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Abstract An associative ring is said to be right strongly Hopfian if the chain of

right annihilators rR(a) ⊆ rR(a2) ⊆ · · · stabilizes for each a ∈ R. In this article,

we are interested in the class of right strongly Hopfian rings and the transfer of

this property from an associative ring R to the Ore extension R[x;α, δ] and the

monoid ring R[M ]. It is proved that if R is (α, δ)-compatible and R[x;α, δ] is

reversible, then the Ore extension R[x;α, δ] is right strongly Hopfian if and only

if R is right strongly Hopfian, and it is also showed that if M is a strictly totally

ordered monoid and R[M ] is a reversible ring, then the monoid ring R[M ] is

right strongly Hopfian if and only if R is right strongly Hopfian. Consequently,

several known results regarding strongly Hopfian rings are extended to a more

generally setting.
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1. Introduction

Throughout this paper all rings are associative with identity. For a nonempty subset

X of a ring R, lR(X) = {a ∈ R | aX = 0} and rR(X) = {a ∈ R | Xa = 0} denote

the left and the right annihilator of X in R, respectively. Following A. Hmaimou et

al [5], a ring R is left strongly Hopfian if for every endomorphism f of R, the chain

kerf ⊆ kerf 2 ⊆ · · · stabilizes. Equivalently, R is left strongly Hopfian if the chain

of left annihilators lR(a) ⊆ lR(a2) ⊆ · · · stabilizes for each a ∈ R. The class of left

strongly Hopfian rings is very large. It contains Noetherian rings, Laskerian rings, rings
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satisfying acc on d-annihilators and those satisfying acc on d-colons, and so on [4]. If

R is a commutative ring, then a left strongly Hopfian ring is also called a strongly

Hopfian ring. A. Hmaimou et al [5] showed that for a commutative ring R, the ring

R is strongly Hopfian if and only if the polynomial ring R[x] is strongly Hopfian if

and only if the Laurent polynomial ring R[x; x−1] is strongly Hopfian. Let R be a

commutative ring. In [4], S. Hizem provided an example of a strongly Hopfian ring R

such that the power series ring R[[x]] is not necessary strongly Hopfian, and also gave

some necessary and sufficient conditions for R[[x]] to be strongly Hopfian. For more

details and properties of left strongly Hopfian rings, see [2, 4, 5, 7, 8].

Let α be an endomorphism, and δ an α-derivation of R, that is, δ is an additive map

such that δ(ab) = δ(a)b + α(a)δ(b), for a, b ∈ R. According to Annin [1], a ring R is

said to be α-compatible if for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0. Clearly, this may only

happen when the endomorphism α is injective. Moreover, R is said to be δ-compatible

if for each a, b ∈ R, ab = 0 ⇒ aδ(b) = 0. A ring R is (α, δ)-compatible if it is both

α-compatible and δ-compatible. Recall that a ring R is reversible if ab = 0 ⇒ ba = 0

for all a, b ∈ R, and a ring R is semicommutative if ab = 0 implies aRb = 0 for

any a, b ∈ R. Clearly, any subring of a reversible ring is also reversible, and if R is

a reversible ring, then for any n ∈ N and any permutation σ ∈ Sn, x1x2 · · ·xn = 0

implies xσ(1)Rxσ(2)R · · ·xσ(n)R = 0 for any xi ∈ R, 1 ≤ i ≤ n. Reversible rings

are semicommutative, but the reverse is not true in general [6, Example 1.5]. Let

f(x) = a0 + a1x + · · · + anxn ∈ R[x; α, δ], {a0, a1, . . . , an} denotes the subset of R

comprised of the coefficients of f(x).

In this article, we are interested in the class of right strongly Hopfian rings and

the transfer of this property from an associative ring R to the Ore extension R[x; α, δ]

and the monoid ring R[M ]. We first provide some examples of right strongly Hopfian

rings. We next show that: (1) if R is (α, δ)-compatible and R[x; α, δ] is reversible, then

the Ore extension R[x; α, δ] is right strongly Hopfian if and only if R is right strongly

Hopfian. (2) If M is a strictly totally ordered monoid and R[M ] a reversible ring,

then the monoid ring R[M ] is right strongly Hopfian if and only if R is right strongly

Hopfian.

2. Extensions of right strongly Hopfian rings

Definition 2.1 A ring R is right strongly Hopfian if the chain of right annihilators

rR(a) ⊆ rR(a2) ⊆ · · · stabilizes for each a ∈ R.

The next Lemma is known and very useful. We leave the proof for the reader.

Lemma 2.2 Let a ∈ R. Then the chain rR(a) ⊆ rR(a2) ⊆ · · · stabilizes if and only if

there exists n > m such that rR(an) = rR(am).
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Lemma 2.3 Let A ⊂ B be an extension of rings. If B is right strongly Hopfian, then

so is A.

Proof Let a ∈ A. Then rA(a) = rB(a) ∩ A.

Proposition 2.4 Let Tn(R) denote the n×n upper triangular matrix ring over a ring

R. Then the following conditions are equivalent:

(1) R is right strongly Hopfian;

(2) Tn(R) is right strongly Hopfian.

Proof (1) ⇒ (2). Suppose R is right strongly Hopfian and let

A =











a11 a12 · · · a1n

0 a22 · · · a2n

· · · · · · · · · · · ·

0 0 · · · ann











∈ Tn(R).

We proceed by induction on n to show that Tn(R) is right strongly Hopfian. Let n = 2.

Put α =

(

a b

0 c

)

∈ T2(R). Since R is right strongly Hopfian, there exists m ∈ N

such that for any n > m, rR(an) = rR(am) and rR(cn) = rR(cm). Now we show that

rT2(R)(α
2m+1) = rT2(R)(α

2m). If β =

(

x y

0 z

)

∈ rT2(R)(α
2m+1), then

α2m+1β

=

(

a2m+1 a2mb + a2m−1bc + · · ·+ ambcm + · · · + bc2m

0 c2m+1

)(

x y

0 z

)

=

(

a2m+1x a2m+1y + (a2mb + a2m−1bc + · · ·+ ambcm + · · · + bc2m)z

0 c2m+1z

)

= 0.

Thus x ∈ rR(a2m+1) = rR(a2m) and z ∈ rR(c2m+1) = rR(c2m) = · · · = rR(cm).

Hence the equation

a2m+1y + (a2mb + a2m−1bc + · · · + ambcm + · · · + bc2m)z = 0

becomes
a2m+1y + (a2mb + a2m−1bc + · · ·+ am+1bcm−1)z

= am+1(amy + (am−1b + am−2bc + · · ·+ bcm−1)z) = 0.

Then

amy + (am−1b + am−2bc + · · ·+ bcm−1)z ∈ rR(am+1),

and so

amy + (am−1b + am−2bc + · · ·+ bcm−1)z ∈ rR(am).
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Hence
am(amy + (am−1b + am−2bc + · · ·+ bcm−1)z)

= a2my + (a2m−1b + a2m−2bc + · · ·+ ambcm−1)z = 0.

Then

a2mβ

=

(

a2m a2m−1b + a2m−2bc + · · ·+ abc2m−2 + bc2m−1

0 c2m

)(

x y

0 z

)

=

(

a2mx a2my + (a2m−1b + a2m−2bc + · · ·+ ambcm−1 + · · · + bc2m−1)z

0 c2mz

)

=

(

0 a2my + (a2m−1b + a2m−2bc + · · ·+ ambcm−1)z

0 0

)

= 0.

Hence rT2(R)(α
2m+1) ⊆ rT2(R)(α

2m) and so rT2(R)(α
2m+1) = rT2(R)(α

2m). Therefore T2(R)

is right strongly Hopfian.

Next, we assume that the result is true for n − 1, n > 2, and let

A =











a11 a12 · · · a1n

0 a22 · · · a2n

· · · · · · · · · · · ·

0 0 · · · ann











∈ Tn(R).

We show that rTn(R)(A) ⊆ rTn(R)(A
2) ⊆ · · · stabilizes. Put

A =











a11 a12 · · · a1n

0 a22 · · · a2n

· · · · · · · · · · · ·

0 0 · · · ann











=

(

An−1 B

0 ann

)

.

By the induction hypothesis, we can find m ∈ N such that for any s > m, rTn−1(R)(A
s
n−1) =

rTn−1(R)(A
m
n−1) and rR(as

nn) = rR(am
nn). Then using the same way as above, we can show

that rTn(R)(A
2m+1) = rTn(R)(A

2m) and so Tn(R) is right strongly Hopfian by induction.

(2) ⇒ (1) This follows easily from Lemma 2.3.

Corollary 2.5 Let Ln(R) denote the lower triangular matrix ring over R. Then the

following conditions are equivalent:

(1) R is right strongly Hopfian;

(2) Ln(R) is right strongly Hopfian.

Let

Sn(R) =





























a a12 · · · a1n

0 a · · · a2n

· · · · · · · · · · · ·

0 0 · · · a











| a, aij ∈ R



















,
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Gn(R) =





























a1 a2 · · · an

0 a1 · · · an−1

· · · · · · · · · · · ·

0 0 · · · a1











| ai ∈ R, 1 ≤ i ≤ n



















,

and let R ./ R denote the trivial extension of R by R.

Corollary 2.6 The following conditions are equivalent:

(1) R is right strongly hopfian;

(2)Sn(R) is right strongly Hopfian;

(3) Gn(R) is right strongly Hopfian;

(4) R[x]/(xn) is right strongly Hopfian;

(5) R ./ R is right strongly Hopfian.

Proof Note that R[x]/(xn) ∼= Gn(R) and R ./ R ∼= G2(R).

Let R be a ring. Immediately, we deduce that the lower triangular matrix ring

over R is right strongly Hopfian if and only if the upper triangular matrix ring is right

strongly Hopfian. Let R be a ring, and let W (R) =

















a11 0 0

a21 a22 a23

0 0 a33






| aij ∈ R











.

Then W (R) is a 3×3 subring of M3(R) under usual matrix addition and multiplication.

A natural problem asks if the right strongly Hopfian property of such a ring coincides

with that of R. This inspires us to consider the right strongly Hopfian property of

W (R).

Proposition 2.7 Let R be a ring. Then W (R) is right strongly Hopfian if and only if

R is right strongly Hopfian.

Proof Suppose R is right strongly Hopfian and let

α =







a 0 0

x b y

0 0 c






∈ W (R).

Then there exists m ∈ N such that for any n > m, rR(an) = rR(am), rR(bn) = rR(bm),

and rR(cn) = rR(cm). Now we show that rW (R)(α
2m+1) = rW (R)(α

2m). If

β =







d 0 0

s e t

0 0 f






∈ rW (R)(α

2m+1),

then

α2m+1β =







a2m+1d 0 0

ud + b2m+1s b2m+1e b2m+1t + vf

0 0 c2m+1f






= 0,
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where

u = xa2m + bxa2m−1 + · · ·+ bmxam + bm+1xam−1 + · · · + b2m−1xa + b2mx,

and

v = b2my + b2m−1yc + b2m−2yc2 + · · · + byc2m−1 + yc2m.

Hence

d ∈ rR(a2m+1) = rR(a2m) = · · · = rR(am),

e ∈ rR(b2m+1) = rR(b2m) = · · · = rR(bm),

and

f ∈ rR(c2m+1) = rR(c2m) = · · · = rR(cm).

Then

0 = ud + b2m+1s

= (xa2m + bxa2m−1 + · · ·+ bmxam + bm+1xam−1 + · · · + b2mx)d + b2m+1s

= (bm+1xam−1 + bm+2xam−2 + · · · + b2mx)d + b2m+1s

= bm+1((xam−1 + bxam−2 + · · · + bm−1x)d + bms),

and

0 = b2m+1t + vf

= b2m+1t + (b2my + b2m−1yc + · · ·+ bm+1ycm−1 + bmycm + · · ·+ yc2m)f

= b2m+1t + (b2my + b2m−1yc + · · ·+ bm+1ycm−1)f

= bm+1(bmt + (bm−1y + bm−2yc + · · ·+ ycm−1)f).

Hence

(xam−1 + bxam−2 + · · ·+ bm−1x)d + bms ∈ rR(bm+1) = rR(bm)

and

bmt + (bm−1y + bm−2yc + · · ·+ ycm−1)f ∈ rR((bm+1) = rR(bm).

So
bm((xam−1 + bxam−2 + · · ·+ bm−1x)d + bms)

= bmxam−1 + bm+1xam−2 + · · ·+ b2m−1x)d + b2ms = 0.

and
bm(bmt + (bm−1y + bm−2yc + · · ·+ ycm−1)f)

= b2mt + (b2m−1y + b2m−2yc + · · ·+ bmycm−1)f = 0.

Then by a routine computations, we can show that α2mβ = 0 and so β ∈ rW (R)(α
2m).

Hence rW (R)(α
2m+1) = rW (R)(α

2m). Therefore W (R) is right strongly Hopfian.

Conversely, if W (R) is right strongly Hopfian, then by Lemma 2.3, R is right

strongly Hopfian.

Let α be an endomorphism and δ an α-derivation of R. We denote by R[x; α, δ]

the Ore extension whose elements are the polynomials over R, the addition is defined
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as usual and the multiplication is subject to the relation xa = α(a)x + δ(a) for any

a ∈ R. From this rule, an inductive argument can be made in order to calculate an

expression for xja, for all j ∈ N and a ∈ R. To recall this result, we shall use some

convenient notation introduced in [9].

Notation 2.8 Let δ be an α-derivation of R. For integers i, j with 0 ≤ i ≤ j, f j
i ∈

End(R, +) will denote the map which is the sum of all possible words in α, δ built

with i letters α and j − i letters δ. For instance, f 0
0 = 1, f j

j = αj, f j
0 = δj and

f j
j−1 = αj−1δ+αj−2δα+· · ·+δαj−1. Using recursive formulas for the f j

i ’s and induction,

as done in [9], one can show with a routine computation that

xja =

j
∑

i=0

f j
i (a)xi.

The following Lemma is well known and we omit the proof (see [3, Lemma 2.1]).

Lemma 2.9 Let R be an (α, δ)-compatible ring. Then we have the following:

(1) If ab = 0, then aαn(b) = αn(a)b = 0 for all positive integers n.

(2) If αk(a)b = 0 for some positive integer k, then ab = 0.

(3) If ab = 0, then αn(a)δm(b) = 0 = δm(a)αn(b) for all positive integers m, n.

(4) If ab = 0, then af j
i (b) = 0 and f j

i (a)b = 0 for all i, j.

Lemma 2.10 Let R be an α-compatible ring. If αk1(a1)α
k2(a2) · · ·α

kn(an) = 0 for

some positive integers, then a1a2 · · ·an = 0.

Proof Using induction, for n = 1, the result is true by the injectivity of α. Now

suppose αk1(a1)α
k2(a2) · · ·α

kn(an) = 0. Then αk1(a1)α
k2(a2) · · ·α

kn−1(an−1)an = 0,

and so αk1(a1)α
k2(a2) · · ·α

kn−1(an−1an) = 0. Then a1a2 · · ·an = 0.

Lemma 2.11 Let R be an (α, δ)-compatible ring, f(x) = a0 + a1x + · · · + anxn and

g(x) = b0+b1x+· · ·+bmxm be two polynomials in R[x; α, δ]. Then we have the following:

(1) If for all 0 ≤ i ≤ n and 0 ≤ j ≤ m, aibj = 0, then f(x)g(x) = 0.

(2) If R is semicommutative and c ∈ R is such that for all 0 ≤ j ≤ m, cbj = 0,

then cf(x)g(x) = 0.

Proof (1) We have

f(x)g(x) = (a0 + a1x + · · · + anxn)(b0 + b1x + · · ·+ bmxm)

=
m+n
∑

l=0

(

∑

s+t=l

(
∑n

i=s aif
i
s(bt))

)

xl.

By Lemma 2.9, aibt = 0 implies aif
i
s(bt) = 0. Thus it is easy to see that f(x)g(x) = 0.

(2) Since R is semicommutative, for all 0 ≤ i ≤ n and 0 ≤ j ≤ m, cbj = 0 implies

caibj = 0. Thus by (1) we complete the proof.
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For two polynomials f(x) and g(x) in R[x; α, δ], in order to calculate a expression

for (f(x) + g(x))n, for all n ∈ N, we denote by [Qn
i f(x)g(x)] the polynomial which

is the sum of all possible terms, which each term is a product of i polynomials f(x)

and n− i polynomials g(x). Using this convenient notation, we have (f(x) + g(x))n =

f(x)n + [Qn
n−1f(x)g(x)] + [Qn

n−2f(x)g(x)] + · · ·+ [Qn
1f(x)g(x)] + g(x)n.

Lemma 2.12 Let R be an (α, δ)-compatible semicommutative ring, axr, f(x) = b0 +

b1x + · · · + bmxm, g(x) = c0 + c1x + · · · + cqx
q be three polynomials in R[x; α, δ]. If

cj ∈ rR(an) for all 0 ≤ j ≤ q, then for any p > n, [Qp
n(axr)f(x)]g(x) = 0.

Proof It is easy to check that the coefficients of [Qp
n(axr)f(x)] can be written

as sums of monomials of length p in f t
s(a) and f v

u(bj), where bj ∈ {b0, b1, . . . , bm} and

t ≥ s ≥ 0, v ≥ u ≥ 0 are nonnegative positive integers. Consider each monomial

f t1
s1

(v1)f
t2
s2

(v2) · · ·f
tp
sp (vp) where v1, v2, . . ., vp ∈ {a, b0, b1, . . .¸ , bm}. It would contains n

letters a. Suppose vr1 = vr2 = · · · = vrn
= a for some 1 ≤ r1 < r2 < · · · < rn ≤ p.

Then we write the monomial f t1
s1

(v1)f
t2
s2

(v2) · · · f
tp
sp(vp) as

f t1
s1

(v1) · · ·f
tr1
sr1

(a)f
tr1+1
sr1+1 (vr1+1) · · ·f

trn−1
srn−1

(vrn−1)f
trn
srn

(a)f trn+1
srn+1

(vrn+1) · · ·f
tp
sp

(vp),

where vs ∈ {b0, b1, . . . , bm} if s 6∈ {r1, r2, . . . , rn}. For each 0 ≤ j ≤ q, since R is

(α, δ)-compatible and semicommutative, ancj = aa · · ·acj = 0 implies

f
tr1
sr1

(a)f
tr2
sr2

(a) · · · f trn
srn

(a)cj = 0,

and so

f t1
s1

(v1) · · ·f
tr1
sr1

(a)f
tr1+1
sr1+1 (vr1+1) · · ·f

trn−1
srn−1

(vrn−1)f
trn
srn

(a)f trn+1
srn+1

(vrn+1) · · ·f
tp
sp

(vp)cj = 0.

Thus by Lemma 2.11, we complete the proof.

The same idea can be used to prove the following.

Corollary 2.13 Let R be an (α, δ)-compatible semicommutative ring, axr, f(x) =

b0 + b1x + · · · + bmxm, g(x) = c0 + c1x + · · · + cqx
q be three polynomials in R[x; α, δ].

If cj ∈ rR(an) for all 0 ≤ j ≤ q, Then we have the following:

(1) For any p > n + l, [Qp
n+l(axr)f(x)]g(x) = 0.

(2) R[x; α, δ](ai1xn1)R[x; α, δ](ai2xn2)R[x; α, δ] · · · (aikxnk)R[x; α, δ]g(x) = 0 if i1 +

i2 + · · ·+ ik ≥ n.

Proposition 2.14 Let R be (α, δ)-compatible and R[x; α, δ] be reversible. Then the

following conditions are equivalent:

(1) R is right strongly Hopfian;

(2) R[x; α, δ] is right strongly Hopfian.
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Proof (1) ⇒ (2) Let f(x) = a0 + a1x + · · · + anxn ∈ R[x; α, δ]. Since R is

right strongly Hopfian, there exists k ∈ N such that for all l > k and all 0 ≤ i ≤ n,

rR(al
i) = rR(ak

i ). Now we show that rR[x;α,δ](f(x)(n+1)k+1) = rR[x;α,δ](f(x)(n+1)k). If

g(x) = b0 + b1x + · · ·+ bmxm ∈ rR[x;α,δ](f(x)(n+1)k+1),

then

0 = f(x)(n+1)k+1g(x) = (a0 + a1x + · · ·+ anxn)(n+1)k+1(b0 + b1x + · · ·+ bmxm)

= anαn(an)α2n(an) · · ·α(n+1)kn(an)α[(n+1)k+1]n(bm)x[(n+1)k+1]n+m + lower terms.

Hence

anαn(an)α2n(an) · · ·α(n+1)kn(an)α[(n+1)k+1]n(bm) = 0.

By Lemma 2.10, we obtain a
(n+1)k+1
n bm = 0. Hence

bm ∈ rR(a(n+1)k+1
n ) = rR(ak

n).

From f(x)(n+1)k+1g(x) = 0, we have ak
nf(x)(n+1)k+1g(x) = 0. Then by Lemma 2.11, we

obtain

0 = ak
nf(x)(n+1)k+1g(x) = ak

n(a0 + a1x + · · · + anxn)(n+1)k+1(b0 + b1x + · · · + bmxm)

= ak
n(a0 + a1x + · · ·+ anxn)(n+1)k+1(b0 + b1x + · · ·+ bm−1x

m−1)

+ak
n(a0 + a1x + · · ·+ anxn)(n+1)k+1bmxm

= ak
n(a0 + a1x + · · ·+ anxn)(n+1)k+1(b0 + b1x + · · ·+ bm−1x

m−1)

= ak
nanαn(an) · · ·α(n+1)kn(an)α[(n+1)k+1]n(bm−1)x

[(n+1)k+1]n+m−1 + lower terms.

Hence

ak+1
n αn(an)α2n(an) · · ·α(n+1)kn(an)α[(n+1)k+1]n(bm−1) = 0

and so

bm−1 ∈ rR(a(n+2)k+1
n ) = rR(ak

n).

Using the same method repeatedly, we obtain

bj ∈ rR(a
(n+1)k+1
n ) = rR(ak

n) for all 0 ≤ j ≤ m.

Consider the polynomial f(x) as the sum of two polynomials anxn and h(x) = an−1x
n−1+

an−2x
n−2 + · · ·+ a0. Then by Corollary 2.13, we obtain

0 = f(x)(n+1)k+1g(x) = (anxn + h(x))(n+1)k+1 g(x)

= (anxn)(n+1)k+1g(x) +
[

Q
(n+1)k+1
(n+1)k (anxn)h(x)

]

g(x) + · · ·

+
[

Q
(n+1)k+1
k (anxn)h(x)

]

g(x) +
[

Q
(n+1)k+1
k−1 (anxn)h(x)

]

g(x)

+ · · ·+
[

Q
(n+1)k+1
1 (anxn)h(x)

]

g(x) + h(x)(n+1)k+1g(x)

=
[

Q
(n+1)k+1
k−1 (anxn)h(x)

]

g(x) +
[

Q
(n+1)k+1
k−2 (anxn)h(x)

]

g(x) + · · ·

+
[

Q
(n+1)k+1
1 (anxn)h(x)

]

g(x) + h(x)(n+1)k+1g(x). (1)
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Multiplying equation (1) on the left side by (anxn)k−1, then by Lemma 2.12 and

Corollary 2.13, we obtain

(anxn)k−1h(x)(n+1)k+1g(x) = 0.

Since R[x; α, δ] is reversible, this implies
[

Q
(n+1)k+1
k−1 (anxn)h(x)

]

g(x)h(x)k−1 = 0. (2)

Multiplying equation (1) on the right side by h(x)k−1, we obtain
[

Q
(n+1)k+1
k−2 (anxn)h(x)

]

g(x)h(x)k−1 +
[

Q
(n+1)k+1
k−3 (anxn)h(x)

]

g(x)h(x)k−1

+ · · ·+ h(x)(n+1)k+1g(x)h(x)k−1 = 0. (3)

Multiplying equation (3) on the left side by (anxn)k−2, we obtain

(anxn)k−2
[

Q
(n+1)k+1
1 (anxn)h(x)

]

g(x)h(x)k−1+(anxn)k−2h(x)(n+1)k+1g(x)h(x)k−1 = 0. (4)

By equation (anxn)k−1h(x)(n+1)k+1g(x) = 0 and R[x; α, δ] is reversible, it is easy to see

that (anxn)k−2
[

Q
(n+1)k+1
1 (anxn)h(x)

]

g(x)h(x)k−1 = 0. Hence equation (4) becomes

(anxn)k−2h(x)(n+1)k+1g(x)h(x)k−1 = 0.

Since R[x; α, δ] is reversible, this implies

[Q
(n+1)k+1
k−2 (anxn)h(x)]g(x)h(x)k−1h(x)k−2 = 0.

Multiplying equation (3) on the right side by h(x)k−2, we obtain
[

Q
(n+1)k+1
k−3 (anxn)h(x)

]

g(x)h(x)k−1h(x)k−2 + · · ·+h(x)(n+1)k+1g(x)h(x)k−1h(x)k−2 = 0.

Continue this process yields that

h(x)(n+1)k+1g(x)h(x)k−1h(x)k−2 · · ·h(x) = 0,

and so

h(x)(n+1)k+1+
k(k−1)

2 g(x)

= (a0 + a1x + · · ·+ an−1x
n−1)(n+1)k+1+

k(k−1)
2 (b0 + b1x + · · · bmxm) = 0,

since R[x; α, δ] is reversible. Now by the same way as above, we obtain

bj ∈ rR(a
(n+1)k+1+

k(k−1)
2

n−1 ) = rR(ak
n−1)

for all 0 ≤ j ≤ m. Using induction on n, we obtain

bj ∈ rR(a
(n+1)k+1
i ) = rR(ak

i )

for all 0 ≤ j ≤ m and 0 ≤ i ≤ n. It is now easy to check that f(x)(n+1)kg(x) = 0.

Hence rR[x;α,δ](f(x)(n+1)k+1) = rR[x;α,δ](f(x)(n+1)k). Therefore R[x; α, δ] is right strongly

Hopfian.

(2) ⇒ (1) It is trivial.
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Corollary 2.15 We have the following:

(1) If R is α-compatible and the skew polynomial ring R[x; α] is reversible, then the

skew polynomial ring R[x; α] is right strongly Hopfian if and only if R is right strongly

Hopfian.

(2) If R is δ-compatible and the differential polynomial ring R[x; δ] is reversible,

then the differential polynomial ring R[x; δ] is right strongly Hopfian if and only if R

is right strongly Hopfian.

Proof It is an immediate consequence of Proposition 2.14.

Corollary 2.16 ([5, Theorem 5.1]). Let R be a commutative strongly Hopfian ring,

then the polynomial ring R[x] is strongly Hopfian.

Let M be a multiplicative monoid. In the following, e will always stand for the

identity of M . Then R[M ] will denote the monoid ring over R consisting of all elements

of the form
∑n

i=1 rigi with ri ∈ R, gi ∈ M , i = 1, 2, . . . , n, where the addition is given

naturally and the multiplication is given by

(
n
∑

i=1

rigi)(
m
∑

j=1

sjhj) =
n
∑

i=1

m
∑

j=1

(risj)(gihj).

Recall that the ordered monoid (M,≤) is a strictly ordered monoid if for any g, g′,

h ∈ M , g < g′ implies that gh < g′h and hg < hg′.

For two elements α and β in R[M ], in order to calculate a expression for (α + β)n,

for all n ∈ N, we denote by [Qn
i αβ] the sum of all possible terms which each term is a

product of i elements α and n− i elements β. Using this convenient notation, we have

(α + β)n = αn + [Qn
n−1αβ] + [Qn

n−2αβ] + · · · + [Qn
1αβ] + βn.

Lemma 2.17 Let (M,≤) be a strictly totally ordered monoid and R a semicommuta-

tive ring, α = ag, β = b1h1 + b2h2 + · · · + bnhn and γ = c1v1 + c2v2 + · · · + cmvm be

three elements in R[M ]. If there exists a positive integer n ∈ Z such that cj ∈ rR(an)

for all 1 ≤ j ≤ m, then for any p > n, [Qp
nαβ]γ = 0.

Proof The coefficients of [Qp
nαβ] can be written as sums of monomials of length

p in a and bj , where bj ∈ {b1, b2, . . . , bn}. Consider one of such monomials, d1d2 · · · dp,

where di ∈ {a, b1, b2, . . . , bn}, 0 ≤ i ≤ p. It would contain n letters a. Suppose

dr1 = dr2 = drn
= a for some 1 ≤ r1 < r2 < · · · < rn ≤ p. Then we can written

the monomial as d1d2 · · · dr1−1adr1+1 · · · drn−1adrn+1 · · · dp. Since R is semicommutative

and cj ∈ rR(an) for all 1 ≤ j ≤ m, ancj = aa · · ·acj = 0 implies

d1d2 · · · dr1−1adr1+1 · · · drn−1adrn+1 · · · dpcj = 0

for all 1 ≤ j ≤ m. Hence each monomial appears in [Qp
nαβ]γ is equal to 0. Therefore

[Qp
nαβ]γ = 0.

The same idea can be used to prove the following.
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Corollary 2.18 Let (M,≤) be a strictly totally ordered monoid and R a semicommu-

tative ring, α = ag, β = b1h1 + b2h2 + · · · + bnhn and γ = c1v1 + c2v2 + · · · + cmvm be

three elements in R[M ]. If there exists a positive integer n ∈ Z such that cj ∈ rR(an)

for all 1 ≤ j ≤ m, then for any p > n + l, we have the following:

(1) [Qp
n+lαβ]γ = 0.

(2) R[M ](ag)n1R[M ](ag)n2R[M ] · · · (ag)nkR[M ]γR[M ] = 0 if n1+n2+· · ·+nk ≥ n.

Proposition 2.19 Let M be a strictly totally ordered monoid and R[M ] a reversible

ring. Then the following conditions are equivalent:

(1) R is a right strongly Hopfian ring;

(2) R[M ] is a right strongly Hopfian ring.

Proof (1) ⇒ (2). Let α = a1g1 + a2g2 + · · · + angn ∈ R[M ] with gi < gj if

i < j. Since R is right strongly Hopfian, there exists k ∈ N such that for all l > k

and all 1 ≤ i ≤ n, rR(al
i) = rR(ak

i ). Now we show that rR[M ](α
nk+1) = rR[M ](α

nk). If

β = b1h1 + b2h2 + · · · bmhm ∈ rR[M ](α
nk+1) with hs < ht if s < t. Then

0 = αnk+1β = (a1g1 + a2g2 + · · ·+ angn)
nk+1(b1h1 + b2h2 + · · · bmhm).

Consider the coefficient of the largest element gnk+1
n hm in αnk+1β, we obtain ank+1

n bm =

0. Hence bm ∈ rR(ank+1
n ) = rR(ak

n). From αnk+1β = 0, we have

0 = (ak
ne)αnk+1β = (ak

ne)(a1g1 + a2g2 + · · · + angn)nk+1(b1h1 + b2h2 + · · · bmhm)

= (ak
ne)(a1g1 + a2g2 + · · ·+ angn)nk+1(b1h1 + b2h2 + · · · bm−1hm−1)

+(ak
ne)(a1g1 + a2g2 + · · ·+ angn)nk+1bmhm

= (ak
ne)(a1g1 + a2g2 + · · ·+ angn)nk+1(b1h1 + b2h2 + · · · bm−1hm−1)

= (ak
ne)αnk+1(β − bmhm).

Consider the coefficient of the largest element gnk+1
n hm−1 in (ak

ne)αnk+1(β − bmhm), we

obtain

bm−1 ∈ rR(a(n+1)k+1
n ) = rR(ak

n).

Continue this process yields that bj ∈ rR(ank+1
n ) = rR(ak

n) for all 1 ≤ j ≤ m. Consider

the element α as the sum of two elements angn and γ = a1g1 + a2g2 + · · · + an−1gn−1.

Then by Lemma 2.17 and Corollary 2.18, we obtain

0 = αnk+1β = (angn + γ)nk+1β

= (angn)nk+1β +
[

Qnk+1
nk (angn)γ

]

β + · · ·+
[

Qnk+1
k−1 (angn)γ

]

β + · · · + γnk+1β

=
[

Qnk+1
k−1 (angn)γ

]

β +
[

Qnk+1
k−2 (angn)γ

]

β + · · ·+ γnk+1β. (5)

Multiplying equation (5) on the left side by (angn)k−1, then by Corollary 2.18, we

obtain (angn)
k−1γnk+1β = 0 and so [Qnk+1

k−1 (angn)γ]βγk−1 = 0 since R[M ] is reversible.

Multiplying equation (5) on the right side by γk−1, we obtain

[

Qnk+1
k−2 (angn)γ

]

βγk−1 +
[

Qnk+1
k−3 (angn)γ

]

βγk−1 + · · · + γnk+1βγk−1 = 0. (6)
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Multiplying equation (6) on the left side by (angn)k−2, we obtain

(angn)k−2
[

Qnk+1
1 (angn)γ

]

βγk−1 + (angn)k−2γnk+1βγk−1 = 0.

Since R[M ] is reversible, (angn)
k−1γnk+1β = 0 implies

(angn)k−2
[

Qnk+1
1 (angn)γ

]

βγk−1 = 0.

Hence we obtain (angn)k−2γnk+1βγk−1 = 0, and so [Qnk+1
k−2 (angn)γ]βγk−1γk−2 = 0 since

R[M ] is reversible. Then multiplying equation (6) on the right side by γk−2, we obtain

[

Qnk+1
k−3 (angn)γ

]

βγk−1γk−2 +
[

Qnk+1
k−4 (angn)γ

]

βγk−1γk−2 + · · ·+ γnk+1βγk−1γk−2 = 0.

Continue this process we obtain γnk+1βγ
k(k−1)

2 = 0 and so γnk+1+ k(k−1)
2 β = 0. Using the

same way as above, we can show that

bj ∈ rR(a
nk+1+ k(k−1)

2
n−1 ) = rR(ak

n−1)

for all 1 ≤ j ≤ m. Using induction on n, we obtain

bj ∈ rR(ank+1
i ) = rR(ak

i )

for all 1 ≤ j ≤ m and 1 ≤ i ≤ n. Then it is easy to check that αnkβ = 0. Hence

β ∈ rR[M ](α
nk), and so rR[M ](α

nk+1) = rR[M ](α
nk). Therefore R[M ] is right strongly

Hopfian.

(2) ⇒ (1) It is trivial.

Corollary 2.20 ([5, Corollary 5.4]) Let R be a commutative strongly Hopfian ring,

then R[x, x−1] is strongly Hopfian.
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