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Abstract

The Hermite matrix polynomials have been generalized in a number of ways and many of
these generalizations have been shown to be important tools in applications. In this paper we
introduce a new generalization of the Hermite matrix polynomials and present the recurrence
relations and the expansions of these new generalized Hermite matrix polynomials. We also
give new series expansions of the matrix functions exp(xB), sin(xB), cos(xB), cosh(xB) and
sinh(xB) in terms of these generalized Hermite matrix polynomials and thus prove that many
of the seemingly different generalizations of the Hermite matrix polynomials may be viewed as
particular cases of the two-variable polynomials introduced here. The generalized Chebyshev
and Legendre matrix polynomials have also been introduced in this paper in terms of these
generalized Hermite matrix polynomials.

Keywords and phrases: Generalized Hermite matrix polynomials, generating function, matrix
recurrence relations, generalized Chebyshev and Legendre matrix polynomials.
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1 Introduction

The theory of generalized matrix Hermite polynomials has earlier been developed by Batahan [1],
Defez and Jódar [2], Jódar and Company [7], Jódar and Defez [11, 12], Khammash [14] and Sayyed,
Metwally and Batahan [18] and more recently by the second author [15, 16]. Important connections
between orthogonal matrix polynomials and matrix differential equations of second order appear in
[3, 4, 7, 8, 9, 10, 13, 19], and their orthogonality properties in [20].

The aim of the present paper is to introduce a new generalization of the Hermite matrix poly-
nomials. An explicit representation and an expansion of the matrix exponential in a series of these
matrix polynomials are obtained. The properties of the generalized Hermite matrix polynomials of
two variables such as the recurrence formulas, which permit an efficient computation of matrix func-
tions, are also established. By exploiting this family of matrix polynomials, we give the definition
of the generalized Chebyshev and Legendre matrix polynomials.

Throughout this paper for a matrix A in CN×N , its spectrum σ(A) denotes the set of all the
eigenvalues of A. We say that A is a positive stable matrix [5, 11] if

Re(z) > 0, for all z ∈ σ(A). (1.1)

If A(k, n) and B(k, n) are matrices on CN×N for n ≥ 0, k ≥ 0, it follows in an analogous way to the
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proof of Lemma 11 and 10 of Rainville [17] that

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑

n=0

[ n
m ]∑

k=0

A(k, n−mk),

∞∑
n=0

∞∑
k=0

B(k, n) =

∞∑
n=0

n∑
k=0

B(k, n− k)

(1.2)

for a positive integer m and similarly, as for the above equation, we can write

∞∑
n=0

[ n
m ]∑

k=0

A(k, n) =
∞∑

n=0

∞∑
k=0

A(k, n+mk),

∞∑
n=0

n∑
k=0

B(k, n) =
∞∑

n=0

∞∑
k=0

B(k, n+ k).

(1.3)

The next section is devoted to the theory of generalized Hermite matrix polynomials, treated within
the context of the point of view so far developed.

2 Generalized Hermite matrix polynomials

Let A be a positive stable matrix in CN×N satisfying (1.1). We define the generalized Hermite
matrix polynomials of two variables by the generating function

F (x, y, t, A) =
∞∑

n=0

tn

n!
Hn,m,p(x, y,A) = exp

(
xtp

√
mA− ytmI

)
, |t| < ∞ and |x| < ∞ (2.1)

where F (x, y, t, A) regarded as a function of the complex variable t is an entire matrix function,
therefore has the Taylor series about t = 0 and the series obtained converges for all values of x, y
and t with p and m being relatively prime integers. Using the first equation in (1.2), and letting
n → n

p +mk − mk
p we get

exp

(
xtp

√
mA− ytmI

)
=

∞∑
n=0

∞∑
k=0

(−1)kyk(x
√
mA)n

n!k!
tnp+mk

=
∞∑

n=0

[ n
m ]∑

k=0

(−1)kyk(x
√
mA)

n−mk
p

k!Γ

(
n−mk

p + 1

) tn.

(2.2)

Thus, from (2.1) and (2.2), we obtain an explicit representation for the generalized Hermite matrix
polynomials of two variables in the form

Hn,m,p(x, y,A) = n!

[ n
m ]∑

k=0

(−1)kyk

k!Γ

(
n−mk

p + 1

) (x
√
mA)

n−mk
p

(2.3)

with the restriction that n−mk
p > −1. In addition, we can write

Hn,m,p(x, y,A) = y
n
mHn,m,p

(
x

y
p
m

, 1, A

)
= y

n
mHn,m,p

(
x

y
p
m

, A

)
. (2.4)

Before getting into the main body of the paper, it is easily seen that some important properties of
the generalized Hermite matrix polynomials Hn,m,p(x, y,A) are as follows:

(A) Multiplication Properties:

Hn,m,p(x, αy,A) = α
n
mHn,m,p

(
α− p

mx, y,A

)
, (2.5)
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α
n
p Hn,m,p(x, y,A) = Hn,m,p

(
αx, α

m
p y,A

)
, (2.6)

Hn,m,p(x, y,A) = n!

[ n
m ]∑

k=0

(1− y)kHn−mk,m,p(x,A)

k!(n−mk)!
, (2.7)

unHn,m,p

(
x

up
, y, A

)
= n!

[ n
m ]∑

k=0

yk(1− um)kHn−mk,m,p(x, y,A)

k!(n−mk)!
. (2.8)

(B) Addition Properties:

Hn,m,p(x+ z, y, A) = n!

[np ]∑
k=0

(z
√
mA)kHn−kp,m,p(x, y,A)

k!(n− kp)!
(2.9)

and

Hn,m,p(x, y + w,A) = n!

[ n
m ]∑

k=0

(−1)kwkHn−mk,m,p(x, y,A)

k!(n−mk)!
(2.10)

where α and u are constants.
The above relations will be used, along with other relations to derive new properties of the family

of functions generated by (2.1) as given by the following theorem.

Theorem 2.1. The generalized Hermite matrix polynomials satisfy the following relations

Hn,m,p(αx, βy,A) = n!
n∑

k=0

Hk,m,p

(
α
2 x,

β
2 y,A

)
Hn−k,m

(
α
2 x,

β
2 y,A

)
k!(n− k)!

, (2.11)

Hn,m,p(αx+ βz, µy + νw,A) = n!

n∑
k=0

Hk,m,p(βz, νw,A)Hn−k,m,p(αx, µy,A)

k!(n− k)!
(2.12)

and

Hn,m,p(αx+ βz, µy + νw,A) = n!
n∑

k=0

Hk,m,p

(
βz, µy+νw

2 , A

)
Hn−k,m,p

(
αx, µy+νw

2 , A

)
k!(n− k)!

(2.13)

where α, β, µ and ν are constants.

Proof. By using (2.1), consider the series

∞∑
n=0

n∑
k=0

Hn−k,m,p

(
α
2 x,

β
2 y,A

)
Hk,m,p

(
α
2 x,

β
2 y,A

)
tn

k!(n− k)!
=

∞∑
n=0

∞∑
k=0

Hn,m,p

(
α
2 x,

β
2 y,A

)
Hk,m,p

(
α
2 x,

β
2 y,A

)
tn+k

k!n!

=

∞∑
n=0

Hn,m,p

(
α
2 x,

β
2 y,A

)
tn

n!

∞∑
k=0

Hk,m,p

(
α
2 x,

β
2 y,A

)
tk

k!

= exp

(
αxtp

√
mA− βytmI

)
=

∞∑
n=0

Hn,m,p(αx, βy,A)

n!
tn

from which by comparing the coefficients of tn on both sides of the identity, we get (2.11). Further
by considering the series
∞∑

n=0

n∑
k=0

Hn−k,m,p(βz, νw,A)Hk,m,p(αx, µy,A)tn

k!(n− k)!
=

∞∑
n=0

∞∑
k=0

Hn,m,p(βz, νw,A)Hk,m(αx, µy,A)tn+k

k!n!

=

∞∑
n=0

Hn,m,p(αz, νw,A)t
n

n!

∞∑
k=0

Hk,m,p(αx, µy,A)tk

k!
= exp

[
βztp

√
mA− νwtmI

]
exp

[
αxtp

√
mA− µytmI

]
= exp

[
(αx+ βz)tp

√
mA− (µy + νw)tmI

]
=

∞∑
n=0

Hn,m,p(αx+ βz, µy + νw,A)tn

n!
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and comparing the coefficients of tn, we get (2.12). Lastly by considering the series

∞∑
n=0

n∑
k=0

Hn−k,m,p

(
βz, µy+νw

2 , A

)
Hk,m,p

(
αx, µy+νw

2 , A

)
tn

k!(n− k)!

=
∞∑

n=0

∞∑
k=0

Hn,m,p

(
βz, µy+νw

2 , A

)
Hk,m,p

(
αx, µy+νw

2 , A

)
tn+k

k!n!

=
∞∑

n=0

Hn,m,p

(
βz, µy+νw

2 , A

)
tn

n!

∞∑
k=0

Hk,m,p

(
αx, µy+νw

2 , A

)
tk

k!

= exp

(
(αx+ βz)tp

√
mA− (µy + νw)tmI

)
=

∞∑
n=0

Hn,m,p(αx+ βz, µy + νw,A)

n!
tn

and by comparing the coefficients of tn, we get (2.13), thereby establishing the Theorem 2.1.

In the following corollary, we obtain same properties of generalized Hermite matrix polynomials
as follows.

Corollary 2.1. The generalized Hermite matrix polynomials satisfy the following relation

Hn,m,p

(
x+ z

m
√
2
, y, A

)
= n!(

m
√
2)−n

n∑
k=0

Hk,m,p(z, y, A)Hn−k,m,p(x, y,A)

k!(n− k)!
. (2.14)

Proof. Now, from the properties of exponential matrix (1.2) in addition (2.1), we can write

exp

(
xtp

√
mA− ytmI

)
exp

(
ztp

√
mA− ytmI

)
= exp

(
x+ z

2
p
m

tp2
p
m

√
mA− y(t

m
√
2)mI

)
=

∞∑
n=0

(t m
√
2)n

n!
Hn,m,p

(
x+ z

m
√
2
, y, A

)
=

∞∑
n=0

∞∑
k=0

1

n!k!
Hn,m,p(x, y,A)Hk,m,p(z, y, A)tn+k

=

∞∑
n=0

n∑
k=0

1

k!(n− k)!
Hn−k,m,p(x, y,A)Hk,m,p(z, y, A)tn

by comparing the coefficients of tn, we get (2.14) and the proof of Corollary 2.1 is completed.

3 Recurrence relations

Some recurrence relations have been deduced for the generalized Hermite matrix polynomials. At
first, we record the following theorem.

Theorem 3.1. The generalized Hermite matrix polynomials Hn,m,p(x, y,A) satisfy the following
relations

∂r

∂xr
Hn,m,p(x, y,A) =

(
√
mA)rn!

(n− rp)!
Hn−rp,m,p(x, y,A); 0 ≤ r ≤ [

n

p
] (3.1)

and

∂r

∂yr
Hn,m,p(x, y,A) =

(−1)rn!

(n−mr)!
Hn−mr,m,p(x, y,A); 0 ≤ r ≤ [

n

m
]. (3.2)

Proof. Differentiating the identity (2.1) with respect to x yields

tp
√
mA exp

(
xtp

√
mA− ytmI

)
=

∞∑
n=0

1

n!

∂

∂x
Hn,m,p(x, y,A)tn. (3.3)
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From (2.1) and (3.3), we have

√
mA

∞∑
n=0

1

n!
Hn,m,p(x, y,A)tn+p =

∞∑
n=1

1

n!

∂

∂x
Hn,m,p(x, y,A)t

n.

Hence, by identifying the coefficients in tn, it follows that

∂

∂x
Hn,m,p(x, y,A) =

n!

(n− p)!

√
mAHn−p,m,p(x, y,A); n ≥ p. (3.4)

Iteration of (3.4), for 0 ≤ r ≤ [np ], implies (3.1). The proof of equation (3.2) is similar to that of

equation (3.1) and thus the proof of the Theorem 3.1 is completed.

The following corollary is a consequence of the Theorem 3.1.

Corollary 3.1. The generalized Hermite matrix polynomials satisfy the following relations

∂m

∂xm
Hn,m,p(x, y,A)− (−1)p(

√
mA)m

∂p

∂yp
Hn,m,p(x, y,A) = 0. (3.5)

Proof. By (3.1) and (3.2) the equation (3.5) follows directly.

According to (3.5), it is clear that, for the special case, when m = 2 and p = 1 the Hn,m,p(x, y,A)
are the natural solutions of the heat partial differential equation [1, 15] . The above three terms
recurrence relation will be used in the following theorem.

Theorem 3.2. Let A be a matrix in CN×N satisfying (1.1), then we have

Hn,m,p(x, y,A) = (n− 1)!

[
xp

√
mA

(n− p)!
Hn−p,m,p(x, y,A)− my

(n−m)!
Hn−m,m,p(x, y,A)

]
. (3.6)

Proof. Differentiating (2.2) with respect to x and t, we find respectively

∂

∂x
F (x, y, t, A) = tp

√
mA exp

(
xtp

√
mA− ytmI

)
=

∞∑
n=0

1

n!

∂

∂x
Hn,m,p(x, y,A)tn

and

∂

∂t
F (x, y, t, A) =(xp tp−1

√
mA−mytm−1I) exp

(
xtp

√
mA− ytmI

)
=

∞∑
n=1

1

(n− 1)!
Hn,m,p(x, y,A)tn−1.

Therefore, F (x, y, t, A) satisfies the partial matrix differential equation

(xp tp−1
√
mA−mytm−1I)

∂F

∂x
− tp

√
mA

∂F

∂t
= 0

this, by using (2.2), becomes

∞∑
n=1

√
mA

(n− 1)!
Hn,m,p(x, y,A)tn+p−1 =xp

√
mA

∞∑
n=0

1

n!

∂

∂x
Hn,m,p(x, y,A)tn+p−1

−
∞∑

n=0

my

n!

∂

∂x
Hn,m,p(x, y,A)tn+m−1

and identifying coefficients in tn+p−1, we get

√
mA

(n− 1)!
Hn,m,p(x, y,A) =xp

√
mA

1

n!

∂

∂x
Hn,m,p(x, y,A)

− my

(n−m+ p)!

∂

∂x
Hn−m+p,m,p(x, y,A).
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Then for n ≥ m and n ≥ p, it follows

1

(n− 1)!
Hn,m,p(x, y,A) =

xp

n!

∂

∂x
Hn,m,p(x, y,A)

−my(
√
mA)−1

(n−m+ p)!

∂

∂x
Hn−m+p,m,p(x, y,A).

(3.7)

Using (3.4) and (3.7), we get (3.6). Finally, the proof of Theorem 3.2 is completed.

4 Expansions of some elementary matrix functions in terms
of the generalized Hermite matrix polynomials

Now, we use the expansion of the generalized Hermite matrix polynomials together with their prop-
erties to prove the following result.

Theorem 4.1. Let A be a positive stable matrix in CN×N satisfy (1.1), then, we have

(x
√
mA)n =

[np
m ]∑

k=0

n!

k!(np−mk)!
ykHnp−mk,m,p(x, y,A), −∞ < x < ∞. (4.1)

Proof. In view of (2.1), one gets

exp

(
xtp

√
mA

)
= exp

(
ytmI

) ∞∑
n=0

tn

n!
Hn,m,p(x, y,A)

which can be written, by applying (1.2), in the form:

exp

(
xtp

√
mA

)
=

∞∑
n=0

(x
√
mA)n

n!
tnp =

∞∑
k=0

(ytmI)k

k!

∞∑
n=0

tn

n!
Hn,m,p(x, y,A)

=
∞∑

n=0

∞∑
k=0

ykHn,m,p(x, y,A)

n!k!
tn+mk

=

∞∑
n=0

[np
m ]∑

k=0

ykHnp−mk,m,p(x, y,A)

k!(np−mk)!
tnp.

(4.2)

Expanding the left-hand side of (4.2) into powers of t and identifying the coefficients of tnp on both
sides gives (4.1). Therefore, the expression (4.1) is established and the proof of Theorem 4.1 is
completed.

We now propose to give the following new series expansions of some elementary matrix functions
like exp(xB), sin(xB), cos(xB), cosh(xB) and sinh(xB) in terms of the generalized Hermite matrix
polynomials for matrices satisfying the spectral property

|Re(λ)| > |Im(λ)|, for all λ ∈ σ(B). (4.3)

(see [6]).

Theorem 4.2. Let B be a positive stable matrix in CN×N satisfying (4.3), then

exp(xB) = exp(y)
∞∑

n=0

1

n!
Hn,m,p

(
x, y,

1

m
B2

)
; −∞ < x < ∞, (4.4)

cos(xB) = exp

(
(−1)

mk
2p y

) ∞∑
n=0

(−1)n

(2np)!
H2np,m,p

(
x, y,

1

m
B2

)
; −∞ < x < ∞, (4.5)

sin(xB) = exp

(
(−1)

mk
2p y

) ∞∑
n=0

(−1)n

(2np+ 1)!
H2np+1,m,p

(
x, y,

1

m
B2

)
; −∞ < x < ∞, (4.6)
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cosh(xB) = exp(y)
∞∑

n=0

1

(2n)!
H2np,m,p

(
x, y,

1

m
B2

)
; −∞ < x < ∞ (4.7)

and

sinh(xB) = exp(y)

∞∑
n=0

1

(2n+ 1)!
H2np+1,m,p

(
x, y,

1

m
B2

)
; −∞ < x < ∞. (4.8)

Proof. Let A = 1
mB2. By the spectral mapping theorem [6] and (4.3), it follows that

σ(A) =

{
1

m
b2; b ∈ σ(B)

}
, Re

(
1

m
b2
)

=
1

m

{(
Re(b)

)2

−
(
Im(b)

)2}
> 0, b ∈ σ(B). (4.9)

Thus A is a positive stable matrix and taking t = 1 in (2.1), A = 1
mB2 gives

exp
(
xB − yI

)
=

∞∑
n=0

1

n!
Hn,m,p

(
x, y,

1

m
B2

)
. (4.10)

Therefore, (4.4) follows.
Considering (4.1) for the positive stable matrix A = 1

mB2, it follows that

x2nI = B−2n

[ 2np
m ]∑

k=0

(2n)!

k!(2np−mk)!
ykH2np−mk,m,p

(
x, y,

1

m
B2

)
.

Taking into account the series expansion of cosh(xB) and (1.3), we can write

cosh(xB) =
∞∑

n=0

B2n

(2n)!
x2n =

∞∑
n=0

[ 2np
m ]∑

k=0

yk

k!(2np−mk)!
H2np−mk,m,p

(
x, y,

1

m
B2

)

=
∞∑

n=0

∞∑
k=0

yk

k!(2np)!
H2np,m,p

(
x, y,

1

m
B2

)

=

∞∑
k=0

yk

k!

∞∑
n=0

1

(2np)!
H2np,m,p

(
x, y,

1

m
B2

)

= exp(y)
∞∑

n=0

1

(2np)!
H2np,m,p

(
x, y,

1

m
B2

)
.

Therefore, (4.7) follows. By similar arguments we can prove the relations (4.5), (4.6) and (4.8).
Moreover, the convergence of the matrix series appearing in (4.4)-(4.8) to the respective matrix

functions exp(xB), sin(xB), cos(xB), sinh(xB) and cosh(xB) are uniform in any bounded interval
of the real axis. Therefore, the result is established.

In the following theorem, we obtain another representation for the generalized Hermite matrix
polynomials as follows.

Theorem 4.3. Suppose that A is a matrix in CN×N satisfying (1.1). Then

Hnp,mp,p(x, y,A) =
(np)!

n!
exp

(
− y

(
√
mpA)m

∂m

∂xm

)
(x
√
mpA)n. (4.11)

Proof. It is clear by (2.1) that

exp

(
− y

(
√
mpA)m

∂m

∂xm

)
exp

(
xtp

√
mpA

)
=

∞∑
n=0

(−1)nyn

n!(
√
mpA)mn

∂mn

∂xmn
exp

(
xtp

√
mpA

)
=

∞∑
n=0

(−1)nyn

n!
tmnp exp

(
xtp

√
mpA

)
= exp

(
xtp

√
mpA− ytmpI

)

=

∞∑
n=0

1

n!
Hn,mp,p(x, y,A)tn =

∞∑
n=0

1

(np)!
Hnp,mp,p(x, y,A)t

np.

Thus by identification of the coefficients of tnp in both sides gives the representation (4.11).
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By recalling that the generalized Hermite matrix polynomials Hn,m,p(x, y,A) are also defined
through the operational identity, the inverse of (4.11) allows us to conclude that

(x
√
mpA)n =

n!

(np)!
exp

(
y

(
√
mpA)m

∂m

∂xm

)
Hnp,mp,p(x, y,A). (4.12)

In the following corollary, we obtain another expansion formula for the generalized Hermite matrix
polynomials as follows.

Corollary 4.1. For the generalized Hermite matrix polynomials the following identities hold

Hnp+kp,m,p(x, y,A) =
(np+ kp)!

(n+ k)!

n!

(np)!

k!

(kp)!
Hnp,mp,p(x, y,A) exp

(
y

(
√
mpA)m

∂m

∂xm

)
Hkp,mp,p(x, y,A)

(4.13)

and

Hnp,mp,p(x, y + z,A) = exp

(
− z

(
√
mpA)m

∂m

∂xm

)
Hnp,mp,p(x, y,A). (4.14)

Proof. From Theorem 4.3, we get directly the equation (4.13) and (4.14).

5 The generalized Chebyshev matrix polynomials

Next, the generalized Hermite matrix polynomials of two variables Hn,m,p(x, y,A) will be exploited
here to define a matrix version of the generalized Chebyshev polynomials of the second kind.

Suppose that A is a matrix in CN×N satisfying the condition (1.1). By (2.3) it follows that

1

n!

∫ ∞

0

exp(−t)Hn,m,p(xt, yt, A)dt =

∫ ∞

0

exp(−t)

[ n
m ]∑

k=0

(−1)k(yt)k

k!Γ

(
n−mk

p + 1

) (xt
√
mA)

n−mk
p dt. (5.1)

Since the summation in the right-hand side of the above equality is finite, then the series and the
integral can be permuted. Also, in view of

Γ

(
n− (m− p)k

p
+ 1

)
=

∫ ∞

0

exp(−t)t
n−(m−p)k

p dt (5.2)

we can write

1

n!

∫ ∞

0

exp(−t)Hn,m,p(xt, yt, A)dt =

[ n
m ]∑

k=0

(−1)kΓ

(
n−(m−p)k

p + 1

)
yk

k!Γ

(
n−mk

p + 1

) (x
√
mA)

n−mk
p . (5.3)

Hence, the generalized Chebyshev matrix polynomials of the second kind can be defined by

Un,m,p(x, y,A) =

[ n
m ]∑

k=0

(−1)kΓ

(
n−(m−p)k

p + 1

)
yk

k!Γ

(
n−mk

p + 1

) (x
√
mA)

n−mk
p (5.4)

or, by using the integral transform of the generalized Hermite matrix polynomials as below

Un,m,p(x, y,A) =
1

n!

∫ ∞

0

exp(−t)Hn,m,p(xt, yt, A)dt. (5.5)

In a similar way, we define the generalized Chebyshev matrix polynomials of the first kind as follows

Tn,m,p(x, y,A) = n

[ n
m ]∑

k=0

(−1)kΓ

(
n−(m−p)k

p

)
yk

k!Γ

(
n−mk

p + 1

) (x
√
mA)

n−mk
p (5.6)
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and

Tn,m,p(x, y,A) =
1

(n− 1)!

∫ ∞

0

exp(−t)t−1Hn,m,p(xt, yt, A)dt;n ≥ 1, T0,m,p(x, y,A) = I. (5.7)

6 The generalized Legendre matrix polynomials

The generalized Hermite matrix polynomials will be utilized here to define a matrix version of the
classical Legendre polynomials. The Legendre polynomials [17, p. 157(2) and p. 161(3)] are defined
by

Pn(x) =

[ 12n]∑
k=0

(−1)k( 12 )n−k(2x)
n−2k

k!(n− 2k)!
=

[ 12n]∑
k=0

(−1)k(2n− 2k)!xn−2k

2nk!(n− 2k)!(n− k)!
. (6.1)

Let A be a positive stable matrix in CN×N satisfying the condition (1.1). By using (2.3) it follows
that

2

n!
√
π

∫ ∞

0

e−t2t
n
p Hn,m,p(xt, y, A)dt =

2

n!
√
π

∫ ∞

0

e−t2t
n
p n!

[ n
m ]∑

k=0

(−1)kyk(x
√
mA)

n−mk
p

k!Γ

(
n−mk

p + 1

) t
n−mk

p dt

=
2√
π

[ n
m ]∑

k=0

(−1)kyk(x
√
mA)

n−mk
p

k!Γ

(
n−mk

p + 1

) ∫ ∞

0

t
n
p e−t2t

n−mk
p dt

=
2√
π

[ n
m ]∑

k=0

(−1)kyk(x
√
mA)

n−mk
p

k!Γ

(
n−mk

p + 1

) ∫ ∞

0

e−t2t
2n−mk

p dt.

(6.2)

Since the summation on the right-hand side of the above equality is finite, then the series and the
integral can be permuted. From the definition of Gamma function, we have∫ ∞

0

e−t2t
2n−mk

p dt =
1

2
Γ

(
2n−mk

2p
+

1

2

)
(6.3)

and applying Legendre duplication formula by Srivastava and Karlsson [21]

Γ

(
2n−mk

2p
+

1

2

)
=

√
π Γ

(
2n−mk

p + 1

)
2

2n−mk
p Γ

(
2n−mk

2p

) (6.4)

or

Γ

(
2n−mk

2p
+

1

2

)
=

√
π

(
1

2

)
2n−mk

2p

. (6.5)

Then

2

n!
√
π

∫ ∞

0

e−t2t
n
p Hn(xt, y, A)dt =

2√
π

[ n
m ]∑

k=0

(−1)kyk(x
√
mA)

n−mk
p

k!Γ

(
n−mk

p + 1

) ∫ ∞

0

e−t2t
2n−mk

p dt

=
2√
π

[ n
m ]∑

k=0

(−1)kyk(x
√
mA)

n−mk
p

k!Γ

(
n−mk

p + 1

) 1

2

√
π Γ

(
2n−mk

p + 1

)
2

2n−mk
p Γ

(
2n−mk

2p

)

=

[ n
m ]∑

k=0

(−1)kΓ

(
2n−mk

p + 1

)
yk(x

√
mA)

n−mk
p

2
2n−mk

p k! Γ

(
n−mk

p + 1

)
Γ

(
2n−mk

2p

) = Pn,m,p(x, y,A).

(6.6)
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Hence, the Legendre matrix polynomials can be defined by

Pn,m,p(x, y,A) =

[ n
m ]∑

k=0

(−1)kΓ

(
2n−mk

p + 1

)
yk(x

√
mA)

n−mk
p

2
2n−mk

p k! Γ

(
n−mk

p + 1

)
Γ

(
2n−mk

2p

)
or

Pn,m,p(x, y,A) =

[ n
m ]∑

k=0

(−1)k
(
1
2

)
2n−mk

2p

yk(x
√
mA)

n−mk
p

k! Γ

(
n−mk

p + 1

)
or by using the Hermite matrix polynomials of integral representation in the form

Pn,m,p(x, y,A) =
2

n!
√
π

∫ ∞

0

e−t2t
n
p Hn,m,p(xt, y, A)dt.

There are many way of investigating the generalized classes of Hermite matrix polynomials. Starting
from the modified forms of the generating function of ordinary Hermite matrix polynomials is one
of these direct methods and clearly some directions to develop more researches and studies in that
area. The results of this paper are original, variant, significant and so it is interesting and capable
to develop its study in the future.

7 Open problem

One can use the same class of new integral representation, operational methods and orthogonality
property for the new generalized Hermite matrix polynomials with p and m are integers or not inte-
gers. Hence, new results and further applications can be obtained. Further results and applications
will be discussed in a forthcoming paper.

Acknowledgements: The authors would like to thank the referees for their valuable comments
and suggestions which have led to the better presentation of the paper.
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