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Abstract

In this work, we consider a Riemannian manifold M with an almost
quaternionic structure V defined by a three-dimensional subbundle of
(1,1) tensors F', G and H such that {F,G, H} is chosen to be a local
basis for V. For such a manifold there exits a subbundle H(M) of
the bundle of orthonormal frames O(M). If M admits a torsion-free
connection reducible to a connection in H (M), then we give a condition
such that the torsion tensor of the bundle vanishes. We also prove that if
M admits a torsion-free connection reducible to a connection in H (M),
then the tensors F 2 CNT’Q, H? are torsion-free, that is, they are integrable.
Here F , é, H are the extended tensors of F , G and H defined on M.
Finally, we show that if the torsions of F 2 G? and H? vanish, then M
admits a connection with torsion which is reducible to H(M), and this
means that 152, G? and H? are integrable.
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1 Introduction

By imposing special structures on the tangent bundle of a manifold, it is pos-
sible to have different type of geometries. (Almost) complex, (almost) quater-
nionic and polynomial structures are examples of such type of structures [1-9].

In literature almost complex and almost quaternionic structures have been
investigated widely, and a detailed review can be found in Kirichenko and Ar-
seneva [5]. We begin by recalling basic results and definitions from literature.

An almost complex structure on a manifold M is a tensor field J: TM — T M
satisfying the identity J? = —id. An almost hypercomplex structure on a 4m-
dimensional manifold M is a triple S = (F, G, H) of almost complex structures



F, G and H satisfying the conditions

F’=G*=H*=-1, H=FG, FG+GF=FH+HF=GH+HG =0,
(1.1)
where I denotes the identity transformation of 7, (M). If each of the tensor
fields F', G and H is a complex structure, then S is called hypercomplex struc-
ture on M.
Let M be a 4m-dimensional Riemannian manifold admitting a three dimen-
sional subbundle V' of (1,1) tensors such that on a neighborhood U of each
x € M, V has a local base {F,G, H}. If on each such neighorhood, the ten-
sors ', G and H satisfy the conditions (1.1), then the bundle V is called an
almost quaternionic structure on M [2].

In [10], the Nijenhuis bracket of two tensor fields A and B of type (1,1) is
defined as the following tensor field of type (1,2)

[A,B](X,Y) = [AX,BY]- A[BX,Y] - B[X, AY]

+ [BX,AY] - B[AX,Y] — A[X, BY] + (AB + BA)[X,Y].
(1.2)

In particular, if A = B we have
[AAI(X,Y) = 2([AX, AY] + A’[X,Y] — A[AX,Y] — A[X, AY]). (1.3)

In [6], using (1.2), the torsion tensor of V' is defined by
[V,V]=[F,F|+ |G,G] + [H, H|, where | , | denotes the Nijenhuis bracket.

The Newlander-Nirenberg Theorem states that an almost complex structure is
a complex structure if and only if it is integrable i.e., it has no torsion. Thus,
if the tensor fields F'; G and H are integrable, then the bracket of any two of
them vanishes, that is, [1]

[F,F]=[G.G]=[H,H =0 and [F,.G]=[F,H] =[G, H=0. (14)

Also, it is shown that there exits a torsion-free connection that F', G and H
are covariantly constant which means that V' is a trivial bundle [1].

In literature, moreover, it is proved that if either M is a quaternionic Kaehler
manifold, or if M is a complex manifold with almost complex structures, then
the vanishing of torsion tensor of V' is equivalent to the vanishing of all the
Nijenhuis brackets of {F, G, H}. For a quaternionic Kaehler manifold, with a
torsion-free connection V, it is given a condition implying that if [V, V] =0



then VF = VG = VH = 0. It follows that the bundle V' admits a flat con-

nection, hence it is trivial see [6].

In [1], a reducibility condition is given for a torsion-free connection on a quater-
nionic manifold M to be reducible to a connection in H (M), where H(M) is
subbundle of the bundle of orthonormal frame O(M).

For a Riemannian manifold M of dimension 4m + n with an almost quater-
nionic structure V' of rank 4m, it is shown that the metric g satisfies

g(X, YY) +g(pX,Y) = 0 for any vector fields X, Y € X(M), where X (M) is
the algebra of vector fields on M, and any section ¢ of V. In [3] Doganaksoy
studied orthogonal plane fields P and ) defined by V' admitting local basis
{F,G, H} and defined projection tensors p: P — T, M and ¢ : Q — T, M.

In this paper, by using the projection tensors p and g above, we define extended
tensors F', G and H on M, and we obtain reducibility conditions for a torsion-
free connection on M to be a connection (either torsion-free or with torsion) in
H(M). The reducibility condition corresponds to the integrability of extended
tensors.

2 Almost Quaternionic Structures

We consider a Riemannian manifold M of dimension 4m + n admitting an
almost quaternionic structure V. Let {F,G, H} be a local basis for V' on a
neighborhood U of M. Since torsion tensors [F, F|, [G,G], and [H, H] are
locally defined objects, to obtain a global condition for the triviality of V, a
tensor [V, V] of type (1,2) is defined globally on U by [6]

V,V] = [F,F] +[G,G] + [H, H]. (2.1)

Let {F,G,H} and {F',G', H'} be local bases for V defined on neighborhoods
U and U, respectively, and assume that UNU’ #0 .
Since U and U’ are not disjoint, then in U N U’ we have

F/ = CLHF —+ CngG -+ algH, (22)
G' = anF + anG + axH , (2.3)
H, = a31F + CLgQG + CL33H

where a;; are functions defined on U N U’. With the notation above, at any
point z € UNU', a;; € SO(3) [1,2].



We calculate the torsion tensor of [V, V] defined in (2.1) by taking into account
local bases {F,G,H} and {F',G', H'} . Using equations (2.2)-(2.4), we also,
compute torsions |G, F|,[F, H|,[H, F],|G, H|] and [H,G] and show that the
torsion tensor [V, V] of the bundle V' is independent of the choice of bases,
that is, [V, V] is well defined.

If a tensor f of type (1,1) on M satisfies the structure equation
fP+r=0 (2.5)

then f is called an f-structure. Since the tensors F,G and H satisfy the
conditions (1.1), they are f-structures on M. In [3] it is shown that any cross-
section ¢ of V of length 1 is f-structure on M, and F,G and H are of length
1

Let {F,G,H} be a basis for V in some neighborhood U of M. In [11], it
is proved that each of F, G, and H has a constant rank on U and from the
conditions F = GH, G = HF, H = F(, it is seen that their ranks are all
equal. Also, in [11], the rank of V' is defined to be the rank of a basis element
on some neighborhood U. By choosing ¢ = 1 + F? = 1 — p, where 1 denotes
the identity operator, it is obtained in [3] that

p+qg=1, p’=p, ¢ =¢q (2.6)

and that

pp=pd=¢, dq=qp=0, (2.7)
for any cross-section ¢ of V. This shows that p and ¢ are complementary pro-
jection operators. Then, there exist two distributions P and () corresponding
to p and ¢, respectively. If the rank of V' is 4m, then P is 4m-dimensional and
@ is n-dimensional.

Let ¢’ be a Riemannian metric of M. Define g to be the tensor field of degree
2 on M as

0, X € P(z), Y Q)
/
g(X,Y), X, Y € Q)
g(X,Y)=19 ) (2.8)
g(X,)Y)+ g (FX, FY)
+¢'(GX,GY)+ g (HX,HY), X,Y € P(x)
where {F,G, H} is a canonical local base for V, and X,Y € T,(M). Since g’

is a Riemannian, g satisfies all the conditions for a Riemannian metric [3].
For any cross-section ¢ of V| from (2.8) we have

g(X, oY) +g(6X,Y) =0, X,Y €X(M). (2.9)



If M admits an almost quaternionic structure, then at each point x in M there
is an orthonormal basis of T'M , of the form

(X1, X, FX1, ... F X, GXy,...,GXp, HX:, ..., HX,,},  (2.10)

and the set of all such frames at all points x € M constitutes a subbundle,
denoted by H (M), of the bundle of orthonormal frames O(M).

We consider P and () to be the orthogonal plane fields defined by almost
substructure V, and let p and ¢ be projections P — T, M and Q — T, M,
respectively [3].

Let us denote by f the tensor Jp defined on P. Since pJ = J, f satisfies the
structure equation f*+ f = 0. For any tensor J of type (1,1) on M we define
its extension as the tensor J of type (1,1) on M by setting

J=q+JIp=q+f. (2.11)

It can be seen that the extended tensor J has the following properties

J=q—p, (2.12)
ZBZQ—Jpzl—j—i—jQ, (2.13)
Jt=1. (2.14)

We recall that I' is an affine (linear) connection on M. A tensor field, say J,
is parallel with respect to I' if and only if VJ = 0, where V is the covariant
differentiation with respect to I' [10].

We give the following proposition from [4].

Proposition. The followings are equivalent

(a) [J?, J?] vanishes,

(b) M admits a torsion-free affine connection according to which J? is parallel,
(c) the plane field P and its orthogonal complement Q) are both integrable.

3 Torsion-free connections reducible to a con-
nection in H(M)

Compatibility of a torsion-free connection I' with the metric ¢’ is equivalent to

the reducibility of I" to O(M). Furthermore, if I" is reducible to H (M), then

the manifold is called quaternionic Kaehler manifold [2].

We also quote the following theorem from [2].
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Theorem. Let M be an almost quaternionic manifold. A connection I' in
orthonormal frame O(M) is reducible to a connection in H(M) if and only if
the covariant derwatives of the tensor fields of F, G and H satisfy the following
conditions:

VF =aG —-bH, VG=—aF+cH, VH=0b—cG (3.1)
where a, b and ¢ are 1-forms on M.

We now begin to state our main theorems related to the reducibility of a tor-
sion free-connection.

Theorem 3.1. If M admits a torsion-free connection I' reducible to H(M)
such that
(Vo) (X, Y) + (Vo)(X,9Y) =0 (3.2)

for any section ¢ € {F,G,H}, then the torsion tensor [V, V] of the bundle V
vanishes.

Proof. For any section ¢ € {F,G, H}, from (3.2) we have

(VF)(FX,Y)+ (VF)(X,FY) =0, (3.3)
(VG)(GX,Y) + (VG)(X,GY) =0, ,
(VHY(HX,Y)+ (VH)(X,HY) =0. (3.5)

By using (3.1) in (3.3)-(3.5), we obtain following relations
(VE)FX,)Y)=(VyF)(FX)=a(Y)G(FX)—-bY)H(FX)

= —a(Y)H(X) — b(Y)G(X), .
(VE)(X,FY) = (Vey F)(X) = a(FY)G(X) — b(FY)H(X). (3.7)

Similarly, we find

(VG)(GX,Y) = (VyG)(GX) = —a(Y)F(GX) + ¢(Y)H(GX)
— —a(Y)H(X) — (Y)F(X), (3.8)
(VG)(X,GY) = (VayG)(X) = —a(GY)F(X) + c(GY)H(X) (3.9)

and

(VH)(HX,Y) = (VyH)(HX) = b(Y)F(HX) — o(Y)G(HX)
= —b(Y)G(X) — e(Y)F(X), (3.10)
(VH)(X,HY) = (Viy H)(X) = b(HY)F(X) + b(Y)G(X). (3.11)



For a torsion-free connection I' reducible to H(M), if the 1-forms a, b and ¢
defined in (3.1) are used in the equations (3.6)-(3.1

1), then we observe that
they satisfy the following relations
b(X) = a(FX),
o(X) = —a(GX),
o(X) =b(HX).

(3.12)

In order to find the torsion tensor of V', we compute the torsions of tensors
F.G and H :

%[F, FI(X,Y) = ([FX, FY] + F?[X,Y] - F[FX,Y] - F[X, FY]
= (VFXpY — VFyFX) + F2(ny — VFyX)

— F(VpxY — VyFX) — F(VxFY — Vyy X)

%[F, FIX,Y) = (Vex F)Y — (Vey F)X + F((Vy F)X) — F((VxF)Y).

(3.13)
Similarly, the tensors [G, G| and [H, H| are obtained as follows:

5(G GIXY) = (VexG)Y — (VayG)X + G((VyG)X) = G(VxG)Y)

(3.14)
and
%[H, H|(X,Y) = (VuxH)Y — (VuyH)X + H(VyH)X) — H(VxH)Y).

(3.15)
Using the relations of (3.12), we get the following equalities
1

LIF FI(X,Y) = [a(FX)G(Y) — b(EX)H(Y)] ~ [a(FY)G(X) ~ b(FY ) H(X)
+ Fla(Y)G(X) ~ MYV H(X)] ~ Fla(X)G(¥) ~ b(X)H(Y)]

SR FIX,Y) = (V) — a(FY)G(X) + (a(FX) — b(X))G(Y)
FO(FY) + a(Y))H(X) + (~a(X) ~ (FX)H(Y).

(3.16)
By using (3.14) and (3.15) for G and H, we obtain

LG GIX.Y) = (~a(GX) — e(X)F(Y) + (a(GY) + (V) F(X)
+(a(Y) — o(GY)H(X) + (e(GX) — a(X)H(Y)
(3.17)



and

%[H, H]|(X,Y) = (l(HX) — (X)) F(Y) + (=b(HY) + c(Y)) F(X)
+ (b(Y) 4+ c(HY))G(X) + (=b(X) — c(HX))G(Y).
(3.18)

Substituting the conditions (3.12) in (3.16)-(3.18), we find [F, F| = 0,
G,G] =0, [H, H] =0, and therefore [V, V] = 0. This completes the proof.

Given tensor fields F', G and H, let us define their extended tensors F,G and
H asin (2.11). It is clear that the relations (2.12)-(2.14) hold for the tensors
F,G and H.

To simplify our calculations we use the following notations

F=q+Fp=q+f, (3.19)
é:q+Gp:q+g, (3.20)
H=q+Hp=q+h, (3.21)

where f = Fp, g = Gp, and h = Hp. Since p + q = 1, where 1 denotes
the identity operator, and tensors F', G, H are defined on distribution P of
TM, using the projection tensor p of type (1,1) defined in Section 2, we write
g=14 f>=1—p. Then, we have

P=p, ¢=q. (3.22)

Also using (2.12), (2.13), and (2.14), we show that the following relations hold:

F2=q—p, (3.23)
FS=FF=(q+ f)la—p)=q— [, (3.24)
FP+F=2q. (3.25)

Similar calculations can be done for G and H by letting g =1 +¢°=1—1p
and ¢ =1+ h?> =1 —p, respectively.

Theorem 3.2. If M admits a torsion-free connection I' reducible to H(M),

then the tensorif 2~: G?>=H? = q — p are torsion-free. That is,
[F2 F?=0,[G%G?*=0and [H? H?| =0, i.e., P and Q are integrable.



Proof. Since I' is reducible to H(M), equations in (3.1) hold.
We get Vp = —Vq from p+¢q=1. Since ¢ = 1+ f?> = 1 — p, using (3.22)
we obtain

Vp=—V(f*) = =V(Fpo Fp) = —FpV(Fp) = V(Fp)Fp. (3.26)
By using (3.1) we get
Vp=—[(aG —bH)Fp+ F(Vp)Fp+ Fp(aG — bH)p — (Vp)], (3.27)
which implies
Vp=0. (3.28)

So, Vp and Vq are both 0. It means that p ang q are parallel. Furthermore,

F2 =q—p implies that VF?2=0. Then, [F2 F?] = 0. Similarly, we see that
[G .G ’] = 0 and [H H ?] = 0. Hence, P and @ are integrable by Proposi-
tion. 0

Theorem 3.3. If the torsions of ﬁz’ 62, and H? vanish with respect to a

torsion-free connection I, then M admits a connection I' reducible to H(M)
whose torsion tensor is given by

24T(X,Y) =2([f, f1+[9. 9] + [h, 1)) (X, Y)—([f, ] + [g, 9] + [, h]) (p)i,pY;
3.29
for any vector fields X andY on M.

Proof. Since T' is an arbitrary torsion-free affine connection on M with co-
variant derivative V , by using Proposition, we have VF >=0,VG?*=0 and
VH? = 0.

Below we give calculations only for the tensor F. The calculations for the
other tensors G and H can be obtained similarly.

To simplify the calculations, we introduce the tensors W; and Wj; of type
(1,2) as follows:

Wi(X,Y) = (Vi F)X + F(Vy F)X) + F*((V sy F) X) + FX (Vi F) X)),
(3.30)
Wi(X,Y) = F(VxF)Y) (3.31)
for any vector fields X and Y on M . Using (3.30) we obtain
Wi(X,FY) = (Viy F)X + F((Vpy F)X) + FX (V3 F)X) + FP((V sy F) X)
(3.32)



and

FWi(X,Y) = F(Vi, F)X) + FX(Vy F)X) + F3 (Vs F)X) + (Vay F)X)
(3.33)

which gives B B
Wi(X,FY)—-FW;(X,Y))=0. (3.34)

From (3.31) we also obtain
Wi (X, FY) — F(Wir(X,Y)) = 2(VxF)Y . (3.35)
As the tensor F? is parallel, i.e, VF? = 0, we have

(VF)F = —F(VF). Using (2.6), (2.7), and (2.8), we sce that the following
relations hold:

VF=Vq+VFp=VFp=Vf. (3.36)
Since VEF? = 0, Vp=Vq=0. Thus, VE? = _VF.
For any tensor field «, if « is parallel, then VxaY = a(VxY'). Therefore,
VE? =V(F?0 F) = VF*VF). (3.37)
In addition to the equations (3.34) and (3.35), the following relations hold:

Wi(X,FY) = F(VxF)FY) = —F?(VxF)Y), (3.38)
FWi(X,Y) = F*(VxEF)Y) = (VxF?)Y = (VxF)Y . (3.39)
From (3.38) and (3.39) we get

Wi(X,FY) = F(Wi(X,Y)) = =2(VxF?)Y = 2(VxF)Y. (3.40)

Rearranging (3.30) we have
Wi(X,Y) = (Voy sy F)X + F((Vpy 1gv F)X) + F*((Vgy _py F)X)
+ﬁ3((vqY—pYﬁ)X)
= (Vo E)X)(1+ F+ F + F¥) + (Vpy F)X)(1 — F?)
W PX)F-F) i
4q((Vor F)X) + 2p((Vyy ) F)X) + 2f(Vpy F)X). (341)
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Because Vp = Vq = 0, we obtain Yﬁ = VFp. So, by the definition of the
projection tensor ¢, we obtain ¢(VF) = 0. Moreover,

¢(VxF)Y =0 for any vector fields X, and Y € T,,(M), (3.42)
and

((VxEF)Y =q((Vx(FY) = F(VxY))
= q(Vx(FY)) = qF(VxY) = ¢(Vx(FY)) = 0. (3.43)

Since ¢ is parallel, it follows that ¢(Vx(FY)) = Vx(¢FY) = 0, which reduces
(3.41) to

Wi(X,Y) = 49[(Vyyrg)(X) + (Vo /) X] + 2[(Viv ) X + (Vv £) X]

Furthermore, we have ¢((Vyu (FX)) = p(Vey@)X) = F((Vyvg)X) = 0,
which together with (3.43), implies

Wi(X,Y) = 2p[(Vyy [)X] + 2f[(Vpr f) X]. (3.45)
(3.31) and (3.19) give

Wi(X,Y)=F(VxF)Y)

= (¢+ f)(Vx(g+ f)Y)
=q((Vxq)Y) +q(Vx)Y) + f(Vx@)Y) + fF(Vx))Y),
Wi(X,Y) = f(Vxf)Y). (3.46)

o o
Let us now consider an affine connection I' whose covariant derivative V is
given by

° 1 1
VxY =VxY — §W[(X, Y) — §W1[(X, Y), (3.47)

where X and Y are vector fields on M. Here V is covariant differentiation of
an affine connection, and W and Wy are bilinear mappings 75, (M ) xT,,(M) —

T.(M) at each x € M, and V defines an affine connection on M.

We can see that by using (3.47), ﬁ, é, and H are parallel with respect toI01
on M.
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Let X and Y be arbitrary vector fields on M. Then,
VxE)Y = Vy(FY) - F(VyY)
- 1 ~ 1 ~
= VX(F’Yv) - gWI(Xa FY) - §WII<X7 FY)

~ 1 1
—F[VxY — §W1(X, Y)— §WH(X, Y)]

1

— Vx(FY)=F(VxY) LM (X, FY)— F(W; (X, FY))

_%[WH(X, FY) — F(Wi(X,Y))]

= (VxF)Y - %(z(vxﬁ)Y) =0, (3.48)

hence we conclude that % Xﬁ’ =0.

By (3.47), the torsion of [" is obtained as

T(X,Y) = VyxV —VyX — [X,Y]
1
= VxY -VyX —[X,Y] -~ g(WI(X, Y) = Wi(Y, X))

1
—§(WH(X, Y) - Wi (Y, X)). (3.49)
Since I' is torsion-free, we get
1 1

Using (3.45) and (3.46) we find

—8T(X,)Y) = WiX,Y) =W (Y, X)+4W(X,Y) — 4Wp (Y, X)
= 2p((Vyy [)X) +2f((Vpy /)X) = 20((Vyx f)Y)
=2f(Vpx /)Y) +4f(Vx [)Y) = 4f(Vy [)X). (3.51)
Because VF? = 0 and Vp = 0, we see that p(VFp) = p(Vf) = Vf. Then,
(3.51) is reduced to
—8T(X,Y) = 2(Viy )X +2f(Vpr /)X) = 2(Vyx f)Y =2/ ((Vpx f)Y)

+2f(Vx)Y) + 2/ ((Vpx f)Y) +2(Vax )Y = 2/ ((Vy [)X)
—2f(Vpy [)X) = 2f(Vpy [)X) = 2f(Var /)X) . (3.52)

Equation (3.52) can be simplified to

—8T(X,Y) = =2[(Vixf)Y = (Vv /)X = fF(Vx))Y) + f((Vy f)X)]
+2f(Vex /)Y) = 2f((Var ) X). (3.53)
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By means of (1.3), we get

S AGY) = (Vix )Y = (T )X = J(Tx)Y) + F(VrHX) . (359
Substituting (3.54) in (3.53) yields
ST(X.Y) = [£,J)(X.Y) = 2/ (Vo /)Y) + 2P (Vo )X). (3.55)

If torsion tensor of [f, f] is calculated for vector fields pX and pY', by using
(3.54), we get

[ f1( X, pY) = [f, FUXSY) = 2([f X, fY] = plpX, pY] = fIpX, fY] = fIf X, pY]
— (/X YT+ X Y] = fIFX Y] = fIX FY])).

(3.56)
Moreover, we have
FUX Y] = fIfX.pY +qV] = fIfX,pY] + f[f X, qV],
X fY] = flpX, fY]+ flaX, fY].
(3.57)
Since (F'p) o (Fp) = —p and f? = —p, we obtain
PIXY] = —plpX +¢X,pY + qY] = —p[pX, pY] — p[pX, qY] - p[gX, pY].
(3.58)
Substituting (3.57) and (3.58) in (3.56), we get
+f X, qY]+ flaX, [Y]). (3.59)

As VF? =0 and T is torsion-free, by Proposition we have p[¢X,qY] = 0. So,
(3.59) becomes

L floX,pY) = [f, fIX,Y) =2(p(VpxqY — VeypX) + p(VoxpY — VyygX)
+ f(VixqY =V fX)+ f(Vex [Y) = ViyeX).
(3.60)

By means of parallel properties of p and ¢, we get

p(Vpy (¢X)) = p(Vpx(¢Y)) = F(Vey(¢X)) =0 (3.61)

and

p(Vex(@Y)) =p(VexY), p(Vey (X)) =p(Vy X).
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Therefore, (3.60) reduces to

L A1 X pY) = [f, FIXY) = 2f(Vox [)Y) = 2f (Vey 1) X) -

Finally, torsion of f becomes

8T(X,Y) =2[f, [I(X,Y) = [f, fl(pX, pY). (3.62)

Similarly, torsion tensors for g and h are obtained as

which completes the proof.

8T(X,Y) = 2[g,9/(X,Y) — [g,9](pX,pY), (3.63)
ST(X,Y) = 2[h h](X,Y) — [h,hl(pX,pY), (3.64)
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