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1 Introduction

It is well-known that much methodological research on topics related to the Poisson approxi-

mation have yielded useful results in applied probability and statistics, and the most valuable

findings have concerned the Poisson approximation for sums of independent and dependent

Bernoulli random variables. For the independent case, the distribution of sums of n inde-

pendent Bernoulli random variables is usually referred to as the distribution of the number

of successes in a sequence of n independent Bernoulli trials, where success occurs on the ith

trial with a probability of pi ∈ (0, 1), and failure occurs on the ith trial with a probability of

qi = 1− pi. This distribution is always called the Poisson binomial distribution with parameter

p = (p1, ..., pn). When all pi are identical and equal to p, the distribution reduces to the bino-

mial distribution with parameters n and p. Similarly, the distribution of a sum of n Bernoulli

random variables can also be considered as the distribution of the number of successes in a

sequence of n dependent Bernoulli trials for the dependent case. In the past few years, some

mathematicians and statisticians have developed a powerful technique known as the Stein-Chen
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method for approximating the distribution of a sum of Bernoulli random variables, such as Chen

[7], Stein [15], Arratia et al. [1, 2], Barbour et al. [5], Neammanee [13], Teerapabolarn and

Neammanee [17], Teerapabolarn and Neammanee [19], Teerapabolarn and Santiwipanont [20]

and for approximating the specific distribution appeared in Teerapabolarn [21]. In contrast to

many asymptotic methods, this approximation carries with it explicit error bounds as follows.

Suppose Γ is an arbitrary finite index set of size |Γ|. For each α ∈ Γ, let Xα be a Bernoulli

random variables with success probability P (Xα = 1) = 1 − P (Xα = 0) = pα, and let

W =
∑

α∈Γ Xα and λ = E(W ) =
∑

α∈Γ pα. It is well-known that the distribution of W

can be approximated by the Poisson distribution with mean λ when the probabilities pα’s are

sufficiently small. In recent years, numerous authors have sought to propose a good error bound

for measuring the accuracy of this approximation. Many accurate results are derived from the

well-known Stein-Chen method as proposed by Chen [7]. For example, when all Xα are inde-

pendent and λ =
∑

α∈Γ pα, Stein [15] gave an explicit uniform bound for the difference of the

distribution of W and the Poisson distribution with mean λ as follows:∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1(1− e−λ)
∑

α∈Γ

p2
α, (1.1)

where A ⊆ N ∪ {0}. For A = {w0}, w0 ∈ {1, ..., |Γ| − 1}, Neammanee [13] gave a non-uniform

bound ∣∣∣∣P (W = w0)− λw0e−λ

w0!

∣∣∣∣ ≤ min
{

1
w0

, λ−1

} ∑

α∈Γ

p2
α (1.2)

for the point metric between the probability function of W and the Poisson probability function

with mean λ. For A = {0, ..., w0}, w0 ∈ {0, 1, ..., |Γ|}, Teerapabolarn and Neammanee [19] gave

a non-uniform bound∣∣∣∣∣P (W ≤ w0)−
w0∑

k=0

λke−λ

k!

∣∣∣∣∣ ≤ λ−1(1− e−λ)min
{

1,
eλ

w0 + 1

} ∑

α∈Γ

p2
α (1.3)

for approximating the cumulative distribution function of W by the Poisson cumulative distri-

bution function with the same mean. For A ⊆ {0, ..., |Γ|}, Teerapabolarn and Santiwipanont

[20] gave a non-uniform bound for the distance between the distribution of W and the Poisson

distribution with this mean as follows:∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

} ∑

α∈Γ

p2
α, (1.4)

where

∆(λ) =





eλ + λ− 1 if λ−1(eλ − 1) ≤ MA,

2(eλ − 1) if λ−1(eλ − 1) > MA,

and for Cw = {0, ..., w},

MA =





max{w|Cw ⊆ A} if 0 ∈ A,

min{w|w ∈ A} if 0 /∈ A.

2



In the case of dependent Bernoulli summands, we first suppose that, for each α ∈ Γ, a

neighborhood Bα  Γ of α can be chosen so that Xα is independent of Xβ with β /∈ Bα. Let

b1 =
∑

α∈Γ

∑

β∈Bα

pαpβ (1.5)

and

b2 =
∑

α∈Γ

∑

β∈Bα\{α}
E(XαXβ). (1.6)

Barbour et al. [5] gave a uniform bound in the form of
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1(1− e−λ)(b1 + b2) (1.7)

and Janson [9] used the coupling method to determine a uniform bound in the form of
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1(1− e−λ)
∑

α∈Γ

pαE|W −W ∗
α|, (1.8)

where W ∗
α is a random variable that has the same distribution as W−Xα conditional on Xα = 1.

For non-uniform bounds, Teerapabolarn and Neammanee [17] gave two pointwise bounds,

that is,
∣∣∣∣P (W = w0)− λw0e−λ

w0!

∣∣∣∣ ≤ min
{

1
w0

, λ−1

}
(b1 + b2) (1.9)

and
∣∣∣∣P (W = w0)− λw0e−λ

w0!

∣∣∣∣ ≤ min{ 1
w0

, λ−1}
∑

α∈Γ

pαE|W −W ∗
α|, (1.10)

where w0 ∈ {1, 2, ..., |Γ|}. They later discovered two non-uniform bounds for A = {0, ..., w0},
w0 ∈ {0, ..., |Γ|}, in [19], which say that

∣∣∣∣∣P (W ≤ w0)−
w0∑

k=0

λke−λ

k!

∣∣∣∣∣ ≤ λ−1(1− e−λ)min
{

1,
eλ

w0 + 1

}
(b1 + b2) (1.11)

and
∣∣∣∣∣P (W ≤ w0)−

w0∑

k=0

λke−λ

k!

∣∣∣∣∣ ≤ λ−1(1− e−λ)min
{

1,
eλ

w0 + 1

} ∑

α∈Γ

pαE|W −W ∗
α|. (1.12)

After that, Teerapabolarn and Santiwipanont [20] determined general results of two non-uniform

bounds for A ⊆ {0, ..., |Γ|}, that is,
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

}
(b1 + b2) (1.13)

and
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1, λ,
∆(λ)

MA + 1

} ∑

α∈Γ

pαE|W −W ∗
α|. (1.14)
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It is observed that each result in (1.13) and (1.14) gives a good Poisson approximation

when ∆(λ) is small, that is, eλ is small: however, when eλ is rather large, these results may be

inappropriate for approximating the distribution of W . In this article, our goal is to improve

the results with respect to the bounds in (1.13) and (1.14) by eliminating the influence of the

factor eλ.

The Stein-Chen method is utilized to provide all results in the present study as mentioned in

Section 2. In Section 3, we use the Stein-Chen method to yield new results of the approximation

and we also compare the obtained results and the results in (1.13) and (1.14). In Section 4, we

give some examples to illustrate applications of these results. Concluding remarks are presented

in the last section.

2 Method

In 1972, Stein [15] introduced a powerful and general method for bounding the error in the

normal approximation. This method was first developed and applied to the Poisson case by

Chen [7] which is refer to as the Stein-Chen method mentioned above. Stein’s equation for

Poisson distribution with mean λ > 0, for given h, is of the form

h(w)− Pλ(h) = λf(w + 1)− wf(w), (2.1)

where Pλ(h) = e−λ
∑∞

l=0 h(l)λl

l! and f and h are bounded real-valued functions defined on

N ∪ {0}.
For A ⊆ N ∪ {0}, let function hA : N ∪ {0} → R be defined by

hA(w) =





1 if w ∈ A,

0 if w /∈ A.

Following Barbour et al. [5], the solution fA of (2.1) is of the form

fA(w) =





(w − 1)!λ−weλ[Pλ(hA∩Cw−1)− Pλ(hA)Pλ(hCw−1)] if w ≥ 1,

0 if w = 0,
(2.2)

For k,w ∈ N, let ∆f{k}(w) = f{k}(w + 1) − f{k}(w) and ∆fCk
(w) = fCk

(w + 1) − fCk
(w). It

follows from [15] that

∆f{k}(w)





< 0 if w 6= k,

> 0 if w = k,
(2.3)

while Barbour et al. [5] showed that

∆f{w}(w) ≤ 1
w

. (2.4)

Also, when w ≤ k, it follows from [16] that

0 < ∆fCk
(w) ≤ ∆fCk

(k). (2.5)
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The following lemma gives a non-uniform bound for fA(w + 1) − fA(w) that are used to

determine the main results.

Lemma 2.1. For A ⊆ N∪{0} and w ∈ N, let ∆fA(w) = fA(w +1)− fA(w), w>A = min{w|w ∈
A} and wF

A = max{w|Cw ⊆ A}, then we have the following:

|∆fA(w)| ≤ min
{

λ−1(1− e−λ),
1

wA

}
, (2.6)

where 1
wA

is taken to be 1 when wA = 0 (wF
A = 0 or w>A = 1) and for wA > 0, it is given by

1
wA

=





1

wF
A

if 0 ∈ A,

1
w>A−1

if 0 /∈ A.

Proof. The first bound of |∆fA(w)| follows directly from Barbour et al. [5]. For wA = 0,

min
{

λ−1(1− e−λ), 1
wA

}
= λ−1(1− e−λ) because λ−1(1− e−λ) < 1. The next step, for wA > 0,

we shall show that |∆fA(w)| ≤ 1
wA

as follows.

Case 1. w > wA.

Because ∆fA(w) =
∑

k∈A

∆f{k}(w) and fAc(w) = −fA(w), it follows from (2.3) and (2.4) that

1
w
≥ ∆f{w}(w) ≥ ∆fA(w) ≥ ∆f{w}c(w) = −∆f{w}(w) ≥ − 1

w
,

this gives

|∆fA(w)| ≤ 1
w
≤ 1

wA + 1
.

Case 2. w ≤ wF
A (0 ∈ A).

Let ŵ = max{w|w ∈ A}. Following (2.5), we obtain

0 < ∆fCŵ
(w) ≤ ∆fA(w).

Thus

0 < ∆fA(w) ≤ ∆fC
w

F
A

(w) ≤ ∆fC
w

F
A

(wF
A ) ≤ ∆f{wF

A}
(wF

A ) ≤ 1

wF
A

=
1

wA
.

Case 3. w ≤ w>A − 1 (0 /∈ A).

It is observed that ∆fA(w) < 0. Therefore

0 < −∆fA(w) ≤ −∆fCc

w>
A
−1

(w)

= ∆fC
w>

A
−1

(w)

≤ ∆fC
w>

A
−1

(w>A − 1)

≤ ∆f{w>A−1}(w
>
A − 1)

≤ 1
w>A − 1

=
1

wA
.
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Hence, following three cases, (2.6) is obtained. ¤

Lemma 2.2. Let Zα =
∑

β∈Bα\{α}
Xβ, Yα = W −Xα − Zα =

∑

β /∈Bα

Xβ and f = fA be defined as

above. Then we have the following:

1. |E[pα(f(W + 1)− f(Yα + 1))]| ≤ λ−1 min
{

1− e−λ,
λ

wA

} (
p2

α + pαE(Zα)
)
.

2. |E[Xα(f(Yα + Zα + 1)− f(Yα + 1))]| ≤ λ−1 min
{

1− e−λ,
λ

wA

}
E(XαZα).

Proof. The inequalities in 1 and 2 follow from the same argument detailed in the proof of

Lemma 2.2 in [20] combined with the bound in Lemma 2.1. ¤

3 Results

The main results of this study are new non-uniform bounds for approximating the distribution

of sums of dependent Bernoulli random variables using the Poisson distribution. These results

can be obtained with the Stein-Chen method and related properties in Section 2 to improve the

results of Teerapabolarn and Santiwipanont [20] in the following theorems.

Theorem 3.1. With the above definition, for A ⊆ {0, ..., |Γ|}, we have the following:
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1− e−λ,
λ

wA

}
(b1 + b2) (3.1)

and for A = {0},
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ λ−2(λ + e−λ − 1)max{b1, b2}. (3.2)

Proof. The inequality (3.2) follows the result in [18]. Now, we have to verify the general result

in (3.1).

Let Zα =
∑

β∈Bα\{α}
Xβ, Yα = W −Xα − Zα =

∑

β /∈Bα

Xβ, Wα = W−Xα and f = fA be defined

as in (2.2). Teerapabolarn and Santiwipanont [20] showed that
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤
∑

α∈Γ

{|E[pα(f(W + 1)− f(Yα + 1))]|+ |E[Xα(f(Yα + Zα + 1)

− f(Yα + 1))]|.

With Lemma 2.1 and 2.2, we obtain

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1− e−λ,
λ

wA

}
(b1 + b2). ¤

If it is possible to construct, for each α ∈ Γ, a random variable W ∗
α on a common probability

space with W such that W ∗
α has the same distribution as the W −Xα conditional on Xα = 1,
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then the following theorem provides a result along these lines.

Theorem 3.2. For A ⊆ {0, ..., |Γ|}, we have the following:
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1− e−λ,
λ

wA

} ∑

α∈Γ

pαE|W −W ∗
α| (3.3)

and for A = {0},
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ λ−2(λ + e−λ − 1)
∑

α∈Γ

pαE|W −W ∗
α|. (3.4)

Proof. The second inequality follows from the Theorem 2.2 in [20]. In the next step, we shall

show that (3.3) holds. Teerapabolarn and santiwipanont [20] showed that
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤
∑

α∈Γ

pαE|f(W + 1)− f(W ∗
α + 1)|

≤ sup
w≥1

|∆f(w)|
∑

α∈Γ

pαE|W −W ∗
α|,

where f = fA is defined in (2.2). Following Lemma 2.1, we have
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1− e−λ,
λ

wA

} ∑

α∈Γ

pαE|W −W ∗
α|,

which holds for (3.3). ¤
If all Xα are independent, then a non-uniform bound of a Poisson approximation to the

Poisson binomial distribution can be obtained from the following result.

Corollary 3.1. If {Xα, α ∈ Γ} are independent Bernoulli random variables, then for A ⊆
{0, ..., |Γ|},

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1− e−λ,
λ

wA

} ∑

α∈Γ

p2
α. (3.5)

Consider the result in Theorem 3.2, if W ≥ W ∗
α or W −Xα ≤ W ∗

α for every α ∈ Γ, then we

have more convenient forms in the following corollaries.

Corollary 3.2. If W ≥ W ∗
α for every α ∈ Γ, then we have the following:

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ λ−2(λ + e−λ − 1){λ− V ar(W )} (3.6)

and for A ⊆ {0, ..., |Γ|},
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1− e−λ,
λ

wA

}
{λ− V ar(W )}. (3.7)
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Corollary 3.3. If W −Xα ≤ W ∗
α for every α ∈ Γ, then we have the following:

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ λ−2(λ + e−λ − 1)

{
V ar(W )− λ + 2

∑

α∈Γ

p2
α

}
(3.8)

and for A ⊆ {0, ..., |Γ|},
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ λ−1 min
{

1− e−λ,
λ

wA

} {
V ar(W )− λ + 2

∑

α∈Γ

p2
α

}
. (3.9)

Remark. Let us consider the bound of |∆fA(w)| in (2.6) and the bound in Teerapabolarn and

Santiwipanont [20], that is, λ−1 min
{

1− e−λ, λ
wA

}
and λ−1 min

{
1, λ, ∆(λ)

MA+1

}
, where MA = wA

as wA = wF
A and MA = wA + 1 as wA = w>A − 1. It follows that

1. 1− e−λ < min{1, λ}.
2. For MA ≤ 2, 1− e−λ < ∆(λ)

MA+1 .

3. λ
wA

< ∆(λ)
MA+1 when wA = wF

A > 0, because λ

wF
A

≤ 2λ

wF
A +1

< eλ+λ−1
MA+1 < 2(eλ−1)

MA+1 .

4. λ
wA

< ∆(λ)
MA+1 when wA = w>A − 1 > 1, because λ

w>A−1
≤ 2λ

w>A+1
< eλ+λ−1

MA+1 < 2(eλ−1)
MA+1 .

Following these comparisons, the bounds (3.1) and (3.3) are sharper than the bounds (1.13)

and (1.14). Therefore, our results in this study are superior to all results of Teerapabolarn and

Santiwipanont [20].

4 Applications

Many applications of the Poisson estimate for dependent Bernoulli trials have been proposed

by various authors in recent years. These include the birthday problem and the longest head

run in Arratia et al. [1, 2], applications to the theory of random graphs in Barbour et al.

[5], the problem of estimating statistical significance in sequence comparison in Goldstein and

Waterman [8], sequence comparison significance in Waterman and Vingron [22], applications to

time series analysis in Kim [10] and the somatic cell hybrid model in Lange [11], all of which

are applications of the result in Theorem 3.1. Some applications of the result in Theorem 3.2

include random graph problems in Barbour [3, 4], Barbour et al. [5] and Janson [9], the random

allocation problem in Mikhailov [12], occupancy and urn models in Barbour et al. [5], the empty

urn model in Boonyued and Tangkanchanawong [6] and the ménage, birthday and biggest ran-

dom graph problems in Lange [11]. In this section, we present some results that are applications

of Theorems 3.1 and 3.2 and Corollaries 3.2 and 3.3, which are the same applications of the

results in Teerapabolarn and Santiwipanont [20].

Example 4.1. (A birthday problem)

Suppose n balls (people) are uniformly and independently distributed into d boxes (days of the

year). The birthday problem involves determining an approximate distribution of the number

of boxes that receive k or more balls for some fixed positive integer k. Let Γ be the collection of

all sets of trials α ⊂ {1, 2, ..., n} having |α| = k elements, where {1, 2, ..., n} is a set of n balls.

8



Let Xα be the indicator of the event that the balls indexed by α all fall into the same box with

small probability pα = P (Xα = 1) = d1−k. The number of sets of k balls that fall into the same

box is given by W =
∑

α∈Γ Xα. It seems reasonable to approximate W as a Poisson random

variable with mean λ = E(W ) when pα is small. Because all pα are identical, we have

λ = |Γ|pα =
(

n

k

)
d1−k.

To bound the error of the difference of the distribution of W and the Poisson distribution,

following Arratia et al. [1], we first take Bα = {β ∈ Γ : α ∩ β 6= ∅} as the neighborhood

dependence set for α. It is observed that Xα and Xβ are independent when α∩β = ∅. Because

the size of Bα is |Bα| =
(
n
k

)− (
n−k

k

)
, we have

b1 = |Γ||Bα|p2
α

= λ|Bα|d1−k.

For a given α, we have 1 ≤ |α ∩ β| ≤ k − 1 for β ∈ Bα \ {α} and

b2 =
(

n

k

) k−1∑

j=1

(
k

j

)(
n− k

k − j

)
d1+j−2k

= λb,

where b =
∑k−1

j=1

(
k
j

)(
n−k
k−j

)
dj−k. By applying Theorem 3.1, we obtain

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ min
{

1− e−λ,
λ

wA

} (
|Bα|d1−k + b

)
,

where A ⊆ {0, ..., |Γ|} and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ λ−1(λ + e−λ − 1)max
{
|Bα|d1−k, b

}
.

Numerical examples:

1. For n = 5, k = 2 and d = 30, we have λ = 1
3 , |Bα| = 7 and b = 0.2. Thus for

A ⊆ {0, ..., 10}, an approximation of the distribution of the number of sets of two balls that fall

into the same box is
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.12283643 if wA ≤ 1,

0.14444444
wA

if wA ≥ 2,

which is better than the numerical result obtained from (1.13),

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.14444444 if MA ≤ 1,

0.31587650
MA+1 if MA ≥ 2.

2. For n = 50, k = 3 and d = 365, we have λ =
(
50
3

)
(365)−2 = 0.14711953, |Bα| =

(
50
3

) −(
47
3

)
= 3385 and b = 3

(
47
2

)
(365)−2 + 3(47)(365)−1 = 0.41064365. Thus for A ⊆ {0, ..., 19600},
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an approximation of the distribution of the number of sets of two balls that fall into the same

box is
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.05965590 if wA ≤ 1,

0.06415174
wA

if wA ≥ 2,

which is also better than the numerical result obtained from (1.13),
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.06415174 if MA ≤ 1,

0.13326265
MA+1 if MA ≥ 2.

Example 4.2. (A random graph problem)

Consider the n-dimensional unit cube [0, 1]n random graph with 2n vertices, each of degree n,

with an edge joining pairs of vertices that differ in exactly one coordinate. Suppose that each

of the n2n−1 edges is independently assigned to one of two equally likely orientations. Let Γ be

the set of all 2n vertices, and for each α ∈ Γ, let Xα be the indicator that vertex α has all of its

edges directed inward with the probability pα = P (Xα = 1) = 2−n. Let W =
∑

α∈Γ Xα be the

number of vertices at which all n edges point inward. Its distribution can be approximated by

a Poisson distribution with mean λ = E(W ) = 1 when n is large.

We follow Arratia et al. [1] by taking Bα = {β ∈ Γ : |α − β| = 1} as the neighborhood

of α such that Xα and Xβ are independent for every β /∈ Bα. Xα is independent of Xβ with

|α− β| > 1 and E(XαXβ) = 0 for |α− β| = 1; hence b2 = 0. Because |Bα| = n, we have

b1 = |Γ||Bα|p2
α

= n2−n.

By applying Theorem 3.1, it follows that
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ n2−n min
{

1− e−1,
1

wA

}
,

where A ⊆ {0, ..., 2n−1} and
∣∣P (W = 0)− e−1

∣∣ ≤ ne−12−n.

Numerical examples:

1. For n = 5 and A ⊆ {0, ..., 16}, an approximation of the distribution of the number of

vertices at which all 5 edges point inward is of the form
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.09876884 if wA ≤ 1,

0.15625000
wA

if wA ≥ 2,

which is better than the numerical result obtained from (1.13),
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.15625000 if MA ≤ 1,

0.42473154
MA+1 if MA ≥ 2.
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2. For n = 10 and A ⊆ {0, ..., 512}, an approximation of the distribution of the number of

vertices at which all 10 edges point inward is of the form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.00617305 if wA ≤ 1,

0.00976563
wA

if wA ≥ 2,

which is also better than the numerical result obtained from (1.13),

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.00976563 if MA ≤ 1,

0.02654572
MA+1 if MA ≥ 2.

Example 4.3. (The longest perfect head run)

Consider an infinite sequence Y1, Y2, ... of independent random indicators with success probabil-

ity p. For Γ = {1, ..., n} and a fixed positive integer value of length t, let Xα be the indicator of

the event that a successful run of length t or longer begins at position α. Note that X1 =
t∏

k=1

Yk

and for α ∈ {2, ..., n},

Xα = (1− Yα−1)
α+t−1∏

k=α

Yk.

Let W =
∑

α∈Γ Xα be the number of such successful runs starting in the first n positions.

The Poisson heuristic suggests that W is approximately Poisson with mean λ = E(W ) =

pt[(n− 1)(1− p) + 1].

Following Arratia et al. [1], we take Bα = {β ∈ Γ : |β − α| ≤ t} as the neighborhood of α.

It is observed that Xα is independent of Xβ for β /∈ Bα and E(XαXβ) = 0; hence b2 = 0 and

b1 =
∑

α∈Γ

∑

β∈Bα

pαpβ

= p2t + 2tp2t(1− p) + [2nt− t2 + n− 3t− 1]p2t(1− p)2

≤ λ2(2t + 1)
n

+ 2λpt.

By applying Theorem 3.1, an approximation of the distribution of the number of successful runs

starting in the first n positions is of the form
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ min
{

1− e−λ,
λ

wA

}[
λ(2t + 1)

n
+ 2pt

]
,

where A ⊆ {0, ..., n} and

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ λ−1(λ + e−λ − 1)

[
λ(2t + 1)

n
+ 2pt

]
.

11



Numerical examples:

1. For n = 200, p = 0.3 and t = 4, we have λ = 1.13643 and for A ⊆ {0, ..., 200}, a

non-uniform bound for this approximation is of the form
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.04572592 if wA ≤ 1,

0.07652646
wA

if wA ≥ 2,

which is better than the numerical result obtained from (1.13),
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.06733935 if MA ≤ 2,

0.21899132
MA+1 if MA ≥ 3.

2. For n = 500, p = 0.5 and t = 7, we have λ = 1.95703125 and for A ⊆ {0, ..., 500}, a

non-uniform bound for this approximation is of the form
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.06383396 if wA ≤ 2,

0.14547775
wA

if wA ≥ 3,

which is also better than the numerical result obtained from (1.13),
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.07433594 if MA ≤ 7,

0.59731256
MA+1 if MA ≥ 8.

Example 4.4. (A hypergeometric distribution)

Suppose a random sample of size n is chosen without replacement from a finite population

containing N elements of two types of which m are of type A and N −m are of type B. For

each α ∈ Γ = {1, ..., n}, let Xα = 1 if the αth element in the sample is of type A and Xα = 0

otherwise. Then the probability P (Xα = 1) = m
N . Let W =

∑n
α=1 Xα, thus W is the number

of type A elements in the sample that have the hypergeometric distribution with parameters

N , m and n, and its the mean and variance are E(W ) = nm
N and V ar(W ) = N−n

N−1
nm
N

(
1− m

N

)
,

respectively. If
m

N
and

n

N
are small then it seems reasonable to approximate the distribution

of W by a Poisson distribution with mean λ = E(W ) = nm
N .

Consider the coupled random variable W ∗
α which has the same distribution as the W −Xα

conditional on Xα = 1. It is the number of type A elements in the sample other than the αth

element conditional on Xα = 1 and is obtained by swapping out the αth element chosen if it is

of type B, for a randomly chosen an element of type A. Following Barbour [4], we take

W ∗
α = W −Xα −

n∑

β=1,β 6=α

XβIβ,

where Iβ is the indicator of the event that the βth element in the sample is chosen to be swapped

with the αth. It is observed that W ≥ W ∗
α for every α ∈ {1, ..., n}. Thus, by Corollary 3.2, we

have ∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ min
{

1− e−λ,
λ

wA

}(
n + m− 1

N − 1

)
,
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where A ⊆ {0, ..., n} and

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ λ−1(λ + e−λ − 1)

(
n + m− 1

N − 1

)
.

Numerical examples:

1. For N = 500, m = 25 and n = 20, we have λ = 1 and for A ⊆ {0, ..., 20}, a Poisson

approximation to the hypergeometric distribution is of the form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.05573809 if wA ≤ 1,

0.08817635
wA

if wA ≥ 2,

which is better than the numerical result obtained from (1.14),

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.08817635 if MA ≤ 1,

0.23968818
MA+1 if MA ≥ 2.

2. For N = 1000, m = 70 and n = 30, we have λ = 2.1 and for A ⊆ {0, ..., 30}, a Poisson

approximation to the hypergeometric distribution is of the form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.08696378 if wA ≤ 2,

0.20810811
wA

if wA ≥ 3,

which is also better than the numerical result obtained from (1.14),

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.09909910 if MA ≤ 8,

0.91826911
MA+1 if MA ≥ 9.

Example 4.5. (A random graph problem)

A random graph G(n, p) is a graph on n labeled vertices {1, 2, . . . , n} where each possible edge

{α, β} is present randomly and independently with probability p, 0 < p < 1. If we let Eαβ be

the independent edge indicator of the event at edge {α, β} ∈ G(n, p), then P (Eαβ = 1) = p.

For each α ∈ Γ = {1, ..., n}, let Xα = 1 if vertex α is an isolated vertex in G(n, p) and

Xα = 0 otherwise. Then W =
∑n

α=1 Xα is the number of isolated vertices in G(n, p). We

now have the probability pα = P (Xα = 1) = (1 − p)n−1, λ = E(W ) = n(1 − p)n−1 and

V ar(W ) = λ + n(n − 1)(1 − p)2n−3 − λ2. Because E(XαXβ) 6= E(Xα)E(Xβ) for α 6= β, it

indicates that Xα’s are not independent.

Consider the number of isolated vertices in G(n, p) other than the αth vertex conditional

on Xα = 1, which is obtained by deleting all the edges {α, β} (1 ≤ β ≤ n, β 6= α) in G(n, p).

Following Barbour [4], we take

W ∗
α = W −Xα +

n∑

β=1,β 6=α

Eαβ

∏

γ 6=α,β

(1− Eβγ),
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where
∑n

β=1,β 6=α Eαβ
∏

γ 6=α,β(1− Eβγ) is the number of isolated vertices that are connected to

the vertex α. Then W ∗
α has the same distribution as W −Xα conditional on Xα = 1, and we

observe that W ∗
α ≥ W −Xα for every α ∈ {1, ..., n}. Thus, by Corollary 3.3, an approximation

of the distribution of the number of isolated vertices in G(n, p) by a Poisson distribution is of

the form
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ min
{

1− e−λ,
λ

wA

}
[(n− 2)p + 1]e−(n−2)p,

where A ⊆ {0, ..., n} and
∣∣∣P (W = 0)− e−λ

∣∣∣ ≤ λ−1(λ + e−λ − 1)[(n− 2)p + 1]e−(n−2)p.

Numerical examples:

1. For n = 15 and p = 0.2, we have λ = 0.65970698 and for A ⊆ {0, ..., 15}, a non-uniform

bound of the error of this approximation is of the form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.12914615 if wA ≤ 1,

0.17639567
wA

if wA ≥ 2,

which is better than the numerical result obtained from (1.14),

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.17639567 if MA ≤ 1,

0.42619344
MA+1 if MA ≥ 2.

2. For n = 30 and p = 0.1, we have λ = 1.41303861 and for A ⊆ {0, ..., 30}, a non-uniform

bound of the error of this approximation is of the form

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.17483320 if wA ≤ 1,

0.32652247
wA

if wA ≥ 2,

which is also better than the numerical result obtained from (1.14),

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.23107824 if MA ≤ 3,

1.04481077
MA+1 if MA ≥ 4.

Example 4.6. (The ménage problem)

The classical ménage problem asks for the number of seatings of n married couples at a round

table, with men and women alternating such that no one sits next to his or her partner. More

generally, we may ask for the probability that a random seating produces exactly k couples

sitting together. We number the seats around the table from 1 to 2n, that is, for α ∈ Γ =

{1, ..., 2n}, let Xα = 1 if a couple occupies seats α and α + 1 and Xα = 0 otherwise. Then, W ,

the number of couples sitting next to each other, can be represented by W =
∑2n

α=1 Xα, where

X2n+1 = X1 and, by symmetry, pα = P (Xα = 1) = 1
n and λ = E(W ) = 2.
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The coupled random variable W ∗
α is constructed by exchanging the person in seat α+1 with

the spouse of the person in seat α; then, we count the number of adjacent spouse pairs, excluding

the pair now occupying seats α and α + 1. From Lange [11], the term E|W −W ∗
α| is bound by

6(n−2)
n(n−1) , that is, E|W −W ∗

α| ≤ 6(n−2)
n(n−1) . By applying Theorem 3.2, a result in approximating the

distribution of the number of couples sitting next to each other can be approximated as
∣∣∣∣∣P (W ∈ A)−

∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤ min
{

1− e−2,
2

wA

}
6(n− 2)
n(n− 1)

,

where A ⊆ {0, ..., 2n} and

∣∣∣P (W = 0)− e−λ
∣∣∣ ≤ 3(1 + e−2)(n− 2)

n(n− 1)
.

Numerical examples:

1. For n = 100 and A ⊆ {0, ..., 200}, a result of this approximation is

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.05135584 if wA ≤ 2,

0.11878788
wA

if wA ≥ 3,

which is better than the numerical result obtained from (1.14),

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.05939394 if MA ≤ 7,

0.49825909
MA+1 if MA ≥ 8.

2. For n = 200 and A ⊆ {0, ..., 400}, a result of this approximation is

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.02580959 if wA ≤ 2,

0.05969849
wA

if wA ≥ 3,

which is also better than the numerical result obtained from (1.14),

∣∣∣∣∣P (W ∈ A)−
∑

k∈A

λke−λ

k!

∣∣∣∣∣ ≤




0.02984925 if MA ≤ 7,

0.25040700
MA+1 if MA ≥ 8.

5 Conclusion

The bounds in Theorems 3.1 and 3.2 and Corollaries 3.1−3.3, which were improved by the Stein-

Chen method, provide new general estimates of the error between the distribution of W and the

Poisson distribution with mean λ = E(W ), where W is a sums of dependent Bernoulli random

variables. All bounds reported in this study are sharper than the bounds in Teerapabolarn and

Santiwipanont [20], including both theoretical and numerical results. In addition, the influence

of factor eλ in the old bounds is eliminated from or reduced in the new bounds. Accordingly,

these bounds provide appropriate criteria for measuring the accuracy of approximating the dis-

tribution of W by the Poisson distribution with this mean. In short, if each corresponding
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bound is small, a good Poisson approximation is obtained. When each corresponding bound is

not small, however, it is not appropriate to approximate the distribution of W with the Poisson

distribution.
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