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Abstract

In this work, we consider a Riemannian manifold M with an almost
quaternionic structure V defined by a three-dimensional subbundle of
(1, 1) tensors F , G and H such that {F,G,H} is chosen to be a local
basis for V . For such a manifold there exits a subbundle H(M) of
the bundle of orthonormal frames O(M). If M admits a torsion-free
connection reducible to a connection in H(M) , then we give a condition
such that the torsion tensor of the bundle vanishes. We also prove that if
M admits a torsion-free connection reducible to a connection in H(M) ,
then the tensors F̃ 2, G̃2, H̃2 are torsion-free, that is, they are integrable.
Here F̃ , G̃, H̃ are the extended tensors of F , G and H defined on M .
Finally, we show that if the torsions of F̃ 2, G̃2 and H̃2 vanish, then M
admits a connection with torsion which is reducible to H(M), and this
means that F̃ 2, G̃2 and H̃2 are integrable.

MSC 2010: 53C55, 53C15.

Keywords: Subbundle, almost complex structure, almost quaternionic struc-
ture, torsion tensor.

1 Introduction

By imposing special structures on the tangent bundle of a manifold, it is pos-
sible to have different type of geometries. (Almost) complex, (almost) quater-
nionic and polynomial structures are examples of such type of structures [1-9].

In literature almost complex and almost quaternionic structures have been
investigated widely, and a detailed review can be found in Kirichenko and Ar-
seneva [5]. We begin by recalling basic results and definitions from literature.

An almost complex structure on a manifold M is a tensor field J : TM → TM
satisfying the identity J2 = −id. An almost hypercomplex structure on a 4m-
dimensional manifold M is a triple S = (F,G,H) of almost complex structures
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F , G and H satisfying the conditions

F 2 = G2 = H2 = −I, H = FG, FG+GF = FH +HF = GH +HG = 0,
(1.1)

where I denotes the identity transformation of Tx(M). If each of the tensor
fields F , G and H is a complex structure, then S is called hypercomplex struc-
ture on M .

Let M be a 4m-dimensional Riemannian manifold admitting a three dimen-
sional subbundle V of (1,1) tensors such that on a neighborhood U of each
x ∈ M , V has a local base {F,G,H}. If on each such neigborhood, the ten-
sors F , G and H satisfy the conditions (1.1), then the bundle V is called an
almost quaternionic structure on M [2].

In [10], the Nijenhuis bracket of two tensor fields A and B of type (1, 1) is
defined as the following tensor field of type (1, 2)

[A,B](X, Y ) = [AX,BY ]− A[BX, Y ]−B[X,AY ]

+ [BX,AY ]−B[AX, Y ]− A[X,BY ] + (AB +BA)[X, Y ] .

(1.2)

In particular, if A = B we have

[A,A](X, Y ) = 2
(
[AX,AY ] + A2[X, Y ]− A[AX, Y ]− A[X,AY ]

)
. (1.3)

In [6], using (1.2), the torsion tensor of V is defined by
[V, V ] = [F, F ] + [G,G] + [H,H], where [ , ] denotes the Nijenhuis bracket.

The Newlander-Nirenberg Theorem states that an almost complex structure is
a complex structure if and only if it is integrable i.e., it has no torsion. Thus,
if the tensor fields F , G and H are integrable, then the bracket of any two of
them vanishes, that is, [1]

[F, F ] = [G,G] = [H,H] = 0 and [F,G] = [F,H] = [G,H] = 0. (1.4)

Also, it is shown that there exits a torsion-free connection that F , G and H
are covariantly constant which means that V is a trivial bundle [1].

In literature, moreover, it is proved that if either M is a quaternionic Kaehler
manifold, or if M is a complex manifold with almost complex structures, then
the vanishing of torsion tensor of V is equivalent to the vanishing of all the
Nijenhuis brackets of {F,G,H}. For a quaternionic Kaehler manifold, with a
torsion-free connection ∇, it is given a condition implying that if [V, V ] = 0
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then ∇F = ∇G = ∇H = 0. It follows that the bundle V admits a flat con-
nection, hence it is trivial see [6].

In [1], a reducibility condition is given for a torsion-free connection on a quater-
nionic manifold M to be reducible to a connection in H(M), where H(M) is
subbundle of the bundle of orthonormal frame O(M) .

For a Riemannian manifold M of dimension 4m + n with an almost quater-
nionic structure V of rank 4m, it is shown that the metric g satisfies
g(X,φY ) + g(φX, Y ) = 0 for any vector fields X, Y ∈ X (M) , where X (M) is
the algebra of vector fields on M , and any section φ of V . In [3] Doğanaksoy
studied orthogonal plane fields P and Q defined by V admitting local basis
{F,G,H} and defined projection tensors p : P → TxM and q : Q→ TxM .

In this paper, by using the projection tensors p and q above, we define extended
tensors F̃ , G̃ and H̃ on M , and we obtain reducibility conditions for a torsion-
free connection on M to be a connection (either torsion-free or with torsion) in
H(M). The reducibility condition corresponds to the integrability of extended
tensors.

2 Almost Quaternionic Structures

We consider a Riemannian manifold M of dimension 4m + n admitting an
almost quaternionic structure V . Let {F,G,H} be a local basis for V on a
neighborhood U of M . Since torsion tensors [F, F ], [G,G], and [H,H] are
locally defined objects, to obtain a global condition for the triviality of V , a
tensor [V, V ] of type (1, 2) is defined globally on U by [6]

[V, V ] = [F, F ] + [G,G] + [H,H]. (2.1)

Let {F,G,H} and {F ′, G′, H ′} be local bases for V defined on neighborhoods
U and U ′, respectively, and assume that U ∩ U ′ 6= 0 .

Since U and U ′ are not disjoint, then in U ∩ U ′ we have

F ′ = a11F + a12G+ a13H , (2.2)

G′ = a21F + a22G+ a23H , (2.3)

H ′ = a31F + a32G+ a33H (2.4)

where aij are functions defined on U ∩ U ′. With the notation above, at any
point x ∈ U ∩ U ′, aij ∈ SO(3) [1, 2].
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We calculate the torsion tensor of [V, V ] defined in (2.1) by taking into account
local bases {F,G,H} and {F ′, G′, H ′} . Using equations (2.2)-(2.4) , we also,
compute torsions [G,F ] ,[F,H] ,[H,F ] ,[G,H] and [H,G] and show that the
torsion tensor [V, V ] of the bundle V is independent of the choice of bases,
that is, [V, V ] is well defined.

If a tensor f of type (1,1) on M satisfies the structure equation

f 3 + f = 0, (2.5)

then f is called an f -structure. Since the tensors F,G and H satisfy the
conditions (1.1), they are f -structures on M. In [3] it is shown that any cross-
section φ of V of length 1 is f -structure on M , and F,G and H are of length
1.

Let {F,G,H} be a basis for V in some neighborhood U of M. In [11], it
is proved that each of F,G, and H has a constant rank on U and from the
conditions F = GH, G = HF , H = FG, it is seen that their ranks are all
equal. Also, in [11], the rank of V is defined to be the rank of a basis element
on some neighborhood U . By choosing q = 1 + F 2 = 1 − p, where 1 denotes
the identity operator, it is obtained in [3] that

p+ q = 1, p2 = p, q2 = q (2.6)

and that
φp = p φ = φ, φ q = qφ = 0 , (2.7)

for any cross-section φ of V . This shows that p and q are complementary pro-
jection operators. Then, there exist two distributions P and Q corresponding
to p and q, respectively. If the rank of V is 4m, then P is 4m-dimensional and
Q is n-dimensional.

Let g′ be a Riemannian metric of M . Define g to be the tensor field of degree
2 on M as

g(X, Y ) =


0 , X ∈ P (x) , Y ∈ Q(x)

g′(X, Y ) , X, Y ∈ Q(x)

g′(X, Y ) + g′(FX,FY )

+g′(GX,GY ) + g′(HX,HY ) , X, Y ∈ P (x)

(2.8)

where {F,G,H} is a canonical local base for V , and X, Y ∈ Tx(M). Since g′

is a Riemannian, g satisfies all the conditions for a Riemannian metric [3].

For any cross-section φ of V , from (2.8) we have

g(X,φY ) + g(φX, Y ) = 0 , X, Y ∈ X (M) . (2.9)
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If M admits an almost quaternionic structure, then at each point x in M there
is an orthonormal basis of TM , of the form

{X1, . . . , Xm, FX1, . . . , FXm, GX1, . . . , GXm, HX1, . . . , HXm}, (2.10)

and the set of all such frames at all points x ∈ M constitutes a subbundle,
denoted by H(M), of the bundle of orthonormal frames O(M).

We consider P and Q to be the orthogonal plane fields defined by almost
substructure V, and let p and q be projections P → TxM and Q → TxM,
respectively [3].

Let us denote by f the tensor Jp defined on P . Since pJ = J, f satisfies the
structure equation f 3 + f = 0 . For any tensor J of type (1, 1) on M we define

its extension as the tensor J̃ of type (1, 1) on M by setting

J̃ = q + Jp = q + f . (2.11)

It can be seen that the extended tensor J̃ has the following properties

J̃2 = q − p , (2.12)

J̃3 = q − Jp = 1− J̃ + J̃2 , (2.13)

J̃4 = 1. (2.14)

We recall that Γ is an affine (linear) connection on M . A tensor field, say J ,
is parallel with respect to Γ if and only if ∇J = 0 , where ∇ is the covariant
differentiation with respect to Γ [10].

We give the following proposition from [4].

Proposition. The followings are equivalent

(a) [J̃2, J̃2] vanishes,

(b) M admits a torsion-free affine connection according to which J̃2 is parallel,
(c) the plane field P and its orthogonal complement Q are both integrable.

3 Torsion-free connections reducible to a con-

nection in H(M)

Compatibility of a torsion-free connection Γ with the metric g′ is equivalent to
the reducibility of Γ to O(M). Furthermore, if Γ is reducible to H(M), then
the manifold is called quaternionic Kaehler manifold [2].

We also quote the following theorem from [2].
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Theorem. Let M be an almost quaternionic manifold. A connection Γ in
orthonormal frame O(M) is reducible to a connection in H(M) if and only if
the covariant derivatives of the tensor fields of F,G and H satisfy the following
conditions:

∇F = aG− bH, ∇G = −aF + cH, ∇H = bF − cG (3.1)

where a, b and c are 1-forms on M .

We now begin to state our main theorems related to the reducibility of a tor-
sion free-connection.

Theorem 3.1. If M admits a torsion-free connection Γ reducible to H(M)
such that

(∇φ)(φX, Y ) + (∇φ)(X,φY ) = 0 (3.2)

for any section φ ∈ {F,G,H}, then the torsion tensor [V, V ] of the bundle V
vanishes.

Proof. For any section φ ∈ {F,G,H} , from (3.2) we have

(∇F )(FX, Y ) + (∇F )(X,FY ) = 0 , (3.3)

(∇G)(GX, Y ) + (∇G)(X,GY ) = 0 , (3.4)

(∇H)(HX, Y ) + (∇H)(X,HY ) = 0 . (3.5)

By using (3.1) in (3.3)-(3.5) , we obtain following relations

(∇F )(FX, Y ) = (∇Y F )(FX) = a(Y )G(FX)− b(Y )H(FX)

= −a(Y )H(X)− b(Y )G(X) , (3.6)

(∇F )(X,FY ) = (∇FY F )(X) = a(FY )G(X)− b(FY )H(X) . (3.7)

Similarly, we find

(∇G)(GX, Y ) = (∇YG)(GX) = −a(Y )F (GX) + c(Y )H(GX)

= −a(Y )H(X)− c(Y )F (X) , (3.8)

(∇G)(X,GY ) = (∇GYG)(X) = −a(GY )F (X) + c(GY )H(X) (3.9)

and

(∇H)(HX, Y ) = (∇YH)(HX) = b(Y )F (HX)− c(Y )G(HX)

= −b(Y )G(X)− c(Y )F (X) , (3.10)

(∇H)(X,HY ) = (∇HYH)(X) = b(HY )F (X) + b(Y )G(X) . (3.11)
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For a torsion-free connection Γ reducible to H(M), if the 1-forms a, b and c
defined in (3.1) are used in the equations (3.6)-(3.11), then we observe that
they satisfy the following relations

b(X) = a(FX),

c(X) = −a(GX),

c(X) = b(HX) . (3.12)

In order to find the torsion tensor of V , we compute the torsions of tensors
F,G and H :

1

2
[F, F ](X, Y ) = ([FX,FY ] + F 2[X, Y ]− F [FX, Y ]− F [X,FY ]

= (∇FXFY −∇FY FX) + F 2(∇XY −∇FYX)

− F (∇FXY −∇Y FX)− F (∇XFY −∇FYX)

1

2
[F, F ](X, Y ) = (∇FXF )Y − (∇FY F )X + F ((∇Y F )X)− F ((∇XF )Y ) .

(3.13)

Similarly, the tensors [G,G] and [H,H] are obtained as follows:

1

2
[G,G](X, Y ) = (∇GXG)Y − (∇GYG)X +G((∇YG)X)−G((∇XG)Y )

(3.14)

and

1

2
[H,H](X, Y ) = (∇HXH)Y − (∇HYH)X +H((∇YH)X)−H((∇XH)Y ) .

(3.15)

Using the relations of (3.12) , we get the following equalities

1

2
[F, F ](X, Y ) = [a(FX)G(Y )− b(FX)H(Y )]− [a(FY )G(X)− b(FY )H(X)]

+ F [a(Y )G(X)− b(Y )H(X)]− F [a(X)G(Y )− b(X)H(Y )]
1

2
[F, F ](X, Y ) = (b(Y )− a(FY ))G(X) + (a(FX)− b(X))G(Y )

+ (b(FY ) + a(Y ))H(X) + (−a(X)− b(FX))H(Y ).

(3.16)

By using (3.14) and (3.15) for G and H, we obtain

1

2
[G,G](X, Y ) = (−a(GX)− c(X))F (Y ) + (a(GY ) + c(Y ))F (X)

+ (a(Y )− c(GY ))H(X) + (c(GX)− a(X))H(Y )

(3.17)
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and

1

2
[H,H](X, Y ) = (b(HX)− c(X))F (Y ) + (−b(HY ) + c(Y ))F (X)

+ (b(Y ) + c(HY ))G(X) + (−b(X)− c(HX))G(Y ).

(3.18)

Substituting the conditions (3.12) in (3.16)-(3.18), we find [F, F ] = 0,
[G,G] = 0, [H,H] = 0, and therefore [V, V ] = 0 . This completes the proof.

Given tensor fields F , G and H, let us define their extended tensors F̃ , G̃ and
H̃ as in (2.11) . It is clear that the relations (2.12)-(2.14) hold for the tensors

F̃ , G̃ and H̃ .

To simplify our calculations we use the following notations

F̃ = q + Fp = q + f , (3.19)

G̃ = q +Gp = q + g , (3.20)

H̃ = q +Hp = q + h , (3.21)

where f = Fp , g = Gp, and h = Hp . Since p + q = 1 , where 1 denotes
the identity operator, and tensors F , G, H are defined on distribution P of
TM , using the projection tensor p of type (1,1) defined in Section 2, we write
q = 1 + f 2 = 1− p . Then, we have

p2 = p , q2 = q . (3.22)

Also using (2.12), (2.13), and (2.14), we show that the following relations hold:

F̃ 2 = q − p , (3.23)

F̃ 3 = F̃ F̃ 2 = (q + f)(q − p) = q − f , (3.24)

F̃ 3 + F̃ = 2q . (3.25)

Similar calculations can be done for G̃ and H̃ by letting q = 1 + g2 = 1 − p
and q = 1 + h2 = 1− p , respectively.

Theorem 3.2. If M admits a torsion-free connection Γ reducible to H(M),

then the tensors F̃ 2 = G̃ 2 = H̃ 2 = q − p are torsion-free. That is,
[F̃ 2, F̃ 2] = 0, [G̃ 2, G̃ 2] = 0 and [H̃ 2, H̃ 2] = 0, i.e., P and Q are integrable.
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Proof. Since Γ is reducible to H(M) , equations in (3.1) hold.
We get ∇p = −∇q from p+ q = 1. Since q = 1 + f 2 = 1− p, using (3.22)
we obtain

∇p = −∇(f 2) = −∇(Fp ◦ Fp) = −Fp∇(Fp)−∇(Fp)Fp . (3.26)

By using (3.1) we get

∇p = −[(aG− bH)Fp+ F (∇p)Fp+ Fp(aG− bH)p− (∇p)], (3.27)

which implies
∇p = 0 . (3.28)

So, ∇p and ∇q are both 0. It means that p and q are parallel. Furthermore,
F̃ 2 = q− p implies that ∇F̃ 2 = 0. Then, [F̃ 2, F̃ 2] = 0. Similarly, we see that

[G̃ 2, G̃ 2] = 0 and [H̃ 2, H̃ 2] = 0. Hence, P and Q are integrable by Proposi-
tion.

Theorem 3.3. If the torsions of F̃ 2, G̃ 2, and H̃ 2 vanish with respect to a

torsion-free connection Γ, then M admits a connection
◦
Γ reducible to H(M)

whose torsion tensor is given by

24T (X, Y ) = 2 ([f, f ] + [g, g] + [h, h]) (X, Y )−([f, f ] + [g, g] + [h, h]) (pX, pY )
(3.29)

for any vector fields X and Y on M .

Proof. Since Γ is an arbitrary torsion-free affine connection on M with co-
variant derivative ∇ , by using Proposition , we have ∇F̃ 2 = 0 , ∇G̃2 = 0 and
∇H̃2 = 0.

Below we give calculations only for the tensor F̃ . The calculations for the
other tensors G̃ and H̃ can be obtained similarly.

To simplify the calculations, we introduce the tensors WI and WII of type
(1, 2) as follows:

WI(X, Y ) = (∇F̃ Y F̃ )X + F̃ ((∇Y F̃ )X) + F̃ 2((∇F̃ 3Y F̃ )X) + F̃ 3((∇F̃ 2Y F̃ )X) ,

(3.30)

WII(X, Y ) = F̃ ((∇XF̃ )Y ) (3.31)

for any vector fields X and Y on M . Using (3.30) we obtain

WI(X, F̃Y ) = (∇F̃ 2Y F̃ )X + F̃ ((∇F̃ Y F̃ )X) + F̃ 2((∇Ỹ F̃ )X) + F̃ 3((∇F̃ 3Y F̃ )X)

(3.32)
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and

F̃WI(X, Y ) = F̃ ((∇F̃ Y F̃ )X) + F̃ 2((∇Y F̃ )X) + F̃ 3((∇F̃ 3Y F̃ )X) + ((∇F̃ 2Y F̃ )X) ,

(3.33)

which gives
WI(X, F̃Y )− F̃ (WI(X, Y )) = 0 . (3.34)

From (3.31) we also obtain

WII(X, F̃Y )− F̃ (WII(X, Y )) = 2(∇XF̃ )Y . (3.35)

As the tensor F̃ 2 is parallel, i.e, ∇F̃ 2 = 0, we have
(∇F̃ )F̃ = −F̃ (∇F̃ ). Using (2.6), (2.7), and (2.8), we see that the following
relations hold:

∇F̃ = ∇q +∇Fp = ∇Fp = ∇f . (3.36)

Since ∇F̃ 2 = 0 , ∇p = ∇q = 0. Thus, ∇F̃ 3 = −∇F̃ .

For any tensor field α, if α is parallel, then ∇XαY = α(∇XY ). Therefore,

∇F̃ 3 = ∇(F̃ 2 ◦ F̃ ) = ∇F̃ 2(∇F̃ ) . (3.37)

In addition to the equations (3.34) and (3.35) , the following relations hold:

WII(X, F̃Y ) = F̃ ((∇XF̃ )F̃ Y ) = −F̃ 2((∇XF̃ )Y ) , (3.38)

F̃WII(X, Y ) = F̃ 2((∇XF̃ )Y ) = (∇XF̃
3)Y = (∇XF̃ )Y . (3.39)

From (3.38) and (3.39) we get

WII(X, F̃Y )− F̃ (WII(X, Y )) = −2(∇XF̃
3)Y = 2(∇XF̃ )Y. (3.40)

Rearranging (3.30) we have

WI(X, Y ) = (∇qY+fY F̃ )X + F̃ ((∇pY+qY F̃ )X) + F̃ 2((∇qY−FY F̃ )X)

+F̃ 3((∇qY−pY F̃ )X)

= ((∇qY F̃ )X)(1 + F̃ + F̃ 2 + F̃ 3) + ((∇FY F̃ )X)(1− F̃ 2)

+((∇pY F̃ )X)(F̃ − F̃ 3)

= 4q((∇qY F̃ )X) + 2p((∇fY )F̃ )X) + 2f((∇pY F̃ )X). (3.41)
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Because ∇p = ∇q = 0, we obtain ∇F̃ = ∇Fp . So, by the definition of the
projection tensor q , we obtain q(∇F̃ ) = 0 . Moreover,

q(∇XF )Y = 0 for any vector fields X , and Y ∈ Tx(M) , (3.42)

and

q(∇XF )Y = q((∇X(FY )− F (∇XY ))

= q(∇X(FY ))− qF (∇XY ) = q(∇X(FY )) = 0 . (3.43)

Since q is parallel, it follows that q(∇X(FY )) = ∇X(qFY ) = 0 , which reduces
(3.41) to

WI(X, Y ) = 4q[(∇qY q)(X) + (∇qY f)X] + 2p[(∇fY q)X + (∇fY f)X]

+2f [(∇pY q)X + (∇pY f)X]. (3.44)

Furthermore, we have q((∇qY (FX)) = p((∇FY q)X) = F ((∇pY q)X) = 0 ,
which together with (3.43) , implies

WI(X, Y ) = 2p[(∇fY f)X] + 2f [(∇pY f)X]. (3.45)

(3.31) and (3.19) give

WII(X, Y ) = F̃ ((∇XF̃ )Y )

= (q + f)(∇X(q + f)Y )

= q((∇Xq)Y ) + q((∇Xf)Y ) + f((∇Xq)Y ) + f((∇Xf)Y ) ,

WII(X, Y ) = f((∇Xf)Y ). (3.46)

Let us now consider an affine connection
◦
Γ whose covariant derivative

◦
∇ is

given by
◦
∇XY = ∇XY −

1

8
WI(X, Y )− 1

2
WII(X, Y ), (3.47)

where X and Y are vector fields on M . Here ∇ is covariant differentiation of
an affine connection, and WI and WII are bilinear mappings Tx(M)×Tx(M)→
Tx(M) at each x ∈M , and

◦
∇ defines an affine connection on M .

We can see that by using (3.47), F̃ , G̃, and H̃ are parallel with respect to
◦
Γ

on M .
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Let X and Y be arbitrary vector fields on M . Then,

(
◦
∇XF̃ )Y =

◦
∇X(F̃ Y )− F̃ (

◦
∇XY )

= ∇X(F̃ Y )− 1

8
WI(X, F̃Y )− 1

2
WII(X, F̃Y )

−F̃ [∇XY −
1

8
WI(X, Y )− 1

2
WII(X, Y )]

= ∇X(F̃ Y )− F̃ (∇XY )− 1

8
(WI(X, F̃Y )− F (WII(X, F̃Y ))

−1

2
[WII(X, F̃Y )− F̃ (WII(X, Y ))]

= (∇XF̃ )Y − 1

2
(2(∇XF̃ )Y ) = 0, (3.48)

hence we conclude that
◦
∇XF̃ = 0.

By (3.47) , the torsion of
◦
Γ is obtained as

T (X, Y ) =
◦
∇XY −

◦
∇YX − [X, Y ]

= ∇XY −∇YX − [X, Y ]− 1

8
(WI(X, Y )−WI(Y,X))

−1

2
(WII(X, Y )−WII(Y,X)). (3.49)

Since Γ is torsion-free , we get

T (X, Y ) = −1

8
(WI(X, Y )−WI(Y,X))− 1

2
(WII(X, Y )−WII(Y,X)). (3.50)

Using (3.45) and (3.46) we find

−8T (X, Y ) = WI(X, Y )−WI(Y,X) + 4WII(X, Y )− 4WII(Y,X)

= 2p((∇fY f)X) + 2f((∇pY f)X)− 2p((∇fXf)Y )

−2f((∇pXf)Y ) + 4f((∇Xf)Y )− 4f((∇Y f)X). (3.51)

Because ∇F̃ 2 = 0 and ∇p = 0, we see that p(∇Fp) = p(∇f) = ∇f . Then,
(3.51) is reduced to

−8T (X, Y ) = 2(∇fY f)X + 2f((∇pY f)X)− 2(∇fXf)Y − 2f((∇pXf)Y )

+2f((∇X)Y ) + 2f((∇pXf)Y ) + 2(∇qXf)Y − 2f((∇Y f)X)

−2f((∇pY f)X)− 2f((∇pY f)X)− 2f((∇qY f)X) . (3.52)

Equation (3.52) can be simplified to

−8T (X, Y ) = −2[(∇fXf)Y − (∇fY f)X − f((∇Xf)Y ) + f((∇Y f)X)]

+2f((∇qXf)Y )− 2f((∇qY f)X) . (3.53)
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By means of (1.3), we get

1

2
[f, f ](X, Y ) = (∇fXf)Y − (∇fY f)X − f((∇Xf)Y ) + f((∇Y f)X) . (3.54)

Substituting (3.54) in (3.53) yields

8T (X, Y ) = [f, f ](X, Y )− 2f((∇qXf)Y ) + 2F ((∇qY f)X) . (3.55)

If torsion tensor of [f, f ] is calculated for vector fields pX and pY , by using
(3.54), we get

[f, f ](pX, pY )− [f, f ](X, Y ) = 2([fX, fY ]− p[pX, pY ]− f [pX, fY ]− f [fX, pY ]

− ([fX, fY ] + f 2[X, Y ]− f [fX, Y ]− f [X, fY ])).

(3.56)

Moreover, we have

f [fX, Y ] = f [fX, pY + qY ] = f [fX, pY ] + f [fX, qY ] ,

f [X, fY ] = f [pX, fY ] + f [qX, fY ] .

(3.57)

Since (Fp) ◦ (Fp) = −p and f 2 = −p, we obtain

f 2[X, Y ] = −p[pX + qX, pY + qY ] = −p[pX, pY ]− p[pX, qY ]− p[qX, pY ] .

(3.58)

Substituting (3.57) and (3.58) in (3.56), we get

[f, f ](pX, pY )− [f, f ](X, Y ) = 2(p[qX, pY ] + p[pX, qY ] + p[qX, qY ]

+f [fX, qY ] + f [qX, fY ]) . (3.59)

As ∇F̃ 2 = 0 and Γ is torsion-free, by Proposition we have p[qX, qY ] = 0. So ,
(3.59) becomes

[f, f ](pX, pY )− [f, f ](X, Y ) = 2(p(∇pXqY −∇qY pX) + p(∇qXpY −∇pY qX)

+ f(∇fXqY −∇qY fX) + f(∇qXfY )−∇fY qX) .

(3.60)

By means of parallel properties of p and q , we get

p(∇pY (qX)) = p(∇pX(qY )) = F (∇FY (qX)) = 0 (3.61)

and
p(∇qX(pY )) = p(∇qXY ) , p(∇qY (pX)) = p(∇qYX) .
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Therefore, (3.60) reduces to

[f, f ](pX, pY )− [f, f ](X, Y ) = 2f((∇qXf)Y )− 2f((∇qY f)X) .

Finally, torsion of f becomes

8T (X, Y ) = 2[f, f ](X, Y )− [f, f ](pX, pY ). (3.62)

Similarly, torsion tensors for g and h are obtained as

8T (X, Y ) = 2[g, g](X, Y )− [g, g](pX, pY ), (3.63)

8T (X, Y ) = 2[h, h](X, Y )− [h, h](pX, pY ) , (3.64)

which completes the proof.
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