug — ul| = [T zp — T™ul| < |z — ul.



Putting ¢t = Po(ur — A\ Ayyg) for every k > 0. Using (i) in Lemma (2.1)
in Lemma with £ = up, — My Ay, and y = wu, it follows from the monotonicity
of A and u € Q4 we obtain

[tk — ull* < lJux — AeAyr — ull® = [lux — AeAyg — til®
< ug = wll® = flug, = tll? + 22 (Agg, u — ti,)
= |lup — ul|* = lup — tr]|* + 226 [(Ayp — Au,u — yp)
+ (Au,u — yi) + (Ayk, yr — tx)]
(3-3) < ug = ull® = lJug — tell* + 22 (Ayr, v — t)
= [Jug — ull® = [Jur — yell* = 20w — ye, yr — ti)
— llye = trll® + 22 ( Ak, i — t)
= Jug — ul]® = [Jur, — yell* = lye — il
+ 2(ur — MeAYr — Yro tr — Yi)-
Since yx = Po(ur — A\pAuyg) in , A is L-Lipschitz continuous and we
have
2wk — A Ayk — Y te — Yk) = 2(uk — AeAug — Yg, U — Yk)
+ 2M (Aug — Ayg, te — Y)
< 2X\p(Aug, — Ayk, te — Yk)
< 2Xe Lljug — yrllllye — tell-

(3.4)

Using monotonicity of A, {\1} € (0,1/+/2L) and P¢ is a nonexpansive mapping,
it follows from (3.3)) and (| . ) that
[te — U||2 < = ull® = luk = yrll? = [l — tell?
+ 26 Lllug — yrllllyr — il
< g — ull® = JJur — yill®
+ 2X6 Ll|ug — yilll| Po(ur, — A Aug) — Po(ux — A Ayg) ||
< Juge = ul]? + (2AFL? — 1) ug — gl
< JJug —ul®.

By the convexity of ||.||?, properties of P and Ty, it follows from (3.2) and (3.5)
that

(3.5)

2k — ull® = (1 = ) (mr — w) + e (Tity, — )|
< (1= )| — wll® + pue| Tt — T
(3.6) < (1= )z — wll® + pwlltr — u]?
< (1= ) llwr — wll® + pn g — wlf?
< (1= )l — ull® + pgl|z — ulf?
< |log — ul?, VE > 0.

It follows from (3.6 that ||zx—u|| < ||zx—ul, so u € Hy. Hence FNEP(G)NQ4 C
Hj, for all £ > 0.
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Next we show FN EP(G)NQ 4 C HNWj, for all k£ > 0. Indeed, in the case that
k =0, we have z¢p € C and W, = H. Consequently, FNEP(G) N Q4 C Hy N Wj.
Suppose that z; is given and FN EP(G) N Q4 C H; N W; for some i > 0. We
have to prove that FN EP(G) N Q4 C H;y1 N Wigq. Since FN EP(G) N Q4 is
nonempty closed convex subset of H. So there exists a unique element x;11 € FN
EP(G)NQ 4 such that x;11 = Prapp@)na, (7o) By Lemma we have for every
z € FN EP(G) N Q4 that

(3.7) (it1 — 2,20 — Tiz1) > 0,

and hence z € W;;1. Finally, z € H;11NW;41 and the FNEP(G)NQy C H,NWj
holds for all k£ > 0.

Next, we shall show that the {z;} generated by is bounded.

Since FN EP(G) N Q4 is a nonempty closed convex subset of C, there exists
a unique element 29 € FN EP(G) N Q4 such that 20 = Pragpeyna, (To). Now,
from xj41 = Py, w,(z0) we obtain that

(3.8) [#k41 = ol < ||z = wol|, V2 € Hp N W.
As zp € FN EP(G) N Q4 C Hi N Wy, we get

[Zk41 = zoll < [lz0 — 2oll,
for each k > 0. Hence, the sequence {z}} is bounded.

We shall show that {zx}, {ur}, {yx} and {zx} converge strongly to an element
p € FNEP(G)NQ4. Since z, = P, (z0) and x41 € Wy, it follows from Lemma

2.2] that,
(3.9) ek — xoll < [lzk1 — oll,

for all k£ > 0. Then, there exists limy_,o ||z — zo|| = ¢. Since xy = Py, (z0) and
Tp41 € Wi, from (i) in Lemma [2.1) we have

T+
|y — 2o]|? < |22 — a2

2
Tk — 20 | Tk+1 — L0 2
<
(3.10) R 5|l
e —wol® | ok —@ol® ek = 2|
- 2 2 4 '
So, we get
(3.11) ek — zrrall? < 2(/leega — zoll® — llzx — zol?).
Since limy_ o ||zx — xo|| = ¢, we obtain
(3.12) lim ||z — zk41] = 0.
k—o0
From xy11 € Hy, we have
(3.13) 2k = @l < llwe — zpga || + 2kt — 2l < 2|2k — 2pga |-
It follows from (3.12)) and (3.13)) that
(3.14) lim ||z — 2%/ = 0.
k—o0

Now from (3.6) we can write
(3.15) 2 = wll® =l — wll® < el Tt — ul® = ||z — ul’] < 0.
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On the other hand, by Lemma [2.1| we have

(3.16) 2k — ul® = llzk —ul|® = ||2x — zxll® + 202k — 2, T3 — u).
It follows from ([3.14))-(3.16|) that
(3.17) Hm p[|| Tete — ul|® = [lzx — ul]?] = 0.

k—o0

Since {ux} C [a, 1] for some a € (0,1), we have that
(3.18) (1Tt — ull* =z —ull?) = 0.

lim
k—o0
By (3.2), (3.5)), (3.18)) and the nonexpansive property of T}, we get

(3.19) 0= lim [|| Tty — uH2 — ||z — uHQ] < lim [||tg — uH2 — |Jzg — uHQ] < 0.
k—o0 k—o00

Therefore,

(3.20) [te = ull* = llax — ul*) = 0.

lim
k—ro0
On the other hand, from (ii) in Lemma[2.5|we have for every u € FNEP(G)NQy
that
e — wll? = [T7% 2y — T*ul?

< (T xy — T ™ u, xp, — u)

(3.21) = (up — u, 2 — u)

< §[||uk —ul® + [|op — ul]® = lug — x]%).
Thus,
(3.22) g — u||® < JJwg — ul]® = Jur — 2%

By the convexity of ||.||?, the properties of P and T, it follows from (3.6]) and
B:22) that

2k — ull® < (1= ) lzx — ull® + pllug — ul|®
(3.23) < (1= p)llzw — wll® + prlllon — ull® = lug — 2]|]
< g — ull® = pgllug — k]|,

Again, since uy € [a, 1] for some a € (0,1) and (3.23)) we have
2 aljug — 2P < flon ~ ul? ~ 1~ ul?

< (g = ull + llze — wlDllzk — 2kl
This together with (3.14) and the condition on {ry} implies that

Jur — k]l
Tk

(3.25) lim ||ug — zx|| =0 and lim 0.
k—00 k—o00
As {z1} is bounded, there exists a subsequence {zy,} of {z} converging weakly
to some element p. From , we obtain also that {uy;} converges weakly to
p. Since {ukj} C C and C'is a closed convex subset in H, we obtain p € C.
Now, we shall show that p € FN EP(G) N 4.
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First, we shall prove that p € EP(G). By ux = T"*x), we have

(3.26) G(ug,y) + 7’1k<Uk — X,y —ug) >0, Vy € C.

It follows from condition (A2) and that

(3.27) T’1k<Uk —xp,y —ug) > G(y,ug), Yy € C.

Therefore,

(3.28) <%,y —ug;) > G(y,ux;), Yy € C.
i

From condition (A3), and (3.28), we have

(3.29) 0> G(y,p), Vy € C.

So, G(p,y) > 0, for all y € C. It means that p € EP(G).
Further, we show that p € Q4. Set Bv = Av + N¢gwv for v € C where
(3.30) Nev={we H: (v—u,w) >0, Yue C}

and Bv = () for v ¢ C. Then B is a maximal monotone mapping and 0 € Bv if and
only if v € Q4 (see [20]). Let (v,w) € G(B). Then we have w € Bv = Av + Ngv
and w — Av € Nev which is equivalent to

(3.31) (v —u,w— Av) >0, Yu € C.

Consequently, from ¢ = Po(ur — A\ Ayk), v € C and Lemma we have that
(3.32) (ty — v, ur, — \pAyx, — t) > 0.

Therefore,

(3.33) (v —ti, (tk — ug) /A + Ayg) > 0.

It follows from and monotonicity of A that
(v =ty w) > (v — ty,, Av)

> (0 = ty,, Av) — (v — by, (th, — ur,) [ Ak, + Ayr,)

(3.34) > (v —ty,, Av — Aty,) + (v — tg,, Atg, — Ayg,)
= (v =ty (try — wk;)/Aks)

2 (v =ty Ate, = Ayk,) — (0 = t,, (b, — ;) /Ak,)-
From and we obtain
(3.35) (1~ 222l — il < o — s —

It follows from ([3.20), (3.35) and the condition {\;} C (0,1/+/2L) that

(336) Huk — ka =0.

lim
k—o00
Since yr = Po(up — ApAug), tp = Po(ur — A\Ayy), it follows from (3.36) and
properties of Po and A that

k—oo
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and

(3.38) [ Ay — Atgl| = lim |y, — tx| = 0.
k—o00

lim
k—o0
Hence, after passing i — oo in (3.34), using (3.36)), (3.37) and (3.38) we obtain
that (v — p,w) > 0 for all v € C. Since B is maximal monotone, p € B~10. It
means that p € Q4.

Next we show that p € F.

By using properties of Po and T, and ug € C, it follows from that

allu, — Teugl| < prllug — Trull < pur(lur — Trte || + | Titr — Teupl])
= ||(1 — px)Po (k) + pPo(ug) — Po(ug) + u, — 2|

+ pr| [tk — u|
< (1- Po(x) — Po(u)|| + lup — 2
(3.39) (1 — )| Pe@r) — Pe(up) | + [l — 2]
+ por| [tk — u|

< (X = p)llek — wnll + [lug — zg |l + porllte — ull
< lwg — wgll + lluk — il + l|l2n — 25l + it — wll
<2l — urll + [|oe — 2& ]l + prellte — ull-
Therefore, from (3.14)), (3.25)), (3.36]) and it implies that
(3.40)

k—o0

From (3.40)) and as in [I6], without loss of generality, let

j—oo Y j—00 Sk,
J

0.

Now, we prove that p = T'(s)p for a fixed s > 0. It is easy to see that
[s/s1;]-1

lug, =T(s)pll < D T sy yur; = T(A+ D)siy Ju |
=0

IR (G (L (e

S S
< [k] g, — s, Y, ||+, — pll + HT( - [k] k>p —pH.

J J
Therefore,
S
[ur; = T(s)pll < —llur, — T(s,; )u ||
(3.43) Sk;
+ lluk; = pll +sup{|T'(s)p — pll : 0 < s < s, }.

This fact and (3.41) imply that
(3.44) limsup |lug, — T'(s)pl| < limsup [lug, —p|.

j—o0 J—00

As every Hilbert space satisfies Opial’s condition, we have T'(s)p = p. Therefore,
p € F. Thus, (3.8) with 2z replaced by 20 = Prrgp)no,(To) and the weakly
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lower semicontinuity of the norm guarantee that

[0 — 20l| < [0 — pl| < liminf [[zg — x|
j—o0

3.45 .
(3.45) < limsup [[zo — zg, || < [lzo — 20]-
]*)OO

Hence, we obtain

(3.46) lim [lzx, — @ol| = |lzo — pll = [lz0 — 2o0]-
j—o0

It means that

(3.47) Tr;, = P = 20,

and all sequence {zj} converges strongly to p as k — co. So, the strong conver-

gence of the sequences {z;} and {ug} to 2z is followed from (3.14) and (3.25)),
respectively. The strong convergence of the sequences {y} is followed from the

property of {uy} and (3.36].
For the case that T} is defined by (1.13)), we need only to prove p € F from
(3.40). For this purpose, we have for each h > 0 the following estimate:

1Ty — ] < Hm)uk () (1 I T(s)ukds>

Sk
1o 1o
—|—HT(h)</ T(s)ukds)—/ T(s)ugds
Sk Jo Sk Jo
1 [°k
(3.48) + ‘ / T(s)upds — ug
sk Jo
1 [
<2 / T(s)urds — ug,
Sk Jo
1 [k 1 [
+ ‘T(h) </ T(s)ukd5>—/ T(s)urds||.
Sk Jo Sk Jo

By Lemma [2.6 we get

T(h)(slk /0 " T(s)ukds>—81k /0 (s unds

for every h € (0,00) and hence, by (3.40)), (3.48)) and (3.49)), we obtain
(3.50) lim ||T(h)ug — ug|| =0
k—o0

(3.49) lim

k—o00

=0,

for each h > 0. By Lemmal[2.7] this implies p € F(T'(h)) for all h > 0. As for the
case (1.12)), we also obtain that the sequences {x}, {ux}, {yx} and {z;} defined
by (1.11)) with (1.13) converge strongly to p as kK — oc. O

Putting T'(s) = T for all s > 0 we obtain the strong convergence for equi-
librium problems, variational inequalities problems and fixed point problems for
nonexpansive in Hilbert spaces.

Corollary 3.2. Let C be a nonempty closed convex subset in a real Hilbert space
H. LetT be a nonexpansive mapping on C, let G be a bifunction from C x C to
R satisfying conditions (A1)-(A4), and let A : C — H be a monotone L-Lipschitz
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continuous mapping such that F(T)N EP(G)NQa # 0. Let {xi}, {ur}, {yx} and
{z} be sequences generated by

xg € H chosen arbitrarily,
1

up € C': G(Uk,y) + 7<’U¢k _xkay_uk> >0, Vy € C,
k

yr = Po(ur — A\pAug),

2z = (1 — p)zg + T Po(ur, — A Ayg),
Hy={2€ H: |2k — z|| < [lz — 2]},
Wi ={z€H: (xy — z,x0 — x}) > 0},

Tpy1 = Puow, (20), k>0,

(3.51)

where { .} C [a,1] for somea € (0,1) and {ry} C (0,00) satisfies liminfy_,o, g >
0, {\r} C [b,c] for some b,c € (0;1/+/2L). Then, the sequences {x1}, {ux}, {yx}
and {z} converge strongly to an element p € F(T)N EP(G) N Q4.

Corollary 3.3. Let C be a nonempty closed convex subset in a real Hilbert space
H. Let {T'(s) : s € R4} be a nonexpansive semigroup on C' and let A : C — H
be a monotone L-Lipschitz continuous mapping such that F NQy # 0. Let {x},
{ur}, {yr} and {zr} be sequences generated by

xo € H chosen arbitrarily,

Ug = PC(xk)a
Y = Po(u, — A Aug),
(3.52) zi = (1 — pi)ug + pe T Po (ur, — A Ayr),

Hy={z€ H : [z, — 2| < [lwg — 2][},
Wy ={z¢€ H: (v — z,x0 — xg) > 0},
Te+1 = PHkﬂWk(xO)a k Z 07

where {u} C [a,1] for some a € (0,1), {rr} C (0,00) satisfies liminfy_ oo 7 > 0,

{\r} C [b,c] for some b,c € (0;1/+/2L) and Ty is defined by (1.12) or (1.13).
Then, the sequences {xy}, {ur}, {yx} and {zx} converge strongly to an element
peEFNQy.

Proof. Obviously, if G(u,v) = 0 then wuy is defined by

which is equivalent to ux = Po(xg). So, the conclusion of Corollary is proved
similar Theorem [3.11 O

Putting G(u,v) = 0 for all u,v € C and A = 0, we obtain the following
algorithm for finding a common fixed point of a nonexpansive semigroup {7'(s) :
s€Ri}onC.

Corollary 3.4. Let C be a nonempty closed convex subset in a real Hilbert space
H. Let {T(s): s € R4} be a nonexpansive semigroup on C' such that F # (). Let
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{zr}, {ur} and {z;} be sequences generated by

(3.53)

xg € H chosen arbitrarily,

ur = Po(zk),

2, = (1 — p)ug + ppTrug,
Hy={z€ H: |z — 2|| < [lzg — 2[l},
Wiy={z€ H: (x —z,x0— x) > 0},

g1 = Pra,ow, (20), k >0,

where {u} C [a,1] for some a € (0,1), T, = T'(sg) and {si} satisfies condition
(1.12)). Then, the sequences {xy}, {ux} and {zx} converge strongly to an element
peF.

[
2]

[15]

[16]

REFERENCES

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium prob-
lems, Mathematics Students, 63(1994), 123-145.

S.D. Flam, A.S. Antipin, Fquilibrium programming using prozimal-like algorithms, Mathe-
matical Programming, 78(1997), 29-41.

1.V. Konnov and O.V. Pinyagina, D-gap functions and descent methods for a class of mono-
tone equilibrium problems, Lobachevskii Journal of Mathematics, 13(2003), 57—65.

I.V. Konnov and O.V. Pinyagina, D-gap functions for a class of monotone equilibrium
problems in Banach spaces, Computational Methods in Applied Mathematics, 3(2)(2003),
274-286.

G. Mastroeni, Gap functions for equilibrium problems, Journal of Global of Optimization,
27(4)(2003), 411-426.

O. Chadli, I.V. Konnov, and J.C. Yao, Descent methods for equilibrium problems in Banach
spaces, Computers and Mathematics with Applications, 48(2004), 609-616.

P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, Journal of
Nonlinear and Convex Analysis, 6(1)(2005), 117-136.

W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama (2000).
F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proceedings of the
National Academy of Sciences of the United States of America, 54(1965), 1041-1044.

W. Takahashi, and M. Toyoda, Weak convergence theorem for nonexpansive mappings and
monotone mappings, Journal of Optimization Theory and Applications, 118(2)(2003), 417—
428.

H. Iiduka, and W. Takahashi, Strong convergence theorems for nonexpansive nonself map-
pings and inverse-strongly monotone mappings, Journal of Convex Analysis, 11(1)(2004),
69-79.

G.M. Korpelevich, The extragradient method for finding sadle points and other problems,
Ekonomika i Mathematitcheskie Metody, 12(4)(1976), 747-756.

N. Nadezhkina, and W. Takahashi, Strong convergence theorem by a hybrid method for
nonexpansive mappings and Lipschitz continuous monotone mappings, SIAM Journal on
Optimization, 16(4)(2006), 1230-1241.

A. Tada and W. Takahashi, Weak and strong convergence theorems for nonexpansive map-
ping and equilibrium problem, Journal of Optimization Theory and Applications, 133(2007),
359-370.

T. Suzuki, On strong convergence to common fixed points of nonexpansive semigroups in
Hilbert spaces, Proceedings of the American Mathematical Society, 131(7)(2002), 2133
2136.

H. He and R. Chen, Strong convergence theorems of the CQ method for nonexrpansive semi-
groups, Fixed Point Theory and Applications, vol. 2007, Article ID 59735, 8 pages, 2007.



16
[17]

18]

[19]

[20]

21]

22]

23]

24]

[25]
[26]

[27]

(28]

S. Saejung, Strong convergence theorems for nonexpansive semigroups without Bochner in-
tegrals, Fixed Point Theory and Applications, vol. 2008, Article ID 745010, 7 pages, 2008.
Ng. Buong, Strong convergence of a method for variational inequality problems and fixed
point problems of a nonexpansive semigroup in Hilbert spaces, Journal of Applied Mathe-
matics and Informatics, 20(1-2)(2011), 61-74.

Ng. Buong and Ng. D. Duong, A method for a solution of equilibrium problem and fixed
point problem of a nonexpansive semigroup in Hilbert spaces, Fixed Point Theory and Ap-
plications, 2011, Article ID 208434, 16 pages doi:10.1155/2011/208434.

L.C. Ceng and J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed
point problems, Journal of Computational and Applied Mathematics, 214(2008), 186-201.
S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems
and fixed point problems in Hilbert spaces, Journal of Mathematical Analysis and Applica-
tions, (2006), doi:10.1016/j.jmaa.2006.08.036.

S. Plubtieng and R. Punpaeng, A new iterative method for equilibrium problems and fixed
point problems of nonexrpansive mappings and monotone mappings, Applied Mathematics
and Computation, 197(2008), 548-558.

J.-W. Penga and J.-C. Yao, Some new extragradient-like methods for generalized equilibrium
problems, fixed point problems and variational inequality problems, Optimization Methods
and Software, 25(5)(2010), 677-698.

G. Marino and H. K. Xu, Weak and strong convergence theorems for stric pseudo-
contractions in Hilbert spaces, Journal of Mathematical Analysis and Applications,
329(2007), 336-346.

K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in
Advanced Mathematics, Cambridge University Press, Cambridge 1990.

R. T. Rockafellar, On the mazimality of sums of nonlinear monotone operators, Transac-
tions of the American Mathematical Society, 149(1970), 75-88.

T. Shimizu and W. Takahashi, Strong convergence to common fized points of families of
nonexpansive mappings, Journal of Mathematical Analysis and Applications, 211(1997),
71-83.

Z. Opial, Weak convergence of the sequence of successive approrimations for nonerpansive
mappings, Bulletin of the American Mathematical Society, 73(1967), 591-597.



	1. Introduction
	2.  Preliminaries
	3. Main Results
	References

