
ON CENTRALIZERS OF BANACH ALGEBRAS
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Abstract. Let A be a unital Banach algebra and M be a unital Banach A-
bimodule. The main results characterize a continuous linear map ϕ : A →M
that satisfies aϕ(a−1) = ϕ(1) or aϕ(a−1) + ϕ(a−1)a = 2ϕ(1) for all a in

principal component of invertible elements of A. The proof is based on the
consideration of a continuous bilinear map satisfying a related condition.

1. Introduction

Throughout this paper all algebras and vector spaces will be over the complex
field C. Let A be an algebra and M be an A-bimodule. Recall that a linear
(additive) map ϕ : A →M is said to be a right (left) centralizer if ϕ(ab) = aϕ(b)
(ϕ(ab) = ϕ(a)b) for each a, b ∈ A. It is called a centralizer if ϕ is both a left
centralizer and a right centralizer. Also ϕ is called right (left) Jordan centralizer if
ϕ(a2) = aϕ(a) (ϕ(a2) = ϕ(a)a) for all a ∈ A. We say that ϕ is a Jordan centralizer
if ϕ(ab + ba) = aϕ(b) + ϕ(b)a = bϕ(a) + ϕ(a)b for all a, b ∈ A. In case A has a
unity 1 and M is aunital A-bimodule, ϕ : A → M is a right (left) centralizer if
and only if ϕ is of the form ϕ(a) = aϕ(1) (ϕ(a) = ϕ(1)a) for all a ∈ A. Also ϕ is a
centralizer if and only if ϕ(a) = aϕ(1) = ϕ(1)a for each a ∈ A.

Clearly, each (right, left) centralizer is a (right, left) Jordan centralizer. The
converse is, in general, not true (see Example 2.6). It is natural and interesting
to find some conditions under which a (right, left) Jordan centralizer is a (right,
left) centralizer. Zalar has proved in [20] that any right (left) Jordan centralizer
on a 2-torsion free semiprime ring is a right (left) centralizer. Vukman [14] has
showed that an additive map ϕ : R → R, where R is a 2-torsion free semiprime
ring, with the property that 2ϕ(a2) = aϕ(a) + ϕ(a)a for all a ∈ A, is a centralizer.
We refer the reader to [5, 8, 11, 15, 16] and references therein for results concerning
centralizers on rings and algebras.

In recent years, several authors studied the linear (additive) maps that behave
like homomorphisms, derivations or right (left) centalizers when acting on special
products (for instance, see [6, 9, 10, 12, 19] and the references therein). The question
of characterizing these linear (additive) maps can be sometimes effectively solved
by considering bilinear maps that preserve certain product properties (for instance,
see [1, 2, 3, 4, 7, 17, 18]).

In this article we study the (right, left) centralizers and Jordan centralizers on
Banach algebras through identity products and identity Jordan products, respec-
tively, by consideration of bilinear maps satisfying a related condition.
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Let A be a Banach algebra with unity 1 andM be a unital Banach A-bimodule.
Here and subsequently, ′◦′ denotes the Jordan product a ◦ b = ab+ ba on A and ′•′
denotes the Jordan product on M:

a •m = m • a = am+ma, a ∈ A, m ∈M.

Denote by Inv(A) the set of invertible elements of A. Inv(A) is an open subset
of A and hence it is a disjoint union of open connected subsets, the components of
Inv(A). The component containing 1 is called the principal component of Inv(A)
and it is denoted by Inv0(A). We denote by exp(A) the range of the exponential
function in A, i.e.

exp(A) = {exp(a) | a ∈ A}

and we have exp(A) ⊆ Inv0(A).
In this paper we characterize the continuous linear maps ϕ : A →M satisfying

a ∈ Inv0(A)⇒ aϕ(a−1) = ϕ(1) (I1)

or

a ∈ Inv0(A)⇒ a • ϕ(a−1) = 2ϕ(1) (I2).

Obviously, if ϕ : A →M satisfying

a, b ∈ A, ab = 1⇒ aϕ(b) = ϕ(1)

or

a, b ∈ A, a ◦ b = 1⇒ a • ϕ(b) = ϕ(1),

then ϕ satisfies (I1) or (I2), respectively. For characterization continuous linear
maps satisfying (I1) or (I2), we first study continuous bilinear maps φ : A×A → X
into some Banach space X with the property that

a ∈ Inv0(A)⇒ φ(a, a−1) = φ(1, 1).

Finally, we provide some classes of Banach algebras A and Banach A-bimodules
M such that continuous linear maps ϕ : A →M satisfying (I2) are centralizers.

2. Bilinear maps

From this point up to the last section A is a Banach algebra with unity 1.

Theorem 2.1. Let X be a Banach space and let φ : A×A → X be a continuous
bilinear map with the property that

a ∈ Inv0(A)⇒ φ(a, a−1) = φ(1, 1).

Then

φ(a, a) = φ(a2, 1) and φ(a, 1) = φ(1, a) a, b ∈ A

and there exists a continuous linear map T : A → X such that

φ(a, b) + φ(b, a) = T (a ◦ b), a, b ∈ A.
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Proof. Let a be in A. For each scalar λ ∈ C, we have φ(exp(λa), exp(−λa)) =
φ(1, 1), since exp(A) ⊆ Inv0(A). Thus

φ(1, 1) = φ(exp(λa), exp(−λa))

= φ(exp(λa),Σ∞m=0

(−1)mλmam

m!
)

= Σ∞m=0

(−1)mλm

m!
φ(exp(λa), am)

= Σ∞m=0

(−1)mλm

m!
φ(Σ∞n=0

λnan

n!
, am)

= Σ∞m=0Σ∞n=0

(−1)mλm+n

m!n!
φ(an, am)

= φ(1, 1) + Σ∞k=1λ
k(

∑
m+n=k

(−1)m

m!n!
φ(an, am)),

since φ is a continuous bilinear map. Therefore Σ∞k=1λ
k(
∑
m+n=k

(−1)m

m!n! φ(an, am)) =
0 for any λ ∈ C. Consequently,

(2.1)
∑

m+n=k

(−1)m

m!n!
φ(an, am) = 0

for all a ∈ A and k ∈ N. Let k = 1, we find that φ(a, 1)− φ(1, a) = 0 and hence

(2.2) φ(a, 1) = φ(1, a)

for all a ∈ A. Now taking k = 2 in (2.1), we obtain 1
2φ(a2, 1)−φ(a, a)+ 1

2φ(1, a2) = 0
for any a ∈ A. So by (2.2) we have

(2.3) φ(a, a) = φ(a2, 1), a ∈ A.
For any a, b ∈ A, replacing a by a+ b in (2.3), we get that

φ(a, b) + φ(b, a) = φ(ab+ ba, 1).

If we define the linear map T : A → X by T (a) = φ(a, 1), then T is continuous and

φ(a, b) + φ(b, a) = T (a ◦ b)
for all a, b ∈ A. �

Corollary 2.2. Let X be a Banach space and let φ : A×A → X be a continuous
bilinear map. If φ satisfies any of the following conditions;

(i) a ∈ Inv(A)⇒ φ(a, a−1) = φ(1, 1),
(ii) a, b ∈ A, ab = 1⇒ φ(a, b) = φ(1, 1),
(iii) a, b ∈ A, a ◦ b = 1⇒ φ(a, b) = 1

2φ(1, 1),
then

φ(a, b) + φ(b, a) = φ(a ◦ b, 1)
for all a, b ∈ A.

Proof. In the cases (i) and (ii) the result is clear from Theorem 2.1. Let the condi-
tion (iii) holds. For each a ∈ Inv(A), we have ( 1

2a)◦a−1 = 1. So φ(a, a−1) = φ(1, 1)
and hence by Theorem 2.1, the result is true in this case, too. �

Recall that a bilinear map φ : A×A → X is called symmetric if φ(a, b) = φ(b, a)
holds for all a, b ∈ A.

By Theorem 2.1 and Corollary 2.2, the following corollary is obvious.
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Corollary 2.3. Let X be a Banach space and let φ : A×A → X be a continuous
symmetric bilinear map. Then the following conditions are equivalent:

(i) a ∈ Inv0(A)⇒ φ(a, a−1) = φ(1, 1);
(ii) a ∈ Inv(A)⇒ φ(a, a−1) = φ(1, 1);

(iii) a, b ∈ A, a ◦ b = 1⇒ φ(a, b) = 1
2φ(1, 1);

(iv) φ(a, b) = 1
2φ(a ◦ b, 1), a, b ∈ A.

The Theorems 2.4 and 2.5 are our main results.

Theorem 2.4. Let M be a unital Banach A-bimodule and ϕ : A → M be a
continuous linear map. Then the following conditions are equivalent:

(i) ϕ(a) = aϕ(1) for all a ∈ A, i.e. ϕ is a right centralizer;
(ii) a, b ∈ A, ab = 1⇒ aϕ(b) = ϕ(1);

(iii) a ∈ Inv(A)⇒ aϕ(a−1) = ϕ(1);
(iv) a ∈ Inv0(A)⇒ aϕ(a−1) = ϕ(1).

Proof. (i)⇒ (ii), (ii)⇒ (iii) and (iii)⇒ (iv) are clear.
(iv)⇒ (i) Define a continuous bilinear map φ : A×A →M by φ(a, b) = aϕ(b).

Then φ(a, a−1) = φ(1, 1) for all a ∈ Inv0(A). By applying Theorem 2.1, we obtain
φ(1, a) = φ(a, 1) for all a ∈ A. So

ϕ(a) = aϕ(1)

all a ∈ A. �

Left centralizer analogs of Theorem 2.4 can be obtained with the same argument.

Theorem 2.5. Let M be a unital Banach A-bimodule and ϕ : A → M be a
continuous linear map with the property that

a ∈ Inv0(A)⇒ a • ϕ(a−1) = 2ϕ(1).

Then
2ϕ(a2) = a • ϕ(a) a ∈ A.

Proof. Define a continuous bilinear map φ : A × A → M by φ(a, b) = a • ϕ(b).
Then φ(a, a−1) = φ(1, 1) for all a ∈ Inv0(A). By applying Theorem 2.1, we obtain
φ(a, b) + φ(b, a) = φ(a ◦ b, 1) = φ(1, a ◦ b) for all a, b ∈ A. So

a • ϕ(b) + b • ϕ(a) = 2ϕ(a ◦ b), a ∈ A.

Letting b = a, we obtain
2ϕ(a2) = a • ϕ(a)

for all a ∈ A. �

In this theorem if ϕ satisfies

a, b ∈ A, a ◦ b = 1⇒ a • ϕ(b) = ϕ(1),

then it is obvious that a • ϕ(a−1) = 2ϕ(1) for all a ∈ Inv(A). Hence the theorem
holds in this case, too.

Let us mention an example of a Banach algebra where identity a • ϕ(b) = ϕ(1)
for all a, b ∈ A with a ◦ b = 1 does not imply that ϕ is a centralizer.
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Example 2.6. Consider an algebra of the form

A =
{a b c

0 a d
0 0 a

 ∣∣∣∣ a, b, c, d ∈ C
}

under the usual matrix operations. Then the algebra A is a Banach algebra with
respect to the norm defined by∥∥∥∥

a b c
0 a d
0 0 a

∥∥∥∥ = |a|+ |b|+ |c|+ |d|, a, b, c, d ∈ C.

Let X =

0 1 0
0 0 0
0 0 0

 and define a continuous linear map ϕ : A → A by ϕ(A) =

AX +XA. By a straightforward calculation one can prove that

BAX +XAB = BXA+AXB, A,B ∈ A

So we have ϕ(A ◦B) = A ◦ϕ(B) for each A,B ∈ A and hence A ◦ϕ(B) = ϕ(1) for

all A,B ∈ A with A ◦B = 1. If we consider A =

0 0 0
0 0 1
0 0 0

, then ϕ(A) 6= 0 and

Aϕ(1) = 0, where 0 and 1 are the zero matrix and identity matrix, respectively.
Thus ϕ is not a centralizer.

In view of Theorem 2.5, this example shows that there exist a Banach algebra
A and a linear map ϕ : A → A such that 2ϕ(a2) = a ◦ ϕ(a) for all a ∈ A but ϕ is
not a centralizer.

Remark 2.7. Let M be a unital Banach A-bimodule and ϕ : A → M be a linear
map satisfying the relation 2ϕ(a2) = a • ϕ(a) for all a ∈ A. By linearizing we see
that

2ϕ(a ◦ b) = a • ϕ(b) + ϕ(a) • b, a, b ∈ A.
Replacing b by 1 in this identity, we obtain 2ϕ(a) = aϕ(1) + ϕ(1)a for all a ∈ A.
Then obviously ϕ is automatically continuous.

In [14] Vukman proved that an additive mapping ϕ : R → R, where R is a
2-torsion free semiprime ring, satisfying the relation 2ϕ(a2) = a◦ϕ(a) for all a ∈ R
is a centralizer. So from Theorem 2.5 we have the following corollary.

Corollary 2.8. Let A be a semiprime Banach algebra and ϕ : A → A be a contin-
uous linear map with the property that

a ∈ Inv0(A)⇒ a ◦ ϕ(a−1) = 2ϕ(1).

Then ϕ is a centralizer.

The following theorem provides a class of Banach A-bimodules M such that
every linear map ϕ : A → M with the property that 2ϕ(a2) = a • ϕ(a) for all
a ∈ A, is a centralizer.

The set of idempotents of A is denoted by I(A) and algI(A) denotes the sub-
algebra of A generated by I(A).
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Theorem 2.9. Let M be a unital Banach A-bimodule. Suppose that there is an
ideal J of A such that J ⊆ algI(A) and

{m ∈M|mJ = {0} and Jm = {0}} = {0}.
If ϕ : A →M is a linear map, then:

(i) if 2ϕ(a2) = a • ϕ(a) for all a ∈ R, then ϕ is a centralizer,
(ii) if ϕ is continuous with the property that

a ∈ Inv0(A)⇒ a • ϕ(a−1) = 2ϕ(1),

then ϕ is a centralizer

Proof. (i) From Remark 2.7 we have

2ϕ(a ◦ b) = a • ϕ(b) + ϕ(a) • b, a, b ∈ A.
Let p be a idempotent of A. As p ◦ (1− p) = 0, from above identity it follows that
p • ϕ(1− p) + ϕ(p) • (1− p) = 0 and hence

2ϕ(p) + pϕ(1) + ϕ(1)p = 2pϕ(p) + 2ϕ(p)p.

By multiplying this identity on the left and right by p, respectively, we arrive at

pϕ(1)p+ ϕ(1)p = 2pϕ(p)p,

pϕ(1) + pϕ(1)p = 2pϕ(p)p,

which implies
pϕ(1) = ϕ(1)p.

For idempotents p1, . . . , pn in A, by applying the above identity repeatedly, we get

p1 . . . pnϕ(1) = ϕ(1)p1 . . . pn.

So xϕ(1) = ϕ(1)x for all x ∈ J ⊆ algI(A). Hence aϕ(1)x = axϕ(1) = ϕ(1)ax
and xϕ(1)a = ϕ(1)xa = xaϕ(1) for each a ∈ A and x ∈ J . Therefore (aϕ(1) −
ϕ(1)a)J = {0} and J (aϕ(1)− ϕ(1)a) = {0}. By hypothesis we arrive at

aϕ(1) = ϕ(1)a

for all a ∈ A. By Remark 2.7 we have 2ϕ(a) = aϕ(1) + ϕ(1)a for all a ∈ A. Since
aϕ(1) = ϕ(1)a, it follows that ϕ(a) = aϕ(1) = ϕ(1)a for each a ∈ A, i.e. ϕ is a
centralizer.

Part (ii) is a consequence of part (i) and Theorem 2.5. �

We continue by characterizing some classes of Banach algebras and bimodules
which satisfy the requirements in Theorem 2.9.

Corollary 2.10. Suppose that A = algI(A). Let M be a unital Banach A-
bimodule and ϕ : A →M be a linear map, then:

(i) if 2ϕ(a2) = a • ϕ(a) for all a ∈ R, then ϕ is a centralizer,
(ii) if ϕ is continuous with the property that

a ∈ Inv0(A)⇒ a • ϕ(a−1) = 2ϕ(1),

then ϕ is a centralizer

Proof. Let m ∈M such that mA = {0} and Am = {0}. Since A is unital, it follows
that m = 0. If we consider J = A as an ideal of A, then all the requirements in
Theorem 2.9 hold and hence the assertion follows. �
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Some examples of Banach algebras with the property that A = algI(A), are the
following:

(i) Topologically simple Banach algebras containing a nontrivial idempotent
(see [2]).

(ii) The unital W ∗-algebras. Indeed, the linear span of projections is norm
dense in a unital W ∗-algebra.

Another classes of Banach algebras A with the property that A = algI(A) (not
necessarily unital) are given in [2].

Let X be a Banach space. We denote by B(X ) the algebra of all bounded linear
operators on X , and F(X ) denotes the algebra of all finite rank operators in B(X ).
A nest N on a Banach space X is a chain of closed (under norm topology) subspaces
of X which is closed under the formation of arbitrary intersection and closed linear
span (denoted by ∨), and which includes {0} and X . The nest algebra associated
to the nest N , denoted by AlgN , is the weak closed operator algebra of the form

AlgN = {T ∈ B(X ) |T (N) ⊆ N for all N ∈ N}.
When N 6= {{0}, X}, we say that N is non-trivial. It is clear that if N is trivial,
then AlgN = B(X ). Denote AlgFN := AlgN ∩ F(X ), the set of all finite rank
operators in AlgN and for N ∈ N , let N− = ∨{M ∈ N |M ⊂ N}.

Corollary 2.11. Let N be a nest on a Banach space X such that N ∈ N is
complemented in X whenever N− = N . If ϕ : AlgN → B(X ) is a linear map, then:

(i) if 2ϕ(A2) = A • ϕ(A) for all A ∈ AlgN , then ϕ is a centralizer,
(ii) if ϕ is continuous with the property that

A ∈ Inv0(AlgN )⇒ A • ϕ(A−1) = 2ϕ(1),

then ϕ is a centralizer

Proof. AlgFN is an ideal of AlgN and from [10], it is contained in the algI(AlgN ).
Suppose that T ∈ B(X ) and FT = TF = 0 for each F ∈ AlgFN . By [13] we have
AlgFN

SOT
= AlgN . Therefore there is a net (Fγ)γ∈Γ in AlgFN converges to

the identity operator I with respect to the strong operator topology. So FγT =
0 for each γ ∈ Γ and hence T = 0. The assertion now follows directly from
Theorem 2.9. �

It is obvious that the nests on Hilbert spaces, finite nests and the nests having
order-type ω+1 or 1+ω∗, where ω is the order-type of the natural numbers, satisfy
the condition in Corollary 2.11 automatically.

Remark 2.12. By a method similar to proof of Theorems 2.4 and 2.5, we can use the
Theorem 2.1 or corollaries 2.2 or 2.3 to describe the mappings preserving identity-
(Jordan) product or (Jordan) derivations through identity-products.

Acknowledgment. The author like to express his sincere thanks to the referees
for this paper.
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