Almost Quaternionic Structures on Quaternionic Kaehler Manifolds

F. Özdemir
Department of Mathematics, Faculty of Arts and Sciences
Istanbul Technical University, 34469 Maslak-Istanbul, TURKEY
fozdemir@itu.edu.tr

Abstract

In this work, we consider a Riemannian manifold M with an almost quaternionic structure V defined by a three-dimensional subbundle of $(1,1)$ tensors F, G and H such that $\{F, G, H\}$ is chosen to be a local basis for V. For such a manifold there exits a subbundle $\mathcal{H}(M)$ of the bundle of orthonormal frames $\mathcal{O}(M)$. If M admits a torsion-free connection reducible to a connection in $\mathcal{H}(M)$, then we give a condition such that the torsion tensor of the bundle vanishes. We also prove that if M admits a torsion-free connection reducible to a connection in $\mathcal{H}(M)$, then the tensors $\widetilde{F}^{2}, \widetilde{G}^{2}, \widetilde{H}^{2}$ are torsion-free, that is, they are integrable. Here $\widetilde{F}, \widetilde{G}, \widetilde{H}$ are the extended tensors of F, G and H defined on M. Finally, we show that if the torsions of $\widetilde{F}^{2}, \widetilde{G}^{2}$ and \widetilde{H}^{2} vanish, then M admits a connection with torsion which is reducible to $\mathcal{H}(M)$, and this means that $\widetilde{F}^{2}, \widetilde{G}^{2}$ and \widetilde{H}^{2} are integrable.

MSC 2010: 53C55, 53C15.
Keywords: Subbundle, almost complex structure, almost quaternionic structure, torsion tensor.

1 Introduction

By imposing special structures on the tangent bundle of a manifold, it is possible to have different type of geometries. (Almost) complex, (almost) quaternionic and polynomial structures are examples of such type of structures [1-9].

In literature almost complex and almost quaternionic structures have been investigated widely, and a detailed review can be found in Kirichenko and Arseneva [5]. We begin by recalling basic results and definitions from literature.

An almost complex structure on a manifold M is a tensor field $J: T M \rightarrow T M$ satisfying the identity $J^{2}=-i d$. An almost hypercomplex structure on a $4 m$ dimensional manifold M is a triple $S=(F, G, H)$ of almost complex structures
F, G and H satisfying the conditions

$$
\begin{equation*}
F^{2}=G^{2}=H^{2}=-I, \quad H=F G, \quad F G+G F=F H+H F=G H+H G=0, \tag{1.1}
\end{equation*}
$$

where I denotes the identity transformation of $T_{x}(M)$. If each of the tensor fields F, G and H is a complex structure, then S is called hypercomplex structure on M.
Let M be a $4 m$-dimensional Riemannian manifold admitting a three dimensional subbundle V of $(1,1)$ tensors such that on a neighborhood U of each $x \in M, V$ has a local base $\{F, G, H\}$. If on each such neigborhood, the tensors F, G and H satisfy the conditions (1.1), then the bundle V is called an almost quaternionic structure on M [2].

In [10], the Nijenhuis bracket of two tensor fields A and B of type $(1,1)$ is defined as the following tensor field of type (1,2)

$$
\begin{align*}
{[A, B](X, Y) } & =[A X, B Y]-A[B X, Y]-B[X, A Y] \\
& +[B X, A Y]-B[A X, Y]-A[X, B Y]+(A B+B A)[X, Y] \tag{1.2}
\end{align*}
$$

In particular, if $A=B$ we have

$$
\begin{equation*}
[A, A](X, Y)=2\left([A X, A Y]+A^{2}[X, Y]-A[A X, Y]-A[X, A Y]\right) \tag{1.3}
\end{equation*}
$$

In [6], using (1.2), the torsion tensor of V is defined by $[V, V]=[F, F]+[G, G]+[H, H]$, where [,] denotes the Nijenhuis bracket.

The Newlander-Nirenberg Theorem states that an almost complex structure is a complex structure if and only if it is integrable i.e., it has no torsion. Thus, if the tensor fields F, G and H are integrable, then the bracket of any two of them vanishes, that is, [1]

$$
\begin{equation*}
[F, F]=[G, G]=[H, H]=0 \quad \text { and } \quad[F, G]=[F, H]=[G, H]=0 \tag{1.4}
\end{equation*}
$$

Also, it is shown that there exits a torsion-free connection that F, G and H are covariantly constant which means that V is a trivial bundle [1].

In literature, moreover, it is proved that if either M is a quaternionic Kaehler manifold, or if M is a complex manifold with almost complex structures, then the vanishing of torsion tensor of V is equivalent to the vanishing of all the Nijenhuis brackets of $\{F, G, H\}$. For a quaternionic Kaehler manifold, with a torsion-free connection ∇, it is given a condition implying that if $[V, V]=0$
then $\nabla F=\nabla G=\nabla H=0$. It follows that the bundle V admits a flat connection, hence it is trivial see [6].

In [1], a reducibility condition is given for a torsion-free connection on a quaternionic manifold M to be reducible to a connection in $\mathcal{H}(M)$, where $\mathcal{H}(M)$ is subbundle of the bundle of orthonormal frame $\mathcal{O}(M)$.

For a Riemannian manifold M of dimension $4 m+n$ with an almost quaternionic structure V of rank $4 m$, it is shown that the metric g satisfies $\mathrm{g}(X, \phi Y)+\mathrm{g}(\phi X, Y)=0$ for any vector fields $X, Y \in \mathcal{X}(M)$, where $\mathcal{X}(M)$ is the algebra of vector fields on M, and any section ϕ of V. In [3] Doğanaksoy studied orthogonal plane fields P and Q defined by V admitting local basis $\{F, G, H\}$ and defined projection tensors $p: P \rightarrow T_{x} M$ and $q: Q \rightarrow T_{x} M$.

In this paper, by using the projection tensors p and q above, we define extended tensors $\widetilde{F}, \widetilde{G}$ and \widetilde{H} on M, and we obtain reducibility conditions for a torsionfree connection on M to be a connection (either torsion-free or with torsion) in $\mathcal{H}(M)$. The reducibility condition corresponds to the integrability of extended tensors.

2 Almost Quaternionic Structures

We consider a Riemannian manifold M of dimension $4 m+n$ admitting an almost quaternionic structure V. Let $\{F, G, H\}$ be a local basis for V on a neighborhood U of M. Since torsion tensors $[F, F],[G, G]$, and $[H, H]$ are locally defined objects, to obtain a global condition for the triviality of V, a tensor $[V, V]$ of type $(1,2)$ is defined globally on U by $[6]$

$$
\begin{equation*}
[V, V]=[F, F]+[G, G]+[H, H] . \tag{2.1}
\end{equation*}
$$

Let $\{F, G, H\}$ and $\left\{F^{\prime}, G^{\prime}, H^{\prime}\right\}$ be local bases for V defined on neighborhoods U and U^{\prime}, respectively, and assume that $U \cap U^{\prime} \neq 0$.
Since U and U^{\prime} are not disjoint, then in $U \cap U^{\prime}$ we have

$$
\begin{align*}
& F^{\prime}=a_{11} F+a_{12} G+a_{13} H, \tag{2.2}\\
& G^{\prime}=a_{21} F+a_{22} G+a_{23} H, \tag{2.3}\\
& H^{\prime}=a_{31} F+a_{32} G+a_{33} H \tag{2.4}
\end{align*}
$$

where $a_{i j}$ are functions defined on $U \cap U^{\prime}$. With the notation above, at any point $x \in U \cap U^{\prime}, a_{i j} \in \mathrm{SO}(3)[1,2]$.

We calculate the torsion tensor of $[V, V]$ defined in (2.1) by taking into account local bases $\{F, G, H\}$ and $\left\{F^{\prime}, G^{\prime}, H^{\prime}\right\}$. Using equations (2.2)-(2.4), we also, compute torsions $[G, F],[F, H],[H, F],[G, H]$ and $[H, G]$ and show that the torsion tensor $[V, V]$ of the bundle V is independent of the choice of bases, that is, $[V, V]$ is well defined.
If a tensor f of type $(1,1)$ on M satisfies the structure equation

$$
\begin{equation*}
f^{3}+f=0 \tag{2.5}
\end{equation*}
$$

then f is called an f-structure. Since the tensors F, G and H satisfy the conditions (1.1), they are f-structures on M. In [3] it is shown that any crosssection ϕ of V of length 1 is f-structure on M, and F, G and H are of length 1.

Let $\{F, G, H\}$ be a basis for V in some neighborhood U of M. In [11], it is proved that each of F, G, and H has a constant rank on U and from the conditions $F=G H, G=H F, H=F G$, it is seen that their ranks are all equal. Also, in [11], the rank of V is defined to be the rank of a basis element on some neighborhood U. By choosing $q=1+F^{2}=1-p$, where 1 denotes the identity operator, it is obtained in [3] that

$$
\begin{equation*}
p+q=1, \quad p^{2}=p, \quad q^{2}=q \tag{2.6}
\end{equation*}
$$

and that

$$
\begin{equation*}
\phi p=p \phi=\phi, \quad \phi q=q \phi=0 \tag{2.7}
\end{equation*}
$$

for any cross-section ϕ of V. This shows that p and q are complementary projection operators. Then, there exist two distributions P and Q corresponding to p and q, respectively. If the rank of V is $4 m$, then P is $4 m$-dimensional and Q is n-dimensional.
Let g^{\prime} be a Riemannian metric of M. Define g to be the tensor field of degree 2 on M as

$$
\mathrm{g}(X, Y)= \begin{cases}0, & X \in P(x), Y \in Q(x) \tag{2.8}\\ \mathrm{g}^{\prime}(X, Y), & X, Y \in Q(x) \\ \mathrm{g}^{\prime}(X, Y)+\mathrm{g}^{\prime}(F X, F Y) & \\ +\mathrm{g}^{\prime}(G X, G Y)+\mathrm{g}^{\prime}(H X, H Y), & X, Y \in P(x)\end{cases}
$$

where $\{F, G, H\}$ is a canonical local base for V, and $X, Y \in T_{x}(M)$. Since g^{\prime} is a Riemannian, g satisfies all the conditions for a Riemannian metric [3]. For any cross-section ϕ of V, from (2.8) we have

$$
\begin{equation*}
\mathrm{g}(X, \phi Y)+\mathrm{g}(\phi X, Y)=0, \quad X, Y \in \mathcal{X}(M) \tag{2.9}
\end{equation*}
$$

If M admits an almost quaternionic structure, then at each point x in M there is an orthonormal basis of $T M$, of the form

$$
\begin{equation*}
\left\{X_{1}, \ldots, X_{m}, F X_{1}, \ldots, F X_{m}, G X_{1}, \ldots, G X_{m}, H X_{1}, \ldots, H X_{m}\right\} \tag{2.10}
\end{equation*}
$$

and the set of all such frames at all points $x \in M$ constitutes a subbundle, denoted by $\mathcal{H}(M)$, of the bundle of orthonormal frames $\mathcal{O}(M)$.

We consider P and Q to be the orthogonal plane fields defined by almost substructure V, and let p and q be projections $P \rightarrow T_{x} M$ and $Q \rightarrow T_{x} M$, respectively [3].

Let us denote by f the tensor $J p$ defined on P. Since $p J=J, f$ satisfies the structure equation $f^{3}+f=0$. For any tensor J of type $(1,1)$ on M we define its extension as the tensor \widetilde{J} of type $(1,1)$ on M by setting

$$
\begin{equation*}
\widetilde{J}=q+J p=q+f . \tag{2.11}
\end{equation*}
$$

It can be seen that the extended tensor \widetilde{J} has the following properties

$$
\begin{align*}
& \widetilde{J}^{2}=q-p, \tag{2.12}\\
& \widetilde{J}^{3}=q-J p=1-\widetilde{J}+\widetilde{J}^{2}, \tag{2.13}\\
& \widetilde{J}^{4}=1 . \tag{2.14}
\end{align*}
$$

We recall that Γ is an affine (linear) connection on M. A tensor field, say J, is parallel with respect to Γ if and only if $\nabla J=0$, where ∇ is the covariant differentiation with respect to Γ [10].

We give the following proposition from [4].
Proposition. The followings are equivalent
(a) $\left[\widetilde{J}^{2}, \widetilde{J}^{2}\right]$ vanishes,
(b) M admits a torsion-free affine connection according to which \widetilde{J}^{2} is parallel,
(c) the plane field P and its orthogonal complement Q are both integrable.

3 Torsion-free connections reducible to a connection in $\mathcal{H}(M)$

Compatibility of a torsion-free connection Γ with the metric g^{\prime} is equivalent to the reducibility of Γ to $\mathcal{O}(M)$. Furthermore, if Γ is reducible to $\mathcal{H}(M)$, then the manifold is called quaternionic Kaehler manifold [2].

We also quote the following theorem from [2].

Theorem. Let M be an almost quaternionic manifold. A connection Γ in orthonormal frame $\mathcal{O}(M)$ is reducible to a connection in $\mathcal{H}(M)$ if and only if the covariant derivatives of the tensor fields of F, G and H satisfy the following conditions:

$$
\begin{equation*}
\nabla F=a G-b H, \quad \nabla G=-a F+c H, \quad \nabla H=b F-c G \tag{3.1}
\end{equation*}
$$

where a, b and c are 1-forms on M.
We now begin to state our main theorems related to the reducibility of a torsion free-connection.

Theorem 3.1. If M admits a torsion-free connection Γ reducible to $\mathcal{H}(M)$ such that

$$
\begin{equation*}
(\nabla \phi)(\phi X, Y)+(\nabla \phi)(X, \phi Y)=0 \tag{3.2}
\end{equation*}
$$

for any section $\phi \in\{F, G, H\}$, then the torsion tensor $[V, V]$ of the bundle V vanishes.

Proof. For any section $\phi \in\{F, G, H\}$, from (3.2) we have

$$
\begin{align*}
& (\nabla F)(F X, Y)+(\nabla F)(X, F Y)=0 \tag{3.3}\\
& (\nabla G)(G X, Y)+(\nabla G)(X, G Y)=0 \tag{3.4}\\
& (\nabla H)(H X, Y)+(\nabla H)(X, H Y)=0 \tag{3.5}
\end{align*}
$$

By using (3.1) in (3.3)-(3.5), we obtain following relations

$$
\begin{align*}
(\nabla F)(F X, Y) & =\left(\nabla_{Y} F\right)(F X)=a(Y) G(F X)-b(Y) H(F X) \\
& =-a(Y) H(X)-b(Y) G(X) \tag{3.6}\\
(\nabla F)(X, F Y) & =\left(\nabla_{F Y} F\right)(X)=a(F Y) G(X)-b(F Y) H(X) \tag{3.7}
\end{align*}
$$

Similarly, we find

$$
\begin{align*}
(\nabla G)(G X, Y) & =\left(\nabla_{Y} G\right)(G X)=-a(Y) F(G X)+c(Y) H(G X) \\
& =-a(Y) H(X)-c(Y) F(X) \tag{3.8}\\
(\nabla G)(X, G Y) & =\left(\nabla_{G Y} G\right)(X)=-a(G Y) F(X)+c(G Y) H(X) \tag{3.9}
\end{align*}
$$

and

$$
\begin{align*}
(\nabla H)(H X, Y) & =\left(\nabla_{Y} H\right)(H X)=b(Y) F(H X)-c(Y) G(H X) \\
& =-b(Y) G(X)-c(Y) F(X) \tag{3.10}\\
(\nabla H)(X, H Y) & =\left(\nabla_{H Y} H\right)(X)=b(H Y) F(X)+b(Y) G(X) \tag{3.11}
\end{align*}
$$

For a torsion-free connection Γ reducible to $\mathcal{H}(M)$, if the 1-forms a, b and c defined in (3.1) are used in the equations (3.6)-(3.11), then we observe that they satisfy the following relations

$$
\begin{align*}
& b(X)=a(F X) \\
& c(X)=-a(G X) \\
& c(X)=b(H X) \tag{3.12}
\end{align*}
$$

In order to find the torsion tensor of V, we compute the torsions of tensors F, G and H :

$$
\begin{align*}
\frac{1}{2}[F, F](X, Y)= & \left([F X, F Y]+F^{2}[X, Y]-F[F X, Y]-F[X, F Y]\right. \\
= & \left(\nabla_{F X} F Y-\nabla_{F Y} F X\right)+F^{2}\left(\nabla_{X} Y-\nabla_{F Y} X\right) \\
& -F\left(\nabla_{F X} Y-\nabla_{Y} F X\right)-F\left(\nabla_{X} F Y-\nabla_{F Y} X\right) \\
\frac{1}{2}[F, F](X, Y)= & \left(\nabla_{F X} F\right) Y-\left(\nabla_{F Y} F\right) X+F\left(\left(\nabla_{Y} F\right) X\right)-F\left(\left(\nabla_{X} F\right) Y\right) \tag{3.13}
\end{align*}
$$

Similarly, the tensors $[G, G]$ and $[H, H]$ are obtained as follows:

$$
\begin{equation*}
\frac{1}{2}[G, G](X, Y)=\left(\nabla_{G X} G\right) Y-\left(\nabla_{G Y} G\right) X+G\left(\left(\nabla_{Y} G\right) X\right)-G\left(\left(\nabla_{X} G\right) Y\right) \tag{3.14}
\end{equation*}
$$

and
$\frac{1}{2}[H, H](X, Y)=\left(\nabla_{H X} H\right) Y-\left(\nabla_{H Y} H\right) X+H\left(\left(\nabla_{Y} H\right) X\right)-H\left(\left(\nabla_{X} H\right) Y\right)$.

Using the relations of (3.12), we get the following equalities

$$
\begin{align*}
\frac{1}{2}[F, F](X, Y)= & {[a(F X) G(Y)-b(F X) H(Y)]-[a(F Y) G(X)-b(F Y) H(X)] } \\
& +F[a(Y) G(X)-b(Y) H(X)]-F[a(X) G(Y)-b(X) H(Y)] \\
\frac{1}{2}[F, F](X, Y)= & (b(Y)-a(F Y)) G(X)+(a(F X)-b(X)) G(Y) \\
& +(b(F Y)+a(Y)) H(X)+(-a(X)-b(F X)) H(Y) \tag{3.16}
\end{align*}
$$

By using (3.14) and (3.15) for G and H, we obtain

$$
\begin{align*}
\frac{1}{2}[G, G](X, Y)= & (-a(G X)-c(X)) F(Y)+(a(G Y)+c(Y)) F(X) \\
& +(a(Y)-c(G Y)) H(X)+(c(G X)-a(X)) H(Y) \tag{3.17}
\end{align*}
$$

and

$$
\begin{align*}
\frac{1}{2}[H, H](X, Y) & =(b(H X)-c(X)) F(Y)+(-b(H Y)+c(Y)) F(X) \\
& +(b(Y)+c(H Y)) G(X)+(-b(X)-c(H X)) G(Y) \tag{3.18}
\end{align*}
$$

Substituting the conditions (3.12) in (3.16)-(3.18), we find $[F, F]=0$, $[G, G]=0,[H, H]=0$, and therefore $[V, V]=0$. This completes the proof.

Given tensor fields F, G and H, let us define their extended tensors $\widetilde{F}, \widetilde{G}$ and \widetilde{H} as in (2.11). It is clear that the relations (2.12)-(2.14) hold for the tensors $\widetilde{F}, \widetilde{G}$ and \widetilde{H}.
To simplify our calculations we use the following notations

$$
\begin{align*}
& \widetilde{F}=q+F p=q+f \tag{3.19}\\
& \widetilde{G}=q+G p=q+g \tag{3.20}\\
& \widetilde{H}=q+H p=q+h \tag{3.21}
\end{align*}
$$

where $f=F p, g=G p$, and $h=H p$. Since $p+q=1$, where 1 denotes the identity operator, and tensors F, G, H are defined on distribution P of $T M$, using the projection tensor p of type $(1,1)$ defined in Section 2, we write $q=1+f^{2}=1-p$. Then, we have

$$
\begin{equation*}
p^{2}=p, \quad q^{2}=q \tag{3.22}
\end{equation*}
$$

Also using (2.12), (2.13), and (2.14), we show that the following relations hold:

$$
\begin{align*}
& \widetilde{F}^{2}=q-p \tag{3.23}\\
& \widetilde{F}^{3}=\widetilde{F} \widetilde{F}^{2}=(q+f)(q-p)=q-f \tag{3.24}\\
& \widetilde{F}^{3}+\widetilde{F}=2 q \tag{3.25}
\end{align*}
$$

Similar calculations can be done for \widetilde{G} and \widetilde{H} by letting $q=1+g^{2}=1-p$ and $q=1+h^{2}=1-p$, respectively.

Theorem 3.2. If M admits a torsion-free connection Γ reducible to $\mathcal{H}(M)$, then the tensors $\widetilde{F}^{2}=\widetilde{G}^{2}=\widetilde{H}^{2}=q-p$ are torsion-free. That is, $\left[\widetilde{F}^{2}, \widetilde{F}^{2}\right]=0,\left[\widetilde{G}^{2}, \widetilde{G}^{2}\right]=0$ and $\left[\widetilde{H}^{2}, \widetilde{H}^{2}\right]=0$, i.e., P and Q are integrable.

Proof. Since Γ is reducible to $\mathcal{H}(M)$, equations in (3.1) hold.
We get $\nabla p=-\nabla q$ from $p+q=1$. Since $q=1+f^{2}=1-p$, using (3.22) we obtain

$$
\begin{equation*}
\nabla p=-\nabla\left(f^{2}\right)=-\nabla(F p \circ F p)=-F p \nabla(F p)-\nabla(F p) F p \tag{3.26}
\end{equation*}
$$

By using (3.1) we get

$$
\begin{equation*}
\nabla p=-[(a G-b H) F p+F(\nabla p) F p+F p(a G-b H) p-(\nabla p)] \tag{3.27}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\nabla p=0 \tag{3.28}
\end{equation*}
$$

So, ∇p and ∇q are both $0 \dot{\tilde{F}}$ It means that $\underset{\sim}{p}$ and q are parallel. Furthermore, $\widetilde{F}^{2}=q-p$ implies that $\nabla \widetilde{F}^{2}=0$. Then, $\left[\widetilde{F}^{2}, \widetilde{F}^{2}\right]=0$. Similarly, we see that $\left[\widetilde{G}^{2}, \widetilde{G}^{2}\right]=0$ and $\left[\widetilde{H}^{2}, \widetilde{H}^{2}\right]=0$. Hence, P and Q are integrable by Proposition.

Theorem 3.3. If the torsions of $\widetilde{F}^{2}, \widetilde{G}^{2}$, and \widetilde{H}^{2} vanish with respect to a torsion-free connection Γ, then M admits a connection $\stackrel{\circ}{\Gamma}$ reducible to $\mathcal{H}(M)$ whose torsion tensor is given by
$24 T(X, Y)=2([f, f]+[g, g]+[h, h])(X, Y)-([f, f]+[g, g]+[h, h])(p X, p Y)$
for any vector fields X and Y on M.

Proof. Since Γ is an arbitrary torsion-free affine connection on M with covariant derivative ∇, by using Proposition, we have $\nabla \widetilde{F}^{2}=0, \nabla \widetilde{G}^{2}=0$ and $\nabla \widetilde{H}^{2}=0$.
Below we give calculations only for the tensor \widetilde{F}. The calculations for the other tensors \widetilde{G} and \widetilde{H} can be obtained similarly.

To simplify the calculations, we introduce the tensors W_{I} and $W_{I I}$ of type $(1,2)$ as follows:

$$
\begin{equation*}
W_{I}(X, Y)=\left(\nabla_{\widetilde{F} Y} \widetilde{F}\right) X+\widetilde{F}\left(\left(\nabla_{Y} \widetilde{F}\right) X\right)+\widetilde{F}^{2}\left(\left(\nabla_{\widetilde{F}^{3} Y} \widetilde{F}\right) X\right)+\widetilde{F}^{3}\left(\left(\nabla_{\widetilde{F}^{2} Y} \widetilde{F}\right) X\right) \tag{3.30}
\end{equation*}
$$

for any vector fields X and Y on M. Using (3.30) we obtain

$$
\begin{equation*}
W_{I}(X, \widetilde{F} Y)=\left(\nabla_{\widetilde{F}^{2} Y} \widetilde{F}\right) X+\widetilde{F}\left(\left(\nabla_{\widetilde{F} Y} \widetilde{F}\right) X\right)+\widetilde{F}^{2}\left(\left(\nabla_{\widetilde{Y}} \widetilde{F}\right) X\right)+\widetilde{F}^{3}\left(\left(\nabla_{\widetilde{F}^{3} Y} \widetilde{F}\right) X\right) \tag{3.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{F} W_{I}(X, Y)=\widetilde{F}\left(\left(\nabla_{\tilde{F} Y} \widetilde{F}\right) X\right)+\widetilde{F}^{2}\left(\left(\nabla_{Y} \widetilde{F}\right) X\right)+\widetilde{F}^{3}\left(\left(\nabla_{\tilde{F}^{3} Y} \widetilde{F}\right) X\right)+\left(\left(\nabla_{\tilde{F}^{2} Y} \widetilde{F}\right) X\right), \tag{3.33}
\end{equation*}
$$

which gives

$$
\begin{equation*}
W_{I}(X, \widetilde{F} Y)-\widetilde{F}\left(W_{I}(X, Y)\right)=0 \tag{3.34}
\end{equation*}
$$

From (3.31) we also obtain

$$
\begin{equation*}
W_{I I}(X, \widetilde{F} Y)-\widetilde{F}\left(W_{I I}(X, Y)\right)=2\left(\nabla_{X} \widetilde{F}\right) Y . \tag{3.35}
\end{equation*}
$$

As the tensor \widetilde{F}^{2} is parallel, i.e, $\nabla \widetilde{F}^{2}=0$, we have
$(\nabla \widetilde{F}) \widetilde{F}=-\widetilde{F}(\nabla \widetilde{F})$. Using (2.6), (2.7), and (2.8), we see that the following relations hold:

$$
\begin{equation*}
\nabla \widetilde{F}=\nabla q+\nabla F p=\nabla F p=\nabla f \tag{3.36}
\end{equation*}
$$

Since $\nabla \widetilde{F}^{2}=0, \nabla p=\nabla q=0$. Thus, $\nabla \widetilde{F}^{3}=-\nabla \widetilde{F}$.
For any tensor field α, if α is parallel, then $\nabla_{X} \alpha Y=\alpha\left(\nabla_{X} Y\right)$. Therefore,

$$
\begin{equation*}
\nabla \widetilde{F}^{3}=\nabla\left(\widetilde{F}^{2} \circ \widetilde{F}\right)=\nabla \widetilde{F}^{2}(\nabla \widetilde{F}) \tag{3.37}
\end{equation*}
$$

In addition to the equations (3.34) and (3.35), the following relations hold:

$$
\begin{align*}
& W_{I I}(X, \widetilde{F} Y)=\widetilde{F}\left(\left(\nabla_{X} \widetilde{F}\right) \widetilde{F} Y\right)=-\widetilde{F}^{2}\left(\left(\nabla_{X} \widetilde{F}\right) Y\right), \tag{3.38}\\
& \widetilde{F} W_{I I}(X, Y)=\widetilde{F}^{2}\left(\left(\nabla_{X} \widetilde{F}\right) Y\right)=\left(\nabla_{X} \widetilde{F}^{3}\right) Y=\left(\nabla_{X} \widetilde{F}\right) Y . \tag{3.39}
\end{align*}
$$

From (3.38) and (3.39) we get

$$
\begin{equation*}
W_{I I}(X, \widetilde{F} Y)-\widetilde{F}\left(W_{I I}(X, Y)\right)=-2\left(\nabla_{X} \widetilde{F}^{3}\right) Y=2\left(\nabla_{X} \widetilde{F}\right) Y \tag{3.40}
\end{equation*}
$$

Rearranging (3.30) we have

$$
\begin{align*}
W_{I}(X, Y) & =\left(\nabla_{q Y+f Y} \widetilde{F}\right) X+\widetilde{F}\left(\left(\nabla_{p Y+q Y} \widetilde{F}\right) X\right)+\widetilde{F}^{2}\left(\left(\nabla_{q Y-F Y} \widetilde{F}\right) X\right) \\
+ & \widetilde{F}^{3}\left(\left(\nabla_{q Y-p Y} \widetilde{F}\right) X\right) \\
& =\left(\left(\nabla_{q Y} \widetilde{F}\right) X\right)\left(1+\widetilde{F}+\widetilde{F}^{2}+\widetilde{F}^{3}\right)+\left(\left(\nabla_{F Y} \widetilde{F}\right) X\right)\left(1-\widetilde{F}^{2}\right) \\
+ & \left(\left(\nabla_{p Y} \widetilde{F}\right) X\right)\left(\widetilde{F}-\widetilde{F}^{3}\right) \\
& \left.=4 q\left(\left(\nabla_{q Y} \widetilde{F}\right) X\right)+2 p\left(\left(\nabla_{f Y}\right) \widetilde{F}\right) X\right)+2 f\left(\left(\nabla_{p Y} \widetilde{F}\right) X\right) \tag{3.41}
\end{align*}
$$

Because $\nabla p=\nabla q=0$, we obtain $\nabla \widetilde{F}=\nabla F p$. So, by the definition of the projection tensor q, we obtain $q(\nabla \widetilde{F})=0$. Moreover,

$$
\begin{equation*}
q\left(\nabla_{X} F\right) Y=0 \quad \text { for any vector fields } X, \text { and } Y \in T_{x}(M), \tag{3.42}
\end{equation*}
$$

and

$$
\begin{align*}
q\left(\nabla_{X} F\right) Y & =q\left(\left(\nabla_{X}(F Y)-F\left(\nabla_{X} Y\right)\right)\right. \\
& =q\left(\nabla_{X}(F Y)\right)-q F\left(\nabla_{X} Y\right)=q\left(\nabla_{X}(F Y)\right)=0 . \tag{3.43}
\end{align*}
$$

Since q is parallel, it follows that $q\left(\nabla_{X}(F Y)\right)=\nabla_{X}(q F Y)=0$, which reduces (3.41) to

$$
\begin{align*}
W_{I}(X, Y) & =4 q\left[\left(\nabla_{q Y} q\right)(X)+\left(\nabla_{q Y} f\right) X\right]+2 p\left[\left(\nabla_{f Y} q\right) X+\left(\nabla_{f Y} f\right) X\right] \\
& +2 f\left[\left(\nabla_{p Y} q\right) X+\left(\nabla_{p Y} f\right) X\right] . \tag{3.44}
\end{align*}
$$

Furthermore, we have $q\left(\left(\nabla_{q Y}(F X)\right)=p\left(\left(\nabla_{F Y} q\right) X\right)=F\left(\left(\nabla_{p Y} q\right) X\right)=0\right.$, which together with (3.43), implies

$$
\begin{equation*}
W_{I}(X, Y)=2 p\left[\left(\nabla_{f Y} f\right) X\right]+2 f\left[\left(\nabla_{p Y} f\right) X\right] . \tag{3.45}
\end{equation*}
$$

(3.31) and (3.19) give

$$
\begin{align*}
& W_{I I}(X, Y)=\widetilde{F}\left(\left(\nabla_{X} \widetilde{F}\right) Y\right) \\
& =(q+f)\left(\nabla_{X}(q+f) Y\right) \\
& =q\left(\left(\nabla_{X} q\right) Y\right)+q\left(\left(\nabla_{X} f\right) Y\right)+f\left(\left(\nabla_{X} q\right) Y\right)+f\left(\left(\nabla_{X} f\right) Y\right) \text {, } \\
& W_{I I}(X, Y)=f\left(\left(\nabla_{X} f\right) Y\right) . \tag{3.46}
\end{align*}
$$

Let us now consider an affine connection $\stackrel{\circ}{\Gamma}$ whose covariant derivative $\stackrel{\circ}{\nabla}$ is given by

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{X} Y=\nabla_{X} Y-\frac{1}{8} W_{I}(X, Y)-\frac{1}{2} W_{I I}(X, Y) \tag{3.47}
\end{equation*}
$$

where X and Y are vector fields on M. Here ∇ is covariant differentiation of an affine connection, and W_{I} and $W_{I I}$ are bilinear mappings $T_{x}(M) \times T_{x}(M) \rightarrow$ $T_{x}(M)$ at each $x \in M$, and $\stackrel{\circ}{\nabla}$ defines an affine connection on M.

We can see that by using (3.47), $\widetilde{F}, \widetilde{G}$, and \widetilde{H} are parallel with respect to $\stackrel{\circ}{\Gamma}$ on M.

Let X and Y be arbitrary vector fields on M. Then,

$$
\begin{align*}
\left(\stackrel{\circ}{\nabla}_{X} \widetilde{F}\right) Y= & \stackrel{\circ}{\nabla}_{X}(\widetilde{F} Y)-\widetilde{F}\left(\stackrel{\circ}{\nabla}_{X} Y\right) \\
= & \nabla_{X}(\widetilde{F} Y)-\frac{1}{8} W_{I}(X, \widetilde{F} Y)-\frac{1}{2} W_{I I}(X, \widetilde{F} Y) \\
& -\widetilde{F}\left[\nabla_{X} Y-\frac{1}{8} W_{I}(X, Y)-\frac{1}{2} W_{I I}(X, Y)\right] \\
= & \nabla_{X}(\widetilde{F} Y)-\widetilde{F}\left(\nabla_{X} Y\right)-\frac{1}{8}\left(W_{I}(X, \widetilde{F} Y)-F\left(W_{I I}(X, \widetilde{F} Y)\right)\right. \\
& -\frac{1}{2}\left[W_{I I}(X, \widetilde{F} Y)-\widetilde{F}\left(W_{I I}(X, Y)\right)\right] \\
= & \left(\nabla_{X} \widetilde{F}\right) Y-\frac{1}{2}\left(2\left(\nabla_{X} \widetilde{F}\right) Y\right)=0 \tag{3.48}
\end{align*}
$$

hence we conclude that $\stackrel{\circ}{\nabla}_{X} \widetilde{F}=0$.
By (3.47), the torsion of $\stackrel{\circ}{\Gamma}$ is obtained as

$$
\begin{align*}
T(X, Y)= & \stackrel{\circ}{\nabla}_{X} Y-\stackrel{\circ}{\nabla}_{Y} X-[X, Y] \\
= & \nabla_{X} Y-\nabla_{Y} X-[X, Y]-\frac{1}{8}\left(W_{I}(X, Y)-W_{I}(Y, X)\right) \\
& -\frac{1}{2}\left(W_{I I}(X, Y)-W_{I I}(Y, X)\right) \tag{3.49}
\end{align*}
$$

Since Γ is torsion-free, we get

$$
\begin{equation*}
T(X, Y)=-\frac{1}{8}\left(W_{I}(X, Y)-W_{I}(Y, X)\right)-\frac{1}{2}\left(W_{I I}(X, Y)-W_{I I}(Y, X)\right) \tag{3.50}
\end{equation*}
$$

Using (3.45) and (3.46) we find

$$
\begin{align*}
-8 T(X, Y)= & W_{I}(X, Y)-W_{I}(Y, X)+4 W_{I I}(X, Y)-4 W_{I I}(Y, X) \\
= & 2 p\left(\left(\nabla_{f Y} f\right) X\right)+2 f\left(\left(\nabla_{p Y} f\right) X\right)-2 p\left(\left(\nabla_{f X} f\right) Y\right) \\
& -2 f\left(\left(\nabla_{p X} f\right) Y\right)+4 f\left(\left(\nabla_{X} f\right) Y\right)-4 f\left(\left(\nabla_{Y} f\right) X\right) \tag{3.51}
\end{align*}
$$

Because $\nabla \widetilde{F}^{2}=0$ and $\nabla p=0$, we see that $p(\nabla F p)=p(\nabla f)=\nabla f$. Then, (3.51) is reduced to

$$
\begin{align*}
-8 T(X, Y)= & 2\left(\nabla_{f Y} f\right) X+2 f\left(\left(\nabla_{p Y} f\right) X\right)-2\left(\nabla_{f X} f\right) Y-2 f\left(\left(\nabla_{p X} f\right) Y\right) \\
& +2 f\left(\left(\nabla_{X}\right) Y\right)+2 f\left(\left(\nabla_{p X} f\right) Y\right)+2\left(\nabla_{q X} f\right) Y-2 f\left(\left(\nabla_{Y} f\right) X\right) \\
& -2 f\left(\left(\nabla_{p Y} f\right) X\right)-2 f\left(\left(\nabla_{p Y} f\right) X\right)-2 f\left(\left(\nabla_{q Y} f\right) X\right) \tag{3.52}
\end{align*}
$$

Equation (3.52) can be simplified to

$$
\begin{align*}
-8 T(X, Y)= & -2\left[\left(\nabla_{f X} f\right) Y-\left(\nabla_{f Y} f\right) X-f\left(\left(\nabla_{X} f\right) Y\right)+f\left(\left(\nabla_{Y} f\right) X\right)\right] \\
& +2 f\left(\left(\nabla_{q X} f\right) Y\right)-2 f\left(\left(\nabla_{q Y} f\right) X\right) \tag{3.53}
\end{align*}
$$

By means of (1.3), we get

$$
\begin{equation*}
\frac{1}{2}[f, f](X, Y)=\left(\nabla_{f X} f\right) Y-\left(\nabla_{f Y} f\right) X-f\left(\left(\nabla_{X} f\right) Y\right)+f\left(\left(\nabla_{Y} f\right) X\right) \tag{3.54}
\end{equation*}
$$

Substituting (3.54) in (3.53) yields

$$
\begin{equation*}
8 T(X, Y)=[f, f](X, Y)-2 f\left(\left(\nabla_{q X} f\right) Y\right)+2 F\left(\left(\nabla_{q Y} f\right) X\right) \tag{3.55}
\end{equation*}
$$

If torsion tensor of $[f, f]$ is calculated for vector fields $p X$ and $p Y$, by using (3.54), we get

$$
\begin{align*}
{[f, f](p X, p Y)-[f, f](X, Y)=} & 2([f X, f Y]-p[p X, p Y]-f[p X, f Y]-f[f X, p Y] \\
& \left.-\left([f X, f Y]+f^{2}[X, Y]-f[f X, Y]-f[X, f Y]\right)\right) \tag{3.56}
\end{align*}
$$

Moreover, we have

$$
\begin{align*}
& f[f X, Y]=f[f X, p Y+q Y]=f[f X, p Y]+f[f X, q Y], \\
& f[X, f Y]=f[p X, f Y]+f[q X, f Y] \tag{3.57}
\end{align*}
$$

Since $(F p) \circ(F p)=-p$ and $f^{2}=-p$, we obtain

$$
\begin{equation*}
f^{2}[X, Y]=-p[p X+q X, p Y+q Y]=-p[p X, p Y]-p[p X, q Y]-p[q X, p Y] \tag{3.58}
\end{equation*}
$$

Substituting (3.57) and (3.58) in (3.56), we get

$$
\begin{align*}
{[f, f](p X, p Y)-[f, f](X, Y)=} & 2(p[q X, p Y]+p[p X, q Y]+p[q X, q Y] \\
& +f[f X, q Y]+f[q X, f Y]) \tag{3.59}
\end{align*}
$$

As $\nabla \widetilde{F}^{2}=0$ and Γ is torsion-free, by Proposition we have $p[q X, q Y]=0$. So, (3.59) becomes

$$
\begin{align*}
{[f, f](p X, p Y)-[f, f](X, Y)=} & 2\left(p\left(\nabla_{p X} q Y-\nabla_{q Y} p X\right)+p\left(\nabla_{q X} p Y-\nabla_{p Y} q X\right)\right. \\
& \left.+f\left(\nabla_{f X} q Y-\nabla_{q Y} f X\right)+f\left(\nabla_{q X} f Y\right)-\nabla_{f Y} q X\right) \tag{3.60}
\end{align*}
$$

By means of parallel properties of p and q, we get

$$
\begin{equation*}
p\left(\nabla_{p Y}(q X)\right)=p\left(\nabla_{p X}(q Y)\right)=F\left(\nabla_{F Y}(q X)\right)=0 \tag{3.61}
\end{equation*}
$$

and

$$
p\left(\nabla_{q X}(p Y)\right)=p\left(\nabla_{q X} Y\right), \quad p\left(\nabla_{q Y}(p X)\right)=p\left(\nabla_{q Y} X\right) .
$$

Therefore, (3.60) reduces to

$$
[f, f](p X, p Y)-[f, f](X, Y)=2 f\left(\left(\nabla_{q X} f\right) Y\right)-2 f\left(\left(\nabla_{q Y} f\right) X\right)
$$

Finally, torsion of f becomes

$$
\begin{equation*}
8 T(X, Y)=2[f, f](X, Y)-[f, f](p X, p Y) \tag{3.62}
\end{equation*}
$$

Similarly, torsion tensors for g and h are obtained as

$$
\begin{align*}
& 8 T(X, Y)=2[g, g](X, Y)-[g, g](p X, p Y) \tag{3.63}\\
& 8 T(X, Y)=2[h, h](X, Y)-[h, h](p X, p Y) \tag{3.64}
\end{align*}
$$

which completes the proof.

References

[1] Yano, K., Ako, M., "Integrability conditions for almost quaternion structure". Hokaido Math J. 1, 63-86 (1972).
[2] Ishihara, S., "Quaternion Kahlerian Manifolds". J. Differential Geometry 9, 483-500 (1974).
[3] Doğanaksoy, A., "Almost Quaternionic Substructures". Turkish Jour. of Math. 16, 109-118 (1992).
[4] Doğanaksoy, A., "On Plane Fields With An Almost Complex Structure". Turkish Jour. of Math. 17, 11-17.(1993)
[5] Kirichenko, V.F., Arseneva, O.E., "Differential geometry of generalized almost quaternionic structures. I", dg-ga/9702013.
[6] Özdemir, F., "A Global Condition for the Triviality of an almost quaternionic structure on complex manifolds". Int. Journal of Pure and Applied Math. Sciences 3, , No.1, 1-9 (2006).
[7] Özdemir, F., Crasmareanu, M., "Geometrical objects associated to a substructure". Turkish Jour. of Math. 35, 717-728, (2011).
[8] Ata, E. and Yaylı Y., "A global condition for the triviality of an almost split quaternionic structure on split complex manifolds". Int. J. Math. Sci. (WASET) 2, no.1, 47-51 (2008).
[9] Alagöz, Y., Oral, K.H., Yüce, S., "Split Quaternion Matrices". Accepted for publication in Miskolc Mathematical Notes.
[10] Kobayashi, S., Nomizu, K., "Foundations of Differential Geometry". A Willey-Interscience Publication, Vol.1,2 (1969).
[11] Stong, R.E., "The Rank of an f-Structure". Kodai Math. Sem. Rep. 29, 207-209, (1977).

