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Abstract. Let H be a locally compact group, K be an LCA group, τ : H → Aut(K) be a continuous homomorphism

and Gτ = H nτ K be the semi-direct product of H and K with respect to the continuous homomorphism τ . In
this article we introduce the τ × τ̂ -time frequency group Gτ×τ̂ . We define the τ × τ̂ -continuous Gabor transform of

f ∈ L2(Gτ ) with respect to a window function u ∈ L2(K) as a function defined on Gτ×τ̂ . It is also shown that
the τ × τ̂ -continuous Gabor transform satisfies the Plancherel Theorem and reconstruction formula. This approach is

tailored for choosing elements of L2(Gτ ) as a window function. Finally, we indicate some possible applications of these
methods in the case of some well-known semi-direct product groups.

1. Introduction

In [15] Gabor used translations and modulations of the Gaussian signal to represent one dimensional signals. The
Gabor transform, named after Gabor, is a special case of the short-time Fourier transform (STFT). It is used to
determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. The function
to be transformed is first multiplied by a Gaussian function, which can be regarded as a window, and the resulting
function is then transformed with a Fourier transform to derive the time-frequency analysis. The window function
term means that the signal near the time being analyzed will have higher weight. The Gabor transform of a signal
x(t) is precisely defined by;

(1.1) G{x}(y, ω) =

∫ +∞

−∞
x(t)e−π(t−y)

2

e−2πiωtdt.

Due to (1.1) the Gabor transform of a signal x(t) is a function defined on R × R̂ called the time-frequency plane.
There is also standard extension of the continuous Gabor transform of a signal x(t) on Rn which is defined for

(y,w) ∈ Rn × R̂n by (see [9, 16])

(1.2) G{x}(y,w) =

∫
Rn
x(t)e−π‖t−y‖

2

e−2πiw.tdt.

Since the theory of Gabor analysis based on the structure of translations and modulations (time-frequency plane),
it is also possible to extend concepts of the Gabor theory to other locally compact abelian (LCA) groups. For more
explanation, we refer the reader to the monograph of Gröchenig [17] or complete works of Feichtinger and Strohmer
[8] and also [7] in the case of finite abelian groups. The continuous Gabor transform for LCA groups is closely related
to the Feichtinger-Gröchenig theory (coorbit space theory). In view of voice transform and the coorbit space theory,
the continuous Gabor transform for an LCA group G is precisely the voice transform generated by the Schrödinger
representation of the Weyl-Heisenberg group associate with G (see [4, 5, 6, 19]).

Many locally compact spaces and locally compact groups which are used in mathematical physics and also various
topics of engineering such as the n-dimensional unit sphere, Heisenberg group, affine group or Euclidean groups are
non-abelian groups or they are homogeneous spaces of non-abelian groups (see [10, 13, 21]). Although most of those
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non-abelian locally compact groups can be considered as a semi-direct product of an LCA group with another locally
compact group. The theory of harmonic analysis for semi-direct product of locally compact groups is a significant tool
in the theory of wavelet analysis (see [1, 12, 18, 23]). We recall that in the classical theory of harmonic analysis for
non-abelian locally compact groups (see [3, 10, 24, 26, 27]) we lose many useful results and basic numerical concepts
in abelian harmonic analysis of LCA groups (see [10, 25]), which play important roles in the usual Gabor theory of
LCA groups. If G is a non-abelain locally compact group via a natural approach, modulation by a character will
be replaced by a modulation by an equivalence class of an irreducible representation of G (see [14]) and the natural

candidate for the generalization of the time frequency plane will be G×Ĝ, where Ĝ stands for the set of all equivalence
class of irreducible continuous unitary representations of G. It is clear that this extension will not be appropriate from
the the numerical computational aspects and also application viewpoints. Thus, we need a new approach to find an
appropriate generalization of the continuous Gabor transform which be useful and also efficient in application.

This article contains 5 sections. Section 2 is devoted to fix notations including a brief summary about harmonic
analysis of semi-direct product of locally compact groups also standard Fourier analysis and Gabor analysis on LCA
groups. In section 3 we assume that H is a locally compact group and K is an LCA group, τ : H → Aut(K) is
a continuous homomorphism and Gτ = H nτ K. We define the τ × τ̂ -time frequency group Gτ×τ̂ and the τ × τ̂ -
continuous Gabor transform of f ∈ L2(Gτ ) with respect to a window function u ∈ L2(K). We also prove a Plancherel
and inversion formula for the τ × τ̂ -continuous Gabor transform. To choose elements of L2(Gτ ) as window functions
we define the the τ ⊗ τ̂ -time frequency group Gτ⊗τ̂ and also the τ ⊗ τ̂ -continuous Gabor transform in section 4. As an
application, we study this theory on the affine group, Weyl-Heisenberg group and the Euclidean groups in section 5.

2. Preliminaries and notations

Let H and K be locally compact groups with identity elements eH and eK respectively and left Haar measures dh
and dk respectively, also let τ : H → Aut(K) be a homomorphism such that the map (h, k) 7→ τh(k) is continuous from
H ×K onto K. There is a natural topology, sometimes called Braconnier topology, turning Aut(K) into a Hausdorff
topological group(not necessarily locally compact), which is defined by the sub-base of identity neighborhoods

(2.1) B(F,U) = {α ∈ Aut(K) : α(k), α−1(k) ∈ Uk ∀k ∈ F},

where F ⊆ K is compact and U ⊆ K is an identity neighborhood. Continuity of a homomorphism τ : H → Aut(K)
is equivalent with the continuity of the map (h, k) 7→ τh(k) from H ×K onto K (see [22]).

The semi-direct product Gτ = H nτ K is the locally compact topological group with the underlying set H × K
which is equipped by the product topology and also the group operation is defined by

(2.2) (h, k) nτ (h′, k′) = (hh′, kτh(k′)) and (h, k)−1 = (h−1, τh−1(k−1)).

If H1 = {(h, eK) : h ∈ H} and K1 = {(eH , k) : k ∈ K} then K1 is a closed normal subgroup and H1 is a closed
subgroup of Gτ . The left Haar measure of Gτ is dµGτ (h, k) = δ(h)dhdk and the modular function ∆Gτ is

∆Gτ (h, k) = δ(h)∆H(h)∆K(k),

where the positive continuous homomorphism δ : H → (0,∞) is given by ([21])

(2.3) dk = δ(h)d(τh(k)).

From now on, for all p ≥ 1 we denote by Lp(Gτ ) the Banach space Lp(Gτ , µGτ ) and also Lp(K) stands for Lp(K, dk).
When f ∈ Lp(Gτ ), for a.e. h ∈ H the function fh defined on K via fh(k) := f(h, k) belongs to Lp(K) (see [11]).

If K is an LCA group all irreducible representations of K are one-dimensional. Thus, if π is an irreducible unitary
representation of K we haveHπ = C and also according to the Schur’s Lemma there exists a continuous homomorphism
ω of K into the circle group T such that for each k ∈ K and z ∈ C we have π(k)(z) = ω(k)z. Such homomorphisms

are called characters of K and the set of all characters of K denoted by K̂. If K̂ equipped by the topology of

compact convergence on K which coincides with the w∗-topology that K̂ inherits as a subset of L∞(K), then K̂ with
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respect to the point wise product of characters is an LCA group which is called the dual group of K. The linear map

FK : L1(K)→ C(K̂) defined by v 7→ FK(v) via

(2.4) FK(v)(ω) = v̂(ω) =

∫
K

v(k)ω(k)dk,

is called the Fourier transform on K. It is a norm-decreasing ∗-homomorphism from L1(K) into C0(K̂) with a uniformly

dense range in C0(K̂) (Proposition 4.13 of [10]). If φ ∈ L1(K̂), the function defined a.e. on K by

(2.5) φ̆(x) =

∫
K̂

φ(ω)ω(x)dω,

belongs to L∞(K) and also for all f ∈ L1(K) we have the following orthogonality relation (Parseval formula);

(2.6)

∫
K

f(k)φ̆(k)dk =

∫
K̂

f̂(ω)φ(ω)dω.

The Fourier transform (2.4) on L1(K) ∩ L2(K) is an isometric transform and it extends uniquely to a unitary iso-

morphism from L2(K) onto L2(K̂) (Theorem 4.25 of [10]) also each v ∈ L1(K) with v̂ ∈ L1(K̂) satisfies the following
Fourier inversion formula (Theorem 4.32 of [10]);

(2.7) v(k) =

∫
K̂

v̂(ω)ω(k)dω for a.e. k ∈ K.

The fundamental operator in standard Gabor theory is the time-frequency shift operator. If K is an LCA group, the
translation (time-shifts) operator is given by Tsv(k) = v(k − s) for all k, s ∈ K and also the modulation (frequency-

shifts) operator is given by Mωv(k) = ω(k)v(k) for all ω ∈ K̂, k ∈ K. The time-frequency shift operator is defined on

the time-frequency plane (time-frequency group) K × K̂ by %(k, ω) = MωTk for all (k, ω) ∈ K × K̂.
Given an appropriate window function u ∈ L2(K) on K, the short time Fourier transform (STFT) or the continuous

Gabor transform of v ∈ L2(K) is given by

(2.8) Vuv(s, ω) =

∫
K

v(k)u(k − s)ω(k)dk = 〈v, %(s, ω)u〉L2(K).

The continuous Gabor transform (2.8) satisfies the following Plancherel formula

(2.9)

∫
K×K̂

|Vuv(s, ω)|2dsdω = ‖u‖2L2(K)‖v‖
2
L2(K),

for all u, v ∈ L2(K) (see [17]). If u, u′ ∈ L2(K) with 〈u, u′〉L2(K) 6= 0, then each v ∈ L2(K) satisfies the following
inversion formula in the weak sense (see [16])

(2.10) v = 〈u, u′〉−1L2(K)

∫
K×K̂

Vuv(k, ω)%(k, ω)u′dkdω.

If a window function u ∈ L2(K) has Fourier transform û in L1(K̂), then each v ∈ L2(K) with v̂ ∈ L1(K̂) satisfies the
following inversion formula;

(2.11) v(s) = ‖u‖−2L2(K)

∫
K×K̂

Vuv(k, ω)[%(k, ω)u](s)dkdω,

for all s ∈ K.
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3. τ × τ̂-continuous Gabor transform

Throughout this paper, let H be a locally compact group and K be an LCA group also let τ : H → Aut(K) be a
continuous homomorphism and Gτ = H nτ K. For simplicity in notations we use kh instead of τh(k) for all h ∈ H
and k ∈ K. In this section we introduce the τ × τ̂ -time frequency group and also we define the τ × τ̂ -continuous Gabor
transform of f ∈ L2(Gτ ) with respect to a window function in L2(K).

Define τ̂ : H → Aut(K̂) via h 7→ τ̂h, given by

(3.1) τ̂h(ω) := ωh = ω ◦ τh−1

for all ω ∈ K̂, where ωh(k) = ω(τh−1(k)) for all k ∈ K. If ω ∈ K̂ and h ∈ H we have ωh ∈ K̂, because for all k, s ∈ K
we have

ωh(ks) = ω ◦ τh−1(ks)

= ω(τh−1(ks))

= ω(τh−1(k)τh−1(s))

= ω(τh−1(k))ω(τh−1(s)) = ωh(k)ωh(s).

According to (3.1) for all h ∈ H we have τ̂h ∈ Aut(K̂). Because, if k ∈ K and h ∈ H then for all ω, η ∈ K̂ we have

τ̂h(ω.η)(k) = (ω.η)h(k)

= (ω.η) ◦ τh−1(k)

= ω.η(τh−1(k))

= ω(τh−1(k))η(τh−1(k))

= ωh(k)ηh(k) = τ̂h(ω)(k)τ̂h(η)(k).

Also h 7→ τ̂h is a homomorphism from H into Aut(K̂), cause if h, t ∈ H then for all ω ∈ K̂ and k ∈ K we get

τ̂th(ω)(k) = ωth(k)

= ω(τ(th)−1(k))

= ω(τh−1τt−1(k))

= ωh(τt−1(k))

= τ̂h(ω)(τt−1(k)) = τ̂t[τ̂h(ω)](k).

Thus, we can prove the following theorem.

Theorem 3.1. Let H be a locally compact group and K be an LCA group also τ : H → Aut(K) be a continuous
homomorphism and let δ : H → (0,∞) be the positive continuous homomorphism satisfying dk = δ(h)dkh. The

semi-direct product Gτ̂ = H nτ̂ K̂ is a locally compact group with the left Haar measure dµGτ̂ (h, ω) = δ(h)−1dhdω.

Proof. Continuity of the homomorphism τ̂ : H → Aut(K̂) given in (3.1) guaranteed by Theorem 26.9 of [21]. Hence,

the semi-direct product Gτ̂ = H nτ̂ K̂ is a locally compact group. We also claim that the Plancherel measure dω on

K̂ for all h ∈ H satisfies

(3.2) dωh = δ(h)dω.
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Let h ∈ H and v ∈ L1(K). Using (2.3) we have v ◦ τh ∈ L1(K) with ‖v ◦ τh‖L1(K) = δ(h)‖v‖L1(K). Thus, for all

ω ∈ K̂ we achieve

v̂ ◦ τh(ω) =

∫
K

v ◦ τh(k)ω(k)dk

=

∫
K

v(kh)ω(k)dk

=

∫
K

v(k)ωh(k)dkh
−1

= δ(h)

∫
K

v(k)ωh(k)dk = δ(h)v̂(ωh).

Now let v ∈ L1(K)∩L2(K). Due to the Plancherel theorem (Theorem 4.25 of [10]) and also preceding calculation,
for all h ∈ H we get ∫

K̂

|v̂(ω)|2dωh =

∫
K̂

|v̂(ωh−1)|2dω

= δ(h)2
∫
K̂

| ̂v ◦ τh−1(ω)|2dω

= δ(h)2
∫
K

|v ◦ τh−1(k)|2dk

= δ(h)2
∫
K

|v(k)|2dkh

= δ(h)

∫
K

|v(k)|2dk =

∫
K̂

|v̂(ω)|2δ(h)dω,

which implies (3.2). Therefore, dµGτ̂ (h, ω) = δ(h)−1dhdω is a left Haar measure for Gτ̂ = H nτ̂ K̂. �

Remark 3.2. Due to (3.1) for all k ∈ K, ω ∈ K̂ and h, t ∈ H we have

(3.3) kht = (kt)h, ωht = (ωt)h.

Now we are in the position to introduce the τ × τ̂ -time frequency group. Define τ× = τ × τ̂ : H → Aut(K × K̂) via
h 7→ τ×h given by

(3.4) τ×h (k, ω) := (τh(k), τ̂h(ω)) = (kh, ωh),

for all (k, ω) ∈ K × K̂. Then, for all h ∈ H we have τ×h ∈ Aut(K × K̂). Because for all (k, ω), (k′, ω′) ∈ K × K̂ we
have

τ×h ((k, ω)(k′, ω′)) = τ×h (kk′, ωω′)

=
(
(kk′)h, (ωω′)h

)
=
(
khk′h, ωhω

′
h

)
= (kh, ωh)(k′h, ω′h) = τ×h (k, ω)τ×h (k′, ω′).

Also τ× = τ × τ̂ : H → Aut(K × K̂) defined by h 7→ τ×h is a homomorphism, because for all h, t ∈ H and all

(k, ω) ∈ K × K̂ we have

τ×ht(k, ω) = (kht, ωht)

=
(
(kt)h, (ωt)h

)
= τ×h (kt, ωt) = τ×h τ

×
t (k, ω).
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In the following proposition we show that Gτ×τ̂ = H nτ×τ̂ (K × K̂) is a locally compact group.

Proposition 3.3. Let H be a locally compact group and K be an LCA group also τ : H → Aut(K) be a continuous
homomorphism and let δ : H → (0,∞) be the positive continuous homomorphism satisfying dk = δ(h)dkh. The

semi-direct product Gτ×τ̂ = H nτ×τ̂ (K × K̂) is a locally compact group with the left Haar measure

(3.5) dµGτ×τ̂ (h, k, ω) = dhdkdω.

Proof. Continuity of the homomorphism τ × τ̂ : H → Aut(K × K̂) given in (3.4) guaranteed by Theorem 26.9 of [21].

Thus, the semi-direct product Gτ×τ̂ = H nτ×τ̂ (K × K̂) is a locally compact group. Due to (2.3), (3.2) and also (3.4),
for all h ∈ H we have

dτ×h (k, ω) = d
(
kh, ωh

)
= dkhdωh

= δ(h)−1dkδ(h)dω = dkdω = d(k, ω),

which implies that Gτ×τ̂ is a locally compact group with the left Haar measure dµGτ×τ̂ (h, k, ω) = dhdkdω. �

We call the semi-direct product Gτ×τ̂ as the τ × τ̂ -time frequency group associated to Gτ . According to (3.4) for
each (h, k, ω), (h′, k′, ω′) ∈ Gτ×τ̂ we have

(h, k, ω) nτ×τ̂ (h′, k′, ω′) =
(
hh′, (k, ω)τ×h (k′, ω′)

)
= (hh′, (k, ω)(τh(k′), ω′h)) = (hh′, k + k′h, ωω′h).

Let u ∈ L2(K) be a window function and f ∈ L2(Gτ ). The τ × τ̂ -continuous Gabor transform of f with respect to
the window function u is define by

(3.6) Vuf(h, k, ω) := δ(h)1/2Vufh(k, ω) = δ(h)1/2〈fh, %(k, ω)u〉L2(K).

In the following theorem we prove a Plancherel formula for the τ × τ̂ -continuous Gabor transform defined in (3.6).

Theorem 3.4. Let H be a locally compact group and K be an LCA group also τ : H → Aut(K) be a continuous
homomorphism and let u ∈ L2(K) be a window function. The τ × τ̂ -continuous Gabor transform Vu : L2(Gτ ) →
L2(Gτ×τ̂ ) is a multiple of an isometric transform which maps L2(Gτ ) onto a closed subspace of L2(Gτ×τ̂ ).

Proof. Let u ∈ L2(K) be a window function and also f ∈ L2(Gτ ). Using Fubini’s Theorem and also Plancherel
formula (2.9) we have

‖Vuf‖2L2(Gτ×τ̂ )
=

∫
Gτ×τ̂

|Vuf(h, k, ω)|2dµGτ×τ̂ (h, k, ω)

=

∫
H

∫
K

∫
K̂

|Vuf(h, k, ω)|2dhdkdω

=

∫
H

(∫
K×K̂

|〈fh, %(k, ω)u〉L2(K)|2dkdω
)
δ(h)dh

= ‖u‖2L2(K)

∫
H

‖fh‖2L2(K)δ(h)dh = ‖u‖2L2(K)‖f‖
2
L2(Gτ )

.

Therefore, ‖u‖−2L2(K)Vu : L2(Gτ )→ L2(Gτ ×Gτ̂ ) is an isometric transform with a closed range in L2(Gτ ×Gτ̂ ). �

Corollary 3.5. The τ × τ̂ -continuous Gabor transform defined in (3.6), for all f, g ∈ L2(Gτ ) and window functions
u, v ∈ L2(K) satisfies the following orthogonality relation;

(3.7) 〈Vuf,Vvg〉L2(Gτ×τ̂ ) = 〈v, u〉L2(K)〈f, g〉L2(Gτ ).

The τ × τ̂ -continuous Gabor transform (3.6) satisfies the following inversion formula.
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Proposition 3.6. Let H be a locally compact group and K be an LCA group also let τ : H → Aut(K) be a continuous

homomorphism and u ∈ L2(K) with û ∈ L1(K̂). Every f ∈ L2(Gτ ) with f̂h ∈ L1(K̂) for a.e. h ∈ H, satisfies the
following reconstruction formula;

(3.8) f(h, k) = δ(h)−1/2‖u‖−2L2(K)

∫
K×K̂

Vuf(h, s, ω)[%(s, ω)u](k)dsdω.

Proof. Using (2.11) for a.e. h ∈ H we have

fh(k) = ‖u‖−2L2(K)

∫
K×K̂

Vufh(s, ω)[%(s, ω)u](k)dsdω

= δ(h)−1/2‖u‖−2L2(K)

∫
K×K̂

Vuf(h, s, ω)[%(s, ω)u](k)dsdω.

�

We can also define the generalized form of the τ × τ̂ -continuous Gabor transform. Let u ∈ L2(K) be a window
function and f ∈ L2(Gτ ). The generalized τ × τ̂ -continuous Gabor transform of f with respect to the window function
u is define by

(3.9) V†uf(h, k, ω) := δ(h)1/2Vufh(kh, ωh) = δ(h)1/2〈fh, %(kh, ωh)u〉L2(K).

The generalized τ × τ̂ -continuous Gabor transform given in (3.9) satisfies the following Plancherel Theorem.

Theorem 3.7. Let H be a locally compact group and K be an LCA group also τ : H → Aut(K) be a continuous
homomorphism and let u ∈ L2(K) be a window function. The generalized τ × τ̂ -continuous Gabor transform V†u :
L2(Gτ )→ L2(Gτ×τ̂ ) is a multiple of an isometric transform which maps L2(Gτ ) onto a closed subspace of L2(Gτ×τ̂ ).

Proof. Let u ∈ L2(K) be a window function and also f ∈ L2(Gτ ). Using Fubini’s Theorem, Plancherel formula (2.9)
and also (2.3), (3.2) we have

‖V†uf‖2L2(Gτ×τ̂ )
=

∫
Gτ×τ̂

|V†uf(h, k, ω)|2dµGτ×τ̂ (h, k, ω)

=

∫
H

∫
K

∫
K̂

|V†uf(h, k, ω)|2dhdkdω

=

∫
H

(∫
K×K̂

|〈fh, %(kh, ωh)u〉L2(K)|2dkdω
)
δ(h)dh

=

∫
H

(∫
K×K̂

|〈fh, %(k, ω)u〉L2(K)|2dkh
−1

dωh−1

)
δ(h)dh

=

∫
H

(∫
K×K̂

|〈fh, %(k, ω)u〉L2(K)|2dkdω
)
δ(h)dh

= ‖u‖2L2(K)

∫
H

‖fh‖2L2(K)δ(h)dh = ‖u‖2L2(K)‖f‖
2
L2(Gτ )

.

Thus, ‖u‖−2L2(K)V
†
u : L2(Gτ )→ L2(Gτ×τ̂ ) is an isometric transform with a closed range in L2(Gτ×τ̂ ). �

Corollary 3.8. The generalized τ × τ̂ -continuous Gabor transform defined in (3.9), for all f, g ∈ L2(Gτ ) and window
functions u, v ∈ L2(K) satisfies the following orthogonality relation;

(3.10) 〈V†uf,V†vg〉L2(Gτ×τ̂ ) = 〈v, u〉L2(K)〈f, g〉L2(Gτ ).

In the next proposition we prove an inversion formula for the generalized τ × τ̂ -continuous Gabor transform given
in (3.9).
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Proposition 3.9. Let H be a locally compact group and K be an LCA group also let τ : H → Aut(K) be a continuous

homomorphism and u ∈ L2(K) with û ∈ L1(K̂). Every f ∈ L2(Gτ ) with f̂h ∈ L1(K̂) for a.e. h ∈ H, satisfies the
following reconstruction formula;

(3.11) f(h, k) =

∫
K×K̂

V†uf(h, s, ω)[%(sh, ωh)u](k)dsdω

Proof. Using (2.11) for a.e. h ∈ H we have

fh(k) =

∫
K×K̂

Vufh(s, ω)[%(s, ω)u](k)dsdω

=

∫
K

(∫
K̂

Vufh(s, ωh)[%(s, ωh)u](k)dωh

)
ds

= δ(h)

∫
K̂

(∫
K

Vufh(s, ωh)[%(s, ωh)u](k)ds

)
dω

= δ(h)

∫
K̂

(∫
K

Vufh(sh, ωh)[%(sh, ωh)u](k)dsh
)
dω =

∫
K×K̂

V†uf(h, s, ω)[%(sh, ωh)u](k)dsdω.

�

Remark 3.10. It is also possible to define different variants of the Gabor transform as we defined in (3.6) and (3.9),
with similar properties. Let transforms Au and Bu for f ∈ L2(Gτ ) be given by

(3.12) Auf(h, k, ω) = Vufh(kh, ω) Buf(h, k, ω) = δ(h)Vufh(k, ωh).

It can be checked that transforms given in (3.12) satisfy the Plancherel theorem and the following inversion formulas;

(3.13) f(h, k) = δ(h)−1
∫
K×K̂

Auf(h, k, ω)[%(sh, ω)](k)dsdω, f(h, k) =

∫
K×K̂

Buf(h, k, ω)[%(s, ωh)](k)dsdω.

4. τ ⊗ τ̂-continuous Gabor transform

In this section we introduce another Gabor transform which we call it the τ ⊗ τ̂ -continuous Gabor transform. In
the τ ⊗ τ̂ -Gabor theory we can choose elements of L2(Gτ ) as window functions.

Again let H be a locally compact group and K be an LCA group also let τ : H → Aut(K) be a continuous

homomorphism. Define τ⊗ = τ ⊗ τ̂ : H ×H → Aut(K × K̂) via (h, t) 7→ τ⊗(h,t) given by

(4.1) τ⊗(h,t)(k, ω) := (τh(k), τ̂t(ω)) = (kh, ωt),

for all (k, ω) ∈ K×K̂. Then, for all (h, t) ∈ H×H we get τ⊗(h,t) ∈ Aut(K×K̂). Because for all (k, ω), (k′, ω′) ∈ K×K̂
we have

τ⊗(h,t) ((k, ω)(k′, ω′)) = τ⊗(h,t)(k + k′, ωω′)

=
(
(k + k′)h, (ωω′)t

)
=
(
kh + k′h, ωtω

′
t

)
= (kh, ωt)(k

′h, ω′t) = τ⊗(h,t)(k, ω)τ⊗(h,t)(k
′, ω′).
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As well as τ⊗ = τ ⊗ τ̂ : H × H → Aut(K × K̂) defined by (h, t) 7→ τ⊗(h,t) is a homomorphism, because for all

(h, t), (h′, t′) ∈ H ×H and also all (k, ω) ∈ K × K̂ we have

τ⊗(h,t)(h′,t′)(k, ω) = τ⊗(hh′,tt′)(k, ω)

= (khh
′
, ωtt′)

=
(

(kh
′
)h, (ωt′)t

)
= τ⊗(h,t)(k

h′ , ωt′) = τ⊗(h,t)τ
⊗
(h′,t′)(k, ω).

Hence, we can prove the following interesting theorem.

Theorem 4.1. Let H be a locally compact group and K be an LCA group also let τ : H → Aut(K) be a continuous

homomorphism. The semi-direct product Gτ⊗τ̂ = (H ×H) nτ⊗τ̂
(
K × K̂

)
is a locally compact group with the left

Haar measure

(4.2) dµGτ⊗τ̂ (h, t, k, ω) = δ(h)δ(t)−1dhdtdkdω,

and also Φ : Gτ ×Gτ̂ → Gτ⊗τ̂ given by

(4.3) (h, k, t, ω) 7→ Φ(h, k, t, ω) := (h, t, k, ω)

is a topological group isomorphism.

Proof. Using Theorem 26.9 of [21], homomorphism τ⊗τ̂ : H×H → Aut(K×K̂) given in (4.1) is continuous. Therefore,

Gτ⊗τ̂ = (H ×H) nτ⊗τ̂
(
K × K̂

)
is a locally compact group. Also, dµGτ⊗τ̂ (h, t, k, ω) = δ(h)δ(t)−1dhdtdkdω is a left

Haar measure for Gτ⊗τ̂ . Indeed, due to (2.3) and (3.2) for all (h, t) ∈ H ×H we have

dτ⊗(h,t)(k, ω) = d(kh, ωt)

= dkhdωt

= δ(h)−1dkδ(t)dω = δ(h)−1δ(t)d(k, ω).

The τ ⊗ τ̂ -group law for all (h, t, k, ω), (h′, t′, k′, ω′) ∈ Gτ⊗τ̂ is

(h, t, k, ω) nτ⊗τ̂ (h′, t′, k′, ω′) =
(

(hh′, tt′), (k, ω)τ⊗(h,t)(k
′, ω′)

)
=
(
(hh′, tt′), (k, ω)(k′h, ω′t)

)
= (hh′, tt′, k + k′h, ωω′t).

It is clear that Φ : Gτ × Gτ̂ → Gτ⊗τ̂ is a homeomorphism. It is also a group homomorphism, because for all
(h, k, t, ω), (h′, k′, t′, ω′) in Gτ ×Gτ̂ we get

Φ[(h, k, t, ω)(h′, k′, t′, ω′)] = Φ[(h, k) nτ (h′, k′), (t, ω) nτ̂ (t′, ω′)]

= Φ[(hh′, k + k′h), (tt′, ωω′t)]

= (hh′, tt′, k + k′h, ωω′t) = (h, t, k, ω) nτ⊗τ̂ (h′, t′, k′, ω′).

�

We call the semi-direct product Gτ⊗τ̂ as the τ⊗ τ̂ -time frequency group associated to Gτ which is precisely Gτ×Gτ̂ .
Thus, form now on we use the locally compact group Gτ ×Gτ̂ instead of the semi-direct product Gτ⊗τ̂ .

Let g ∈ L2(Gτ ) be a window function and f ∈ L2(Gτ ). The τ ⊗ τ̂ -continuous Gabor transform of f with respect to
the window function g is defined by

(4.4) Ggf(h, k, t, ω) := δ(t)Vghft(k, ω) = δ(t)〈ft, %(k, ω)gh〉L2(K).

The τ ⊗ τ̂ -continuous Gabor transform given in (4.4) satisfies the following Plancherel Theorem.
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Theorem 4.2. Let H be a locally compact group, K be an LCA group and τ : H → Aut(K) be a continuous
homomorphism also Gτ = H nτ K and let g ∈ L2(Gτ ) be a window function. The continuous Gabor transform
Gg : L2(Gτ ) → L2(Gτ × Gτ̂ ) is a multiple of an isometric transform which maps L2(Gτ ) onto a closed subspace of
L2(Gτ ×Gτ̂ ).

Proof. Let g ∈ L2(Gτ ) be a window function and also let f ∈ L2(Gτ ).

‖Ggf‖2L2(Gτ×Gτ̂ ) =

∫
Gτ×Gτ̂

|Ggf(h, k, t, ω)|2dµGτ×Gτ̂ (h, k, t, ω)

=

∫
Gτ

∫
Gτ̂

|Ggf(h, k, t, ω)|2dµGτ (h, k)dµGτ̂ (t, ω)

=

∫
H

∫
K

∫
H

∫
K̂

|Ggf(h, k, t, ω)|2δ(h)dhdkδ(t)−1dtdω

=

∫
H

∫
H

(∫
K×K̂

|〈ft, %(k, ω)gh〉L2(K)|2dkdω
)
δ(h)dhδ(t)dt

=

∫
H

∫
H

‖ft‖2L2(K)‖gh‖
2
L2(K)δ(h)dhδ(t)dt = ‖f‖2L2(Gτ )

‖g‖2L2(Gτ )

Thus, ‖g‖−2L2(Gτ )
Gg : L2(Gτ )→ L2(Gτ ×Gτ̂ ) is an isometric transform with a closed range in L2(Gτ ×Gτ̂ ). �

Corollary 4.3. The τ × τ̂ -continuous Gabor transform defined in (4.4), for all f, f ′ ∈ L2(Gτ ) and window functions
g, g′ ∈ L2(Gτ ) satisfies the following orthogonality relation;

(4.5) 〈Ggf,Gg′f ′〉L2(Gτ×Gτ̂ ) = 〈g′, g〉L2(Gτ )〈f, f
′〉L2(Gτ ).

In the following proposition we also prove an inversion formula.

Proposition 4.4. Let H be a locally compact group and K be an LCA group also let τ : H → Aut(K) be a continuous

homomorphism. Every f, g ∈ L2(Gτ ) with f̂h, ĝh ∈ L1(K̂) for a.e. h ∈ H, satisfy the following reconstruction formula;

(4.6) f(t, k) = 〈gh, gh〉−1L2(K)δ(t)
−1
∫
K×K̂

Ggf(h, s, t, ω)[%(s, ω)gh](k)dsdω,

for a.e. h, t ∈ H and k ∈ K. In particular, for a.e. h ∈ H we have

(4.7) f(h, k) = 〈gh, gh〉−1L2(K)δ(h)−1
∫
K×K̂

Ggf(h, s, h, ω)[%(s, ω)gh](k)dsdω.

Proof. Using (2.11) for a.e. h, t ∈ H we have

ft(k) = 〈gh, gh〉−1L2(K)

∫
K×K̂

Vghft(s, ω)[%(s, ω)gh](k)dsdω

= 〈gh, gh〉−1L2(K)δ(t)
−1
∫
K×K̂

Ggf(h, s, t, ω)[%(s, ω)gh](k)dsdω.

�

Let g ∈ L2(Gτ ) be a window function and f ∈ L2(Gτ ). The generalized τ ⊗ τ̂ -continuous Gabor transform of f
with respect to the window function g is defined by

(4.8) G†gf(h, k, t, ω) := δ(h)−1/2δ(t)3/2Vghft(k
h, ωt) = δ(h)−1/2δ(t)3/2〈ft, %(kh, ωt)gh〉L2(K).

In the next theorem, a Plancherel formula for the generalized τ ⊗ τ̂ -continuous Gabor transform defined in (4.8)
proved.
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Theorem 4.5. Let H be a locally compact group, K be an LCA group and τ : H → Aut(K) be a continuous
homomorphism also Gτ = H nτ K and also let g ∈ L2(Gτ ) be a window function. The generalized continuous Gabor
transform G†g : L2(Gτ ) → L2(Gτ × Gτ̂ ) is a multiple of an isometric transform which maps L2(Gτ ) onto a closed

subspace of L2(Gτ ×Gτ̂ ).

Proof. Let g ∈ L2(Gτ ) be a window function and also let f ∈ L2(Gτ ). Using Fubini’s theorem and also Theorem we
achieve

‖Ggf‖2L2(Gτ×Gτ̂ ) =

∫
Gτ×Gτ̂

|G†gf(h, k, t, ω)|2dµGτ×Gτ̂ (h, k, t, ω)

=

∫
Gτ

∫
Gτ̂

|G†gf(h, k, t, ω)|2dµGτ (h, k)dµGτ̂ (t, ω)

=

∫
H

∫
K

∫
H

∫
K̂

|G†gf(h, k, t, ω)|2δ(h)dhdkδ(t)−1dtdω

=

∫
H

∫
H

(∫
K×K̂

|〈ft, %(kh, ωt)gh〉L2(K)|2dkdω
)
dhδ(t)2dt

=

∫
H

∫
H

(∫
K×K̂

|〈ft, %(k, ω)gh〉L2(K)|2dkh
−1

dωt−1

)
dhδ(t)2dt

=

∫
H

∫
H

(∫
K×K̂

|〈ft, %(k, ω)gh〉L2(K)|2dkdω
)
δ(h)dhδ(t)dt

=

∫
H

∫
H

‖ft‖2L2(K)‖gh‖
2
L2(K)δ(h)dhδ(t)dt = ‖f‖2L2(Gτ )

‖g‖2L2(Gτ )

Thus, ‖g‖−2L2(Gτ )
G†g : L2(Gτ )→ L2(Gτ ×Gτ̂ ) is an isometric transform with a closed range in L2(Gτ ×Gτ̂ ). �

Corollary 4.6. The τ × τ̂ -continuous Gabor transform defined in (4.8), for all f, f ′ ∈ L2(Gτ ) and window functions
g, g′ ∈ L2(Gτ ) satisfies the following orthogonality relation;

(4.9) 〈G†gf,G
†
g′f
′〉L2(Gτ×Gτ̂ ) = 〈g′, g〉L2(Gτ )〈f, f

′〉L2(Gτ ).

Also, the generalized τ ⊗ τ̂ -continuous Gabor transform satisfies the following inversion formula.

Proposition 4.7. Let H be a locally compact group and K be an LCA group also let τ : H → Aut(K) be a continuous

homomorphism. Every f, g ∈ L2(Gτ ) with f̂h, ĝh ∈ L1(K̂) for a.e. h, t ∈ H, satisfy the following reconstruction
formula;

(4.10) f(t, k) = 〈gh, gh〉−1L2(K)δ(h)−1/2δ(t)−1/2
∫
K×K̂

G†gf(h, s, t, ω)[%(kh, ωt)gh](k)dsdω,

for a.e. h, t ∈ H and k ∈ K. In particular for a.e. h ∈ H we have

(4.11) f(h, k) = 〈gh, gh〉−1L2(K)δ(h)−1
∫
K×K̂

G†gf(h, s, h, ω)[%(sh, ωh)gh](k)dsdω.
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Proof. Using (2.11) for a.e. h, t ∈ H we have

ft(k) = 〈gh, gh〉−1L2(K)

∫
K×K̂

Vghft(s, ω)[%(s, ω)gh](k)dsdω

= 〈gh, gh〉−1L2(K)

∫
K

∫
K̂

Vghft(s, ω)[%(s, ω)gh](k)dωds

= 〈gh, gh〉−1L2(K)

∫
K

(∫
K̂

Vghft(s, ωt)[%(s, ωt)gh](k)dωt

)
ds

= 〈gh, gh〉−1L2(K)δ(t)

∫
K̂

(∫
K

Vghft(s
h, ωt)[%(sh, ωt)gh](k)dsh

)
dω

= 〈gh, gh〉−1L2(K)δ(h)−1δ(t)

∫
K̂

(∫
K

Vghft(s
h, ωt)[%(sh, ωt)gh](k)ds

)
dω

= 〈gh, gh〉−1L2(K)δ(h)−1/2δ(t)−1/2
∫
K×K̂

Ggf(h, s, t, ω)[%(sh, ωt)gh](k)dsdω.

�

5. Examples and applications

5.1. The Affine group ax + b. Let H = R∗+ = (0,+∞) and K = R. The affine group ax + b is the semi direct
product H nτ K with respect to the homomorphism τ : H → Aut(K) given by a 7→ τa, where τa(x) = ax for all
x ∈ R. Hence, the underlying manifold of the affine group is (0,∞)× R and also the group law is

(5.1) (a, x) nτ (a′, x′) = (aa′, x+ ax′).

The continuous homomorphism δ : H → (0,∞) is given by δ(a) = a−1 and so that the left Haar measure is in fact

dµGτ (a, x) = a−2dadx. Due to Theorem 4.5 of [10] we can identify R̂ with R via ω(x) = 〈x, ω〉 = e2πiωx for each ω ∈ R̂
and so we can consider the continuous homomorphism τ̂ : H → Aut(K̂) given by a 7→ τ̂a via

〈x, ωa〉 = 〈x, τ̂a(ω)〉

= 〈τa−1(x), ω〉 = 〈a−1x, ω〉 = e2πiωa
−1x.

Thus, Gτ̂ has the underlying manifold (0,∞)× R, with the group law given by

(5.2) (a, ω) nτ̂ (a′, ω′) = (aa′, ωω′a),

Due to Theorem 3.1 the left Haar measure dµGτ̂ (a, ω) is precisely dadω. The τ × τ̂ -time frequency group Gτ×τ̂ has

the underlying manifold (0,∞)× R× R̂ and the group law is

(5.3) (a, x, ω) nτ×τ̂ (a′, x′, ω′) = (aa′, x+ ax′, ωω′a),

with the left Haar measure dµGτ×τ̂ (a, x, ω) = a−1dadxdω. The geometry of this locally compact group and also the

wave packet approaches of this locally compact group was studied in [2, 20]. If u ∈ L2(R) is a window function and
also f ∈ L2(Gτ ). According to (3.6) we have

Vuf(a, x, ω) = δ(a)1/2Vufa(x, ω)

= a−1/2〈fa, %(x, ω)u〉L2(R)

= a−1/2
∫ ∞
−∞

f(a, y)[%(x, ω)u](y)dy

= a−1/2
∫ ∞
−∞

f(a, y)u(y − x)ω(y)dy = a−1/2
∫ ∞
−∞

f(a, y)u(y − x)e−2πiωydy.
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Using Theorem 3.4, if ‖u‖L2(R) = 1 we get

(5.4)

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

|Vuf(a, x, ω)|2

a
dadxdω =

∫ ∞
0

∫ ∞
−∞

|f(a, x)|2

a2
dadx.

Due to the reconstruction formula (3.8) if for a.e. a ∈ (0,∞) we have f̂a ∈ L1(R), then for a.e. x ∈ R we get

f(a, x) = δ(a)−1/2‖u‖−2L2(K)

∫ ∞
−∞

∫ ∞
−∞
Vuf(a, y, ω)[%(y, ω)u](x)dydω

= a1/2‖u‖−2L2(K)

∫ ∞
−∞

∫ ∞
−∞
Vuf(a, y, ω)u(x− y)e2πiωxdydω.

As well as according to (3.9) we have

V†uf(a, x, ω) = δ(a)1/2Vufa(xa, ωa)

= a−1/2〈fa, %(xa, ωa)u〉L2(R)

= a−1/2
∫ ∞
−∞

f(a, y)[%(xa, ωa)u](y)dy

= a−1/2
∫ ∞
−∞

f(a, y)u(y − ax)ωa(y)dy = a−1/2
∫ ∞
−∞

f(a, y)u(y − ax)e−2πiωa
−1ydy.

Using Theorem 3.7, if ‖u‖L2(R) = 1 we get

(5.5)

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

|V†uf(a, x, ω)|2

a
dadxdω =

∫ ∞
0

∫ ∞
−∞

|f(a, x)|2

a2
dadx.

Due to the reconstruction formula (3.11) if for a.e. a ∈ (0,∞) we have f̂a ∈ L1(R), then for x ∈ R we achieve

f(a, x) =

∫ ∞
−∞

∫ ∞
−∞
V†uf(a, y, ω)[%(ya, ωa)u](x)dydω

=

∫ ∞
−∞

∫ ∞
−∞
V†uf(a, y, ω)u(x− ay)e2πiωa

−1xdydω.

Example 5.1. Let N > 0 and also uN = χ[−N,N ] be a window function with compact support and ‖uN‖L2(R) = 2N .

Then, for all f ∈ L2(Gτ ) and (a, x, ω) ∈ Gτ×τ̂ we have

VuN f(a, x, ω) = a−1/2
∫ ∞
−∞

f(a, y)uN (y − x)ω(y)dy

= a−1/2ω(x)

∫ ∞
−∞

f(a, y + x)uN (y)ω(y)dy

= a−1/2ω(x)

∫ N

−N
f(a, y + x)ω(y)dy = a−1/2e−2πiωx

∫ N

−N
f(a, y + x)e−2πiωydy.

If we set x = 0, then we get

VuN f(a, 0, ω) = a−1/2
∫ N

−N
f(a, y)e−2πiωydy.

Similarly, for the generalized τ × τ̂ -continuous Gabor transform we have

V†uN f(a, x, ω) = a−1/2
∫ ∞
−∞

f(a, y)uN (y − ax)e−2πiωa
−1ydy

= a−1/2e−2πiωx
∫ ∞
−∞

f(a, y + ax)uN (y)e−2πiωa
−1ydy = a−1/2e−2πiωx

∫ N

−N
f(a, y + ax)e−2πiωa

−1ydy.
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and also if we set x = 0, then we get

V†uN f(a, 0, ω) = a−1/2
∫ N

−N
f(a, y)e−2πiωa

−1ydy.

Example 5.2. Let u(x) = e−πx
2

be the one-dimensional Gaussian window function with û = u and ‖u‖L2(R) = 2−1/4.

Then, for all f ∈ L2(Gτ ) and (a, x, ω) ∈ Gτ×τ̂ we have

Vuf(x, a, ω) = a−1/2
∫ ∞
−∞

f(a, y)u(y − x)e−2πiωydy

= a−1/2
∫ ∞
−∞

f(a, y)e−π(y−x)
2

e−2πiωydy.

If f for a.e. a ∈ (0,∞) satisfies f̂a ∈ L1(R), then we can reconstruct f via

f(a, x) =

∫ ∞
−∞

∫ ∞
−∞
Vuf(a, y, ω)u(x− y)e2πiωydydω

=

∫ ∞
−∞

∫ ∞
−∞
Vuf(a, y, ω)e−π(x−y)

2

e2πiωxdydω.

As well as, we can compute the generalized τ × τ̂ -continuous Gabor transform by

V†uf(x, a, ω) = a−1/2
∫ ∞
−∞

f(a, y)u(y − ax)e−2πiωa
−1ydy

= a−1/2
∫ ∞
−∞

f(a, y)e−π(y−ax)
2

e−2πiωa
−1ydy.

If f for a.e. a ∈ (0,∞) satisfies f̂a ∈ L1(R), then we can reconstruct f via

f(a, x) =

∫ ∞
−∞

∫ ∞
−∞
V†uf(a, y, ω)u(x− ay)e2πiωa

−1xdydω

=

∫ ∞
−∞

∫ ∞
−∞
V†uf(a, y, ω)e−π(x−ay)

2

e2πiωa
−1xdydω.

The τ ⊗ τ̂ -time frequency group Gτ⊗τ̂ has the underlying manifold (0,∞)× (0,∞)× R× R̂ and the group law is

(5.6) (a, b, x, ω) nτ⊗τ̂ (a′, b′, x′, ω′) = (aa′, bb′, x+ ax′, ωω′b),

with the left Haar measure dµGτ⊗τ̂ (a, b, x, ω) = a−2dadbdxdω. If g ∈ L2(Gτ ) is a window function and also f ∈ L2(Gτ ).
According to (4.4) we have

Ggf(a, x, b, ω) = δ(b)Vgafb(x, ω)

= b−1〈fb, %(x, ω)ga〉L2(R)

= b−1
∫ ∞
−∞

f(b, y)[%(x, ω)ga](y)dy = b−1
∫ ∞
−∞

f(b, y)g(a, y − x)e−2πiωydy.

Using Theorem 4.2, if ‖g‖L2(Gτ ) = 1 we get

(5.7)

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

|Ggf(a, x, b, ω)|2

a2
dadbdxdω =

∫ ∞
0

∫ ∞
−∞

|f(a, x)|2

a2
dadx.
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Using the reconstruction formula (4.7), if for a.e. a ∈ (0,∞) we have f̂a, ĝa ∈ L1(R), then for x ∈ R we can write

f(b, x) = b‖ga‖−2L2(R)

∫ ∞
−∞

∫ ∞
−∞
Ggf(a, y, b, ω)[%(y, ω)ga](x)dydω

= b‖ga‖−2L2(R)

∫ ∞
−∞

∫ ∞
−∞
Ggf(a, y, b, ω)g(a, x− y)e−2πiωxdydω,

and also in particular we get

f(a, x) = a‖ga‖−2L2(R)

∫ ∞
−∞

∫ ∞
−∞
Ggf(a, y, a, ω)g(a, x− y)e−2πiωxdydω.

As well as according to (4.8) we have

G†gf(a, x, b, ω) = δ(a)−1/2δ(b)3/2Vgafb(x
a, ωb)

= a1/2b−3/2〈fb, %(xa, ωb)ga〉L2(R)

= a1/2b−3/2
∫ ∞
−∞

f(b, y)[%(xa, ωb)ga](y)dy

= a1/2b−3/2
∫ ∞
−∞

f(b, y)g(a, y − ax)ωb(y)dy = a1/2b−3/2
∫ ∞
−∞

f(b, y)g(a, y − ax)e−2πiωb
−1ydy.

Using Theorem 4.5, if ‖g‖L2(Gτ ) = 1 we get

(5.8)

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

|G†gf(a, x, b, ω)|2

a2
dadbdxdω =

∫ ∞
0

∫ ∞
−∞

|f(a, x)|2

a2
dadx.

Due to the reconstruction formula (4.7) if for a.e. a ∈ (0,∞) we have f̂a ∈ L1(R), then for all x ∈ R and a.e.
a, b ∈ (0,∞) we get

f(b, x) = δ(a)−1/2δ(b)−1/2‖ga‖−2L2(R)

∫ ∞
−∞

∫ ∞
−∞
G†gf(a, g, b, ω)[%(ga, ωb)ga](x)dgdω

= a1/2b1/2‖ga‖−2L2(R)

∫ ∞
−∞

∫ ∞
−∞
G†gf(a, g, b, ω)g(a, x− ag)e2πib

−1ωdgdω,

and also in particular we have

f(a, x) = a‖ga‖−2L2(R)

∫ ∞
−∞

∫ ∞
−∞
G†gf(a, g, a, ω)[%(ga, ωa)ga](x)dgdω

= a‖ga‖−2L2(R)

∫ ∞
−∞

∫ ∞
−∞
G†gf(a, g, a, ω)g(a, x− ag)e2πia

−1ωdgdω.

Example 5.3. Let N > 0 and also gN (a, x) = χ[1/N,N ]×[−N,N ](a, x) be a window function which has a compact

support. Then, for all f ∈ L2(Gτ ) and (a, x, b, ω) ∈ Gτ⊗τ̂ we have

GgN f(a, x, b, ω) = b−1
∫ ∞
−∞

f(b, y)gN (a, y − x)e−2πiωydy

= b−1χ[1/N,N ](a)e−2πiωx
∫ N

−N
f(b, y + x)e−2πiωydy.

If we set x = 0 and a = 1 we achieve

(5.9) GgN f(1, 0, b, ω) = b−1
∫ N

−N
f(b, y)e−2πiωydy.
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Also, for (a, x, b, ω) we have

G†gN f(a, x, b, ω) = a1/2b−3/2
∫ ∞
−∞

f(b, y)gN (a, y − ax)e−2πiωb
−1ydy

= a1/2b−3/2χ[1/N,N ](a)e−2πiωb
−1ax

∫ N

−N
f(b, y + ax)e−2πiωb

−1ydy.

If we set x = 0 and a = 1 then

(5.10) G†gN f(1, 0, b, ω) = b−3/2
∫ N

−N
f(b, y)e−2πiωb

−1ydy.

Example 5.4. Let g(a, x) = ae−π(a
2+x2) be the Gaussian type window function in L2(Gτ ) with ‖g‖L2(Gτ ) = 2−1.

For a.e. a ∈ (0,∞) we have ĝa = ga and ‖ga‖L1(R) = ae−πa
2

also ‖ga‖L2(R) = 2−1/4ae−πa
2

. It is also separable i.e

g(a, x) = au(a)u(x). Then, for all f ∈ L2(Gτ ) and also (a, x, b, ω) ∈ Gτ⊗τ̂ we have

Ggf(a, x, b, ω) = b−1
∫ ∞
−∞

f(b, y)g(a, y − x)e−2πiωydy

= b−1ae−πa
2

∫ ∞
−∞

f(b, y)e−π(y−x)
2

e−2πiωydy.

Using the reconstruction formula if f̂a ∈ L1(R) for a.e. a ∈ (0,∞) we have

f(a, x) = a‖ga‖−2L2(R)

∫ ∞
−∞

∫ ∞
−∞
Ggf(a, y, a, ω)g(a, x− y)e2πiωxdydω

= 21/2a−1eπa
2

∫ ∞
−∞

∫ ∞
−∞
Ggf(a, y, a, ω)u(x− y)e2πiωxdydω

= 21/2a−1eπa
2

∫ ∞
−∞

∫ ∞
−∞
Ggf(a, y, a, ω)e−π(x−y)

2

e2πiωxdydω.

As well as, for all (a, x, b, ω) ∈ Gτ⊗τ̂ we have

G†gf(a, x, b, ω) = a1/2b−3/2
∫ ∞
−∞

f(b, y)g(a, y − ax)e−2πiωb
−1ydy

= e−πa
2

a3/2b−3/2
∫ ∞
−∞

f(b, y)e−π(y−ax)
2

e−2πiωb
−1ydy.

Due to the reconstruction formula if f̂a ∈ L1(R) for a.e. a ∈ (0,∞) we have

f(a, x) = a‖ga‖−2L2(R)

∫ ∞
−∞

∫ ∞
−∞
G†gf(a, y, a, ω)g(a, x− ay)e−2πia

−1ωdydω

= 21/2a−1eπa
2

∫ ∞
−∞

∫ ∞
−∞
G†gf(a, y, a, ω)u(x− ay)e−2πia

−1ωdydω

= 21/2a−1eπa
2

∫ ∞
−∞

∫ ∞
−∞
G†gf(a, y, a, ω)e−π(x−ay)

2

e−2πia
−1ωdydω.

In the sequel we compute τ × τ̂ -time frequency group Gτ×τ̂ and τ ⊗ τ̂ -time frequency group Gτ⊗τ̂ associate to other
semi-direct products.
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5.2. The Weyl-Heisenberg group. Let K be an LCA group with the Haar measure dk and K̂ be the dual group of

K with the Haar measure dω also T be the circle group and let the continuous homomorphism τ : K → Aut(K̂×T) via

s 7→ τs be given by τs(ω, z) = (ω, z.ω(s)). The semi-direct product Gτ = K nτ (K̂ × T) is called the Weyl-Heisenberg

group associated with K. The group operation for all (k, ω, z), (k′, ω′, z′) ∈ K nτ (K̂ × T) is

(5.11) (k, ω, z) nτ (k′, ω′, z′) = (k + k′, ωω′, zz′ω′(k)).

If dz is the Haar measure of the circle group, then dkdωdz is a Haar measure for the Weyl-Heisenberg group and also
the continuous homomorphism δ : K → (0,∞) given in (2.3) is the constant function 1. Thus, using Theorem 4.5,
Proposition 4.6 of [10] and also Proposition 3.1 we can obtain the continuous homomorphism τ̂ : K → Aut(K × Z)
via s 7→ τ̂s, where τ̂s is given by τ̂s(k, n) = (k, n) ◦ τs−1 for all (k, n) ∈ K × Z and s ∈ K. Due to Theorem 4.5 of [10],

for each (k, n) ∈ K × Z and also for all (ω, z) ∈ K̂ × T we have

〈(ω, z), (k, n)s〉 = 〈(ω, z), τ̂s(k, n)〉
= 〈τs−1(ω, z), (k, n)〉

= 〈(ω, zω(s)), (k, n)〉

= 〈ω, k〉〈zω(s), n〉

= ω(k)znω(s)
n

= ω(k − ns)zn

= 〈ω, k − ns〉〈z, n〉 = 〈(ω, z), (k − ns, n)〉.

Thus, (k, n)s = (k − ns, n) for all k, s ∈ K and n ∈ Z. Therefore, Gτ̂ has the underlying set K × K × Z with the
following group operation;

(s, k, n) nτ̂ (s′, k′, n′) = (s+ s′, (k, n)τ̂s(k
′, n′))

= (s+ s′, (k, n)(k′ − n′s, n′)) = (s+ s′, k + k′ − n′s, n+ n′).

The Gτ×τ̂ -time frequency group has the underlying set K × K̂ × T×K × Z with the group law

(5.12) (k, ω, z, s, n) nτ×τ̂ (k′, ω′, z′, s′, n′) = (k + k′, ωω′, zz′ω′(k), s+ s′ − n′k, n+ n′).

and the left Haar measure is dµGτ×τ̂ (k, ω, z, s, n) = dkdωdzdsdn.

The Gτ⊗τ̂ -time frequency group has the underlying set K ×K × K̂ × T×K × Z with group operation

(5.13) (r, k, ω, z, s, n) nτ⊗τ̂ (r′, k′, ω′, z′, s′, n′) = (r + r′, k + k′, ωω′, zz′ω′(r), s+ s′ − n′k, n+ n′),

and also the left Haar measure is dµGτ⊗τ̂ (r, k, ω, z, s, n) = drdkdωdzdsdn.

5.3. Euclidean groups. Let E(n) be the group of rigid motions of Rn, the group generated by rotations and trans-
lations. If we put H = SO(n) and also K = Rn, then E(n) is the semi direct product of H and K with respect to
the continuous homomorphism τ : SO(n) → Aut(Rn) given by σ 7→ τσ via τσ(x) = σx for all x ∈ Rn. The group
operation for E(n) is

(5.14) (σ,x) nτ (σ′,x′) = (σσ′,x + τσ(x′)) = (σσ′,x + σx′).

Identifying K̂ with Rn, the continuous homomorphism τ̂ : SO(n)→ Aut(Rn) is given by σ 7→ τ̂σ via

〈x, τ̂σ(w)〉 = 〈x,wσ〉
= 〈τσ−1(x),w〉

= 〈σ−1x,w〉 = e−2πi(σ
−1x,w),
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where (., .) stands for the standard inner product of Rn. Since H is compact we have δ ≡ 1 and therefore dσdx is a
left Haar measure for E(n). Thus, Gτ̂ has the underlying manifold SO(n)× Rn with the group operation

(5.15) (σ,w) nτ̂ (σ′,w′) = (σσ′,w + w′σ).

According to Theorem 3.1 the left Haar measure dµGτ̂ (σ,w) is precisely dσdw. The τ × τ̂ -time frequency group Gτ×τ̂
has the underlying manifold SO(n)× Rn × Rn with the group law

(5.16) (σ,x,w) nτ×τ̂ (σ′,x′,w′) = (σσ′,x + σx′,w + w′σ).

Due to Proposition 3.3 and also compactness of H, dµGτ×τ̂ (σ,x,w) = dσdxdw is a Haar measure for Gτ×τ̂ . The
τ ⊗ τ̂ -time frequency group Gτ⊗τ̂ has the underlying manifold SO(n)×SO(n)×Rn×Rn equipped with the group law

(σ, %,x,w) nτ⊗τ̂ (σ′, %′,x′,w′) = (σσ′, %%′,x + σx′,w + w′%),

and also the Haar measure is dµGτ⊗τ̂ (σ, %,x,w) = dσd%dxdw.
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