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Abstract

This paper studies the phi-four equation that arises in Quantum Mechan-

ics. The topological 1-soliton solution or kink solution is obtained by the

ansatz method. The bifurcation analysis is then subsequently carried out and

several other solutions are retrieved from the analysis. These solutions include

the solitary wave solutions, periodic waves and periodic singular waves. The

constraint conditions also fall out from the analysis that must exist in order

for the soliton solutions to exist. Thus various previous list of solutions for

this equation are expanded.
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1 INTRODUCTION

The PHI-four equation is a very important nonlinear evolution equation (NLEE) in

the area of Mathematical Physics, in particular Quantum Mechanics. This equation

was studied extensively by several Mathematical Physicists across the globe. It is

about time to take a look at this equation from a different perspective in order to

extract several other solutions. In order to stay focussed, this paper will concentrate

on the ansatz method and the bifurcation analysis to reveal the several other solu-

tions. The integrability studies of these NLEEs is a big deal in this area of Physics

and Mathematics[1-25]. However, one must exercise extreme caution in carrying out

the integration of these NLEEs as pointed out in 2009 [4]. Without this cautionary

approach, the results would be flawed.

The ansatz approach will be first used to carry out the integration of the PHI-

four equation. This will reveal a topological 1-solition solution that is also known

as the kink solution. This will lead to a couplre of constraint conditions that must

remain valid in order for the kink solution to exist. Subsequently, the paper will

address the bifurcation analysis of the problem where the phase portraits of this

equation of study will be obtained. Additionally by the traveling wave approach,

several other solutions will be obtained. They are the cnoidal waves, snoidal waves,

solitary waves, periodic waves, singular periodic waves and others.

2 TOPOLOGICAL 1-SOLITON SOLUTION OR

KINK SOLUTION

The PHI-four equation that is going to be studied in this paper is given by

utt − k2uxx = au+ bu3 (1)
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where in (1), the dependent variable is u(x, t) while the spatial and temporal in-

dependent variables are x and t respectively. The other parameters k, a and b are

all real-valued constants. In order to extract the topological 1-soliton solution of

this equation, it is necessary to bear in mind that the solitons are the outcome of

a delicate balance between dispersion and nonlinearity. This leads to the balancing

principle that will be applied to obtain the soliton solution. In order to get started,

the 1-soliton solution ansatz is taken to be [6-12, 21]:

u(x, t) = A tanhp τ (2)

where

τ = B(x− vt) (3)

Here in (2) and (3), the parameters A and B are known as free parameters of the

soliton or the kink and v is the velocity of the soliton. The value of the unknown

exponent p will fall out during the course of derivation of the soliton solution. Sub-

stituting (2) into (1) and simplifying leads to

p(p− 1)AB2
(
v2 − k2

)
tanhp−2 τ − 2p2AB2

(
v2 − k2

)
tanhp τ

+ p(p+ 1)AB2
(
v2 − k2

)
tanhp+2 τ = aA tanhp τ + bA3 tanh3p τ (4)

By the balancing principle, equation the exponents 3p and p+ 2, gives

3p = p+ 2 (5)

which gives

p = 1 (6)

This shows that the first term on the left hand side gets knocked off. From the re-

maining terms, the linearly independent functions are tanhp+j τ for j = 0, 2. There-

fore, setting its respective coefficients to zero, yields

A =

√
−a

b
(7)
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and

B =

√
− a

2 (v2 − k2)
(8)

These values of the free parameters immediately pose the constraint conditions

ab < 0 (9)

and

a
(
v2 − k2

)
< 0 (10)

respectively. Thus, finally, the 1-soliton solution to the PHI-four equation is given

by

u(x, t) = A tanh[B(x− vt)] (11)

with the free parameters given by (7) and (8). This kink solution will hold as long

as the constraint conditions given by (9) and (10) remains valid.

3 BIFURCATION ANALYSIS

In this section, the Phi-four equation will be rewritten as

utt − αuxx − λu+ βu3 = 0. (12)

In this section, the aim is to study the traveling wave solutions and their relations

for Eq.(12) by using the bifurcation method and qualitative theory of dynamical

systems[15-20]. Through some special phase orbits, we obtain many smooth periodic

wave solutions and periodic blow-up solutions. Their limits contain kink profile

solitary wave solutions, unbounded wave solutions, periodic blow-up solutions and

solitary wave solutions.
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3.1 PHASE PORTRAITS AND QUALITATIVE ANALY-

SIS

We assume that the traveling wave solutions of (12) is of the form

u(x, t) = φ(ξ), ξ = x− ct, (13)

we have

(c2 − α)φ′′ − λφ+ βφ3 = 0. (14)

To relate conveniently, let

η =
β

c2 − α
, (15)

and

µ =
λ

c2 − α
. (16)

Letting φ′ = y, then we get the following planar system
dφ
dξ

= y,

dy
dξ

= −ηφ3 + µφ.
(17)

Obviously, the above system (17) is a Hamiltonian system with Hamiltonian function

H(φ, y) = y2 +
1

2
ηφ4 − µφ2. (18)

In order to investigate the phase portrait of (17), set

f(φ) = −ηφ3 + µφ. (19)

Obviously, f(φ) has three zero points, φ−, φ0 and φ+, which are given as follows

φ− = −
√

µ

η
, φ0 = 0, φ+ =

√
µ

η
. (20)

Letting (φi, 0) be one of the singular points of system (17), then the characteristic

values of the linearized system of system (17) at the singular points (φi, 0) are

λ± = ±
√
f ′(φi). (21)
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From the qualitative theory of dynamical systems, we know that

(1) If f ′(φi) > 0, (φi, 0) is a saddle point.

(2) If f ′(φi) < 0, (φi, 0) is a center point.

(3) If f ′(φi) = 0, (φi, 0) is a degenerate saddle point.

Therefore, we obtain the phase portraits of system (17) in Fig.1.

Fig. 1. The phase portraits of system (17), (a) η < 0, µ < 0, (b) η > 0, µ > 0

Let

H(φ, y) = h, (22)

where h is Hamiltonian.

Next, we consider the relations between the orbits of (17) and the Hamiltonian h.

Set

h∗ = |H(φ+, 0)| = |H(φ−, 0)| =
µ2

2|η|
. (23)

According to Fig.1, we get the following propositions.

Proposition 1 Suppose that η < 0 and µ < 0, we have

(1) When h < 0 or h > h∗, system (17) does not any closed orbit.

(2) When 0 < h < h∗, system (17) has three periodic orbits Γ1, Γ2 and Γ3.

(3) When h = 0, system (17) has two periodic orbits Γ4 and Γ5.

(4) When h = h∗, system (17) has two heteroclonic orbits Γ6 and Γ7.
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Proposition 2 Suppose that η > 0 and µ > 0, we have

(1) When h 6 −h∗, system (17) does not any closed orbit.

(2) When −h∗ < h < 0, system (17) has two periodic orbits Γ8 and Γ9.

(3) When h = 0, system (17) has two homoclinic orbits Γ10 and Γ11.

(4) When h > 0, system (17) has a periodic orbit Γ12.

From the qualitative theory of dynamical systems, we know that a smooth solitary

wave solution of a partial differential system corresponds to a smooth homoclinic or-

bit of a traveling wave equation. A smooth kink wave solution or a unbounded wave

solution corresponds to a smooth heteroclinic orbit of a traveling wave equation.

Similarly, a periodic orbit of a traveling wave equation corresponds to a periodic

traveling wave solution of a partial differential system. According to above analysis,

we have the following propositions.

Proposition 3 If η < 0 and µ < 0, we have

(1 )When 0 < h < h∗, (12) has two periodic wave solutions (corresponding to the

periodic orbit Γ2 in Fig. 1) and two periodic blow-up wave solutions(corresponding

to the periodic orbits Γ1 and Γ3 in Fig.1).

(2) When h = 0, (12) has periodic blow-up wave solutions(corresponding to the

periodic orbits Γ4 and Γ5 in Fig.1).

(3) When h = h∗, (12) has two kink profile solitary wave solutions and two

unbounded wave solutions (corresponding to the heteroclinic orbits Γ6 and Γ7 in

Fig.1).

Proposition 4 If η > 0 and µ > 0, we have

(1) When −h∗ < h < 0, (12) has two periodic wave solutions(corresponding to

the periodic orbits Γ8 and Γ9 in Fig.1).

(2) When h = 0, (12) has two solitary wave solutions(corresponding to the ho-

moclinic orbits Γ10 and Γ11 in Fig.1).

(3) When h > 0, (12) has two periodic wave solutions(corresponding to the

periodic orbit Γ12 in Fig.1).
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3.2 TRAVELING WAVE SOLUTIONS AND THEIR RE-

LATIONS

Firstly, we will obtain the explicit expressions of traveling wave solutions for the

(12) when η < 0 and µ < 0.

(1) From the phase portrait, we note that there are three periodic orbits Γ1, Γ2

and Γ3 passing the points (φ1, 0),(φ2, 0), (φ3, 0) and (φ4, 0). In (φ, y)-plane the

expressions of the orbits are given as

y = ±
√

−η

2

√
(φ− φ1)(φ− φ2)(φ− φ3)(φ− φ4), (24)

where φ1 = −
√

µ−
√

µ2+2ηh

η
, φ2 = −

√
µ+
√

µ2+2ηh

η
, φ3 =

√
µ+
√

µ2+2ηh

η
,

φ4 =

√
µ−
√

µ2+2ηh

η
and 0 < h < h∗.

Substituting (24) into dφ/dξ = y and integrating them along Γ1, Γ2 and Γ3, we have

±
∫ ∞

φ

1√
(s− φ1)(s− φ2)(s− φ3)(s− φ4)

ds =

√
−η

2

∫ ξ

0

ds, (25)

±
∫ φ

0

1√
(s− φ1)(s− φ2)(s− φ3)(s− φ4)

ds =

√
−η

2

∫ ξ

0

ds. (26)

Completing above integrals we obtain

φ = ± φ4

sn
(
φ4

√
−η

2
ξ, φ3

φ4

) , (27)

φ = ±φ3sn

(
φ4

√
−η

2
ξ,

φ3

φ4

)
. (28)

Noting that (13), we get the following periodic wave solutions

u1(x, t) = ± φ4

sn
(
φ4

√
−η

2
(x− ct), φ3

φ4

) , (29)

and

u2(x, t) = ±φ3sn

(
φ4

√
−η

2
(x− ct),

φ3

φ4

)
. (30)
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(2) From the phase portrait, we note that there are two special orbits Γ4 and Γ5,

which have the same hamiltonian with that of the center point (0, 0). In (φ, y)-plane

the expressions of the orbits are given as

y = ±
√

−η

2
φ
√
(φ− φ5)(φ− φ6), (31)

where φ5 = −
√
2µ/η and φ6 =

√
2η/µ.

Substituting (31) into dφ/dξ = y and integrating them along the two orbits Γ4 and

Γ5, it follows that

±
∫ +∞

φ

1

s
√
(s− φ5)(s− φ6)

ds =

√
−η

2

∫ ξ

0

ds. (32)

Completing above integrals we obtain

φ = ±
√

2µ

η
csc

√
−µξ. (33)

Noting that (13), we get the following periodic blow-up wave solutions

u3(x, t) = ±
√

2µ

η
csc

√
−µ(x− ct). (34)

(3)From the phase portrait, we see that there are two heterclinic orbits Γ6 and Γ7

connected at saddle points (φ−, 0) and(φ+, 0). In (φ, y)-plane the expressions of the

heterclinic orbits are given as

y = ±
√

−η

2

√
(φ− φ−)2(φ− φ+)2. (35)

Substituting (35) into dφ/dξ = y and integrating them along the heterclinic orbits

Γ6 and Γ7, it follows that

±
∫ φ

0

1

(s− φ−)(φ+ − s)
ds =

√
−η

2

∫ ξ

0

ds, (36)

±
∫ +∞

φ

1

(s− φ−)(s− φ+)
ds =

√
−η

2

∫ ξ

0

ds. (37)

Completing above integrals we obtain

φ = ±
√

µ

η
tanh

√
−µ

2
ξ, (38)
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φ = ±
√

µ

η
coth

√
−µ

2
ξ. (39)

Noting that (13), we get the following kink profile solitary wave solutions

u4(x, t) = ±
√

µ

η
tanh

√
−µ

2
(x− ct), (40)

and unbounded wave solutions

u5(x, t) = ±
√

µ

η
coth

√
−µ

2
(x− ct). (41)

Secondly, we will obtain the explicit expressions of traveling wave solutions for the

(12) when η > 0 and µ > 0.

(1) From the phase portrait, we see that there are two closed orbits Γ8 and Γ9 passing

the points (φ7, 0), (φ8, 0), (φ9, 0) and (φ10, 0). In (φ, y)-plane the expressions of the

closed orbits are given as

y = ±
√

η

2

√
(φ− φ7)(φ− φ8)(φ− φ9)(φ10 − φ), (42)

where φ7 = −
√

µ+
√

µ2+2ηh

η
, φ8 = −

√
µ−
√

µ2+2ηh

η
, φ9 =

√
µ−
√

µ2+2ηh

η
,

φ10 =

√
µ+
√

µ2+2ηh

η
and −h∗ < h < 0.

Substituting (42) into dφ/dξ = y and integrating them along Γ8 and Γ9, we have

±
∫ φ

φ7

1√
(φ10 − s)(φ9 − s)(φ8 − s)(s− φ7)

ds =

√
η

2

∫ ξ

0

ds, (43)

±
∫ φ

φ10

1√
(s− φ7)(s− φ8)(s− φ9)(φ10 − s)

ds =

√
η

2

∫ ξ

0

ds. (44)

Completing above integrals we obtain

φ =
(φ10 − φ8)φ7 + (φ8 − φ7)φ10

(
sn
(
ω
√

η
2
ξ, κ
))2

φ10 − φ8 + (φ8 − φ7)
(
sn
(
ω
√

η
2
ξ, κ
))2 , (45)

φ =

√√√√φ2
10 − (φ2

10 − φ2
9)

(
sn

(
φ10

√
η

2
ξ,

√
φ2
10 − φ2

9

φ10

))2

, (46)
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where ω =

√
(φ10−φ8)(φ9−φ7)

2
and κ =

√
(φ10−φ9)(φ8−φ7)
(φ10−φ8)(φ9−φ7)

.

Noting that (13), we get the following periodic wave solutions

u6(x, t) =

(
(φ10 − φ8)φ7 + (φ8 − φ7)φ10

(
sn
(
ω
√

η
2
(x− ct), κ

))2)
φ10 − φ8 + (φ8 − φ7)

(
sn
(
ω
√

η
2
(x− ct), κ

))2 , (47)

and

u7(x, t) =

√√√√φ2
10 − (φ2

10 − φ2
9)

(
sn

(
φ10

√
η

2
(x− ct),

√
φ2
10 − φ2

9

φ10

))2

. (48)

(2) From the phase portrait, we see that there are two symmetric homoclinic orbits

Γ10 and Γ11 connected at the saddle point (0, 0). In (φ, y)-plane the expressions of

the homoclinic orbits are given as

y = ±
√

η

2
φ
√
(φ− φ11)(φ12 − φ), (49)

where φ11 = −
√

2µ/η and φ12 =
√

2µ/η.

Substituting (49) into dφ/dξ = y and integrating them along the orbits Γ10 and Γ11,

we have

±
∫ φ

φ11

1

s
√
(s− φ11)(φ12 − s)

ds =

√
η

2

∫ ξ

0

ds, (50)

±
∫ φ

φ12

1

s
√
(s− φ11)(φ12 − s)

ds =

√
η

2

∫ ξ

0

ds. (51)

Completing above integrals we obtain

φ = −
√

2µ

η
sech

√
µξ, (52)

and

φ =

√
2µ

η
sech

√
µξ. (53)

Noting that (13), we get the following solitary wave solutions

u8(x, t) = −
√

2µ

η
sech

√
µ(x− ct), (54)
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and

u9(x, t) =

√
2µ

η
sech

√
µ(x− ct). (55)

(3) From the phase portrait, we see that there are a closed orbit Γ12 passing the

points (φ13, 0) and (φ14, 0). In (φ, y)-plane the expressions of the closed orbits are

given as

y = ±
√

η

2

√
(φ14 − φ)(φ− φ13)(φ− c1)(φ− c1), (56)

where φ13 = −
√

µ+
√

µ2−2ηh

η
, φ14 =

√
µ+
√

µ2−2ηh

η
, c1 = i

√
µ−
√

µ2−2ηh

η
,

c1 = −i

√
µ−
√

µ2−2ηh

η
and h > 0.

Substituting (56) into dφ/dξ = y and integrating them along the orbit Γ12, we have

±
∫ φ

φ13

1√
(φ14 − s)(s− φ13)(s− c1)(s− c1)

ds =

√
η

2

∫ ξ

0

ds, (57)

±
∫ φ14

φ

1√
(φ14 − s)(s− φ13)(s− c1)(s− c1)

ds =

√
η

2

∫ ξ

0

ds. (58)

Completing above integrals we obtain

φ = φ13cn

(
√
µξ,−φ13

√
η

2µ

)
, (59)

and

φ = φ14cn

(
√
µξ, φ14

√
η

2µ

)
. (60)

Noting that (13), we get the following periodic wave solutions

u10(x, t) = φ13cn

(
√
µ(x− ct),−φ13

√
η

2µ

)
, (61)

and

u11(x, t) = φ14cn

(
√
µ(x− ct), φ14

√
η

2µ

)
. (62)
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Fig. 2. The imaginary part of the periodic wave solution u2+ (x, t) evolute into the kink wave solutions u4+ (x, t)

at t = 0 with the conditions (63). (a) h = 0.008; (b) h = 0.12; (c)h = 0.125.

Thirdly, we will give that relations of the traveling wave solutions.

(1) Letting h → h∗−, it follows that φ4 →
√
µ/η, φ3 →

√
µ/η, φ3/φ4 → 1 and

sn(
√
−µ(x − ct), 1) = tanh

√
−µ(x − ct). Therefore, we obtain u1(x, t) → u5(x, t)

and u2(x, t) → u4(x, t).

(2) Letting h → 0+, it follows that φ4 →
√
2µ/η, φ3 → 0, φ3/φ4 → 0 and

sn(
√
−µ(x− ct), 0) = sin

√
−µ(x− ct). Therefore, we obtain u1(x, t) → u3(x, t).

(3) Letting h → 0−, it follows that φ10 →
√
2µ/η, φ9 → 0, φ8 → 0, φ7 →

−
√

2µ/η, ω →
√
µ/2η, k → 1 and sn(

√
µ/2(x − ct), 1) = tanh

√
µ/2(x − ct).

Therefore, we obtain u6(x, t) → u8(x, t).

(4) Letting h → 0−, it follows that φ10 →
√
2µ/η, φ9 → 0, φ8 → 0, φ7 →

−
√

2µ/η,

√
φ2
10−φ2

9

φ10
→ 1 and sn(

√
µ(x − ct), 1) = tanh

√
µ(x − ct). Therefore, we

obtain u7(x, t) → u9(x, t).

(5) Letting h → 0+, it follows that φ14 →
√

2µ/η, φ13 → −
√

2µ/η, −φ13

√
η/2µ →

1, φ14

√
η/2µ → 1 and cn(

√
µ(x − ct), 1) = sech

√
µ(x − ct). Therefore, we obtain

u10(x, t) → u8(x, t) and u11(x, t) → u9(x, t).

Finally, we will show that the periodic wave solutions u2+(x, t) evolute into the

kink profile solitary wave solutions u4+(x, t) when the Hamiltonian h → h∗− (corre-

sponding to the changes of phase orbits of Fig.1 as h varies). We take some suitable
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choices of the parameters, such as

α = 2, β = −2, c = 2, λ = −1, (63)

as an illustrative sample and draw their plots (see Fig. 2).

4 CONCLUSIONS

This paper studies the PHI-four equation by the aid of ansatz method and bifurca-

tion analysis. These approaches allowed to reveal several solution of this equation.

They are cnoidal waves, snoidal waves, solitary waves, kinks, periodic waves, peri-

odic singular waves and others. The constraint conditions imposes the restrictions

on the choice of the parameters and coefficients of the governing equations. There

are several other NLEES where, particularly, the bifurcation method, can be applied

to obtain these interesting solutions to them. The results of these research will be

available in due course of time.
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