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Abstract

Fusion frames are widely studied recently due to its many kinds of applications.
In this paper we focus on the the erasure of a fusion frame, we use a bounded linear
operator to equivalently characterize a given fusion frame to be robust to an erasure
of any numbers of elements, it turns out that our result is more general and covers
some important results previously obtained by Asgari, Casazza and Kutyniok. We
also present a more general equality result for any fusion frame (not restricted to
be tight), which improves the fusion version of a theorem obtained by Li and Sun.
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1 Introduction

Fusion frame, which we also call it a frame of subspaces, was first proposed by Casazza

and Kutyniok in [9] to handle some large system which is impossible to handle effectively

by just a simple frame. The essence of fusion frame is that we can first build frame

in subspaces and then piece them together to obtain frames for the whole space. Due
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to this characteristic fusion frame is special suiting for applications such as distributed

processing, parallel processing of large frame systems [11], and so on. Now the theory

of fusion frames has been applied for optimal transmission by packet encoding [4], noise

reduction in sensor networks [25], compressed sensing [7], sensor networks [12], filter bank

[13], etc.

Recently fusion frame has been studied intensively with the development of kinds of

applications. Now some authors such as Bodmann, Kribs, Paulsen [5] and Bodmann [4]

use the Parseval fusion frames under the term weighted projective resolution of the identity

to study erasures resilience. Also many authors focus on the theory of erasures of fusion

frames, e.g. Asgari in [1] gave a sufficient condition for a fusion frame with only one

element erasure to be again a fusion frame; Casazza and Kutyniok in [10] studied the

optimal fusion frames when erasures occur. For erasures on other kinds of frames the

reader can consult [15, 18–20], etc.

The first focus of this paper is to discuss the equivalent characterization on erasure for

the fusion frames. As stated in Section 3 the author presented an equivalent characteri-

zation result on fusion frames only for one subspace (element) erasure, for study purpose

we are very hope to seek a general method for equivalent characterization that given any

fusion frame arbitrary numbers of elements can be erased still leaving a complete subset

(fusion frame). In Section 3 we will present a general method by using a bounded linear

operator relating to the frame operator of a given fusion frame to equivalently characterize

the erasure of any number of subspaces.

Another focus of this paper is to study the equality for fusion frames. The equalities

of a conventional frame were first found by Casazza etc in the study of the optimal

decomposition of a parseval frame [3]. Later many authors such as Gǎvruta [16], Li and

sun [23], Li and zhu [24], etc developed or improved the equalities or inequalities of the

frames (including other kinds of frames). The result we present on equality for fusion

frames in this paper is to generalize the fusion frame version of Theorem 2.2 in [23] to any

fusion frame, that is, to make Theorem 4.1 (the fusion frame version of Theorem 2.2 in

[23]) holds for any fusion frame (not restricted to be tight) with its alternate dual fusion

frame. For more details see Section 4.

The paper is organized as follows. In Section 2 we mainly recall some basic properties

of fusion frames and some useful lemmas. In Section 3 we mainly discuss the robustness

of erasure of any given fusion frame, we give an equivalent condition for the remainder

after deleting more than one elements still to be a fusion frame. In Section 4 we mainly

study the equality for the fusion frames.

Throughout this paper we will adopt such notations. I is a countable index set; H is

a Hilbert space; IH is the identical operator for H; if W is a closed subspace of H, πW

is denoted by the orthogonal projection from H onto W ; L(H1, H2) is denoted by the

collection of all the linear bounded operators from H1 to H2, where H1, H2 are Hilbert

spaces, denote L(H1, H2) by L(H1) if H1 = H2; R(T ) is denoted by the range of T if T is
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a bounded linear operator.

2 Preliminaries

Definition 2.1 [9] Let {Wi}i∈I be a sequence of closed subspaces in H, {vi}i∈I be a family

of weights, i.e., vi > 0 for all i ∈ I. {(Wi, vi)}i∈I is called a fusion frame for H, if there

exist two positive constants A,B such that

A‖f‖2 ≤
∑
i∈I

v2
i ‖πWi

(f)‖2 ≤ B‖f‖2, ∀f ∈ H. (2.1)

We call A,B the lower and upper fusion frame bounds for {(Wi, vi)}i∈I , respectively.

{(Wi, vi)}i∈I is called a λ-tight fusion frame if A = B = λ, moreover, if λ = 1, {(Wi, vi)}i∈I

is called a Parseval fusion frame. If only the right-hand inequality of (2.1) holds, then we

call {(Wi, vi)}i∈I the fusion-Bessel sequence.

Suppose that {(Wi, vi)}i∈I is a fusion-Bessel sequence for H, with Bessel bound B,

then we can define its analysis operator U , synthesis operator T and frame operator S as

follows:

U : H → l2({Wi}i∈I), Uf = {viπWi
f}i∈I , (2.2)

T : l2({Wi}i∈I) → H, T ({fi}i∈I) =
∑
i∈I

vifi, (2.3)

S : H → H, Sf =
∑
i∈I

v2
i πWi

f, (2.4)

where the representation space l2({Wi}i∈I) is defined as follows

l2({Wi}i∈I) = {{fi}i∈I}|fi ∈ Wi and
∑
i∈I

‖fi‖2 < ∞},

with the inner product

〈{fi}i∈I , {gi}i∈I〉 =
∑
i∈I

〈fi, gi〉.

It’s trivial to check that l2({Wi}i∈I) is a Hilbert space and T ∗ = U, S = TU. More-

over, from [9] we know that S is a positive, self-adjoint and invertible operator on H
if {(Wi, vi)}i∈I is a fusion frame for H with frame bounds A,B. From the definition of

fusion frame we can get AIH ≤ S ≤ BIH, it follows that

B−1IH ≤ S−1 ≤ A−1IH. (2.5)

In case {(Wi, vi)}i∈I is a tight (resp. Parseval) fusion frame for H with frame bound A

(resp. A = 1), then S = AIH (resp. S = IH). If {(Wi, vi)}i∈I is a fusion frame for H, we
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can have the following standard reconstruction formula

f = S−1Sf =
∑
i∈I

v2
i S

−1πWi
f

= SS−1f =
∑
i∈I

v2
i πWi

(S−1f), ∀f ∈ H. (2.6)

In [17] the author gives a more general alternate dual reconstruction formula, that is, given

a fusion frame {(Wi, wi)}i∈I with frame operator S and a Bessel sequence {(Vi, vi)}i∈I ,

there is

f =
∑
i∈I

viwiπVi
S−1πWi

f, ∀f ∈ H.

In this case we also call {(Vi, vi)}i∈I is an alternate dual of {(Wi, wi)}i∈I .

Lemma 2.2 Suppose that X is a Banach space and Q ∈ L(X). If ‖Q‖ < 1, then

IX − Q is invertible on X, where IX is the identical operator for X. Moreover, we have

‖(IX −Q)−1‖ ≤ 1
1−‖Q‖ .

Lemma 2.3 [23] Suppose that L1, L2 ∈ L(H) and L1 + L2 = IH, then there is

L1 − L∗1L1 = L∗2 − L∗2L2.

3 Erasures for fusion frames

In [10] the authors gave an equivalent statement for a tight fusion frame to be a fu-

sion frame only for one element erasure. To understand more clearly let me recall this

statement.

Proposition 3.1 Suppose that {(Wi, vi)}i∈I is a tight fusion frame for H with frame

bounds A. Then the following are equivalent:

(i) v2
j0

< A;

(ii) {(Wi, vi)}i∈I\{j0} is a fusion frame for H.

From this proposition we can see clearly the impact of weight to decide a remainder by

deleting one element from a tight fusion frame to be still a fusion frame. But the condition

for this proposition is a little strict, it needs that the fusion frame is tight, and the result

is only for one element erasure. So it’s natural to ask that whether there is a general

version for erasure of Proposition 3.1? That is to say, the general result for erasure should

satisfy the following two demands:

• the fusion frame is arbitrary, not only for tight fusion frames;
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• the number of elements to be erased should be any (< |I|).
In this section we will give such a erasure result (see Theorem 3.2), we will show that

Proposition 3.1 and part of Theorem 4.3 obtained by Asgari in [1] are the special cases of

our result. To do that we need to introduce a bounded linear operator in H.

Let J ⊂ I and let {(Wi, vi)}i∈I be a fusion-Bessel sequence in H, we now define SJ as

follows

SJ : H → H, SJf =
∑
i∈J

v2
i πWi

f. (3.1)

It’s trivial to show that SJ is a bounded linear operator in H.

Theorem 3.2 Let J ⊂ I. Suppose that {(Wi, vi)}i∈I is a fusion frame for H with frame

bounds A,B. Then the following statements are equivalent:

(i) IH − S−1SJ is invertible on H;

(ii) IH − SJS−1 is invertible on H;

(iii) {(Wi, vi)}i∈I\J is a fusion frame for H,

where SJ is defined as in (3.1), S is the frame operator for {(Wi, vi)}i∈I .

In addition, if (i) or (ii) is satisfied, then the fusion frame {(Wi, vi)}i∈I\J has the lower

fusion frame bounds A
‖(IH−S−1SJ )−1‖2 .

Proof. (i) ⇔ (ii) It’s trivial to check that the operator SJ is self-adjoint. So we have

(IH − S−1SJ)∗ = IH − (S−1SJ)∗ = IH − S∗J(S−1)∗ = IH − SJS−1,

hence IH − S−1SJ is invertible on H iff IH − SJS−1 is invertible on H.

(i) ⇔ (iii) Denote the frame operator of fusion frame {(Wi, vi)}i∈I\J by SI\J . Since

SI\J = S − SJ = S(I − S−1SJ), we have

{(Wi, vi)}i∈I\J is a fusion frame for H ⇐⇒ SI\J is boundedly invertible

⇐⇒ S(I − S−1SJ) is boundedly invertible

⇐⇒ I − S−1SJ is boundedly invertible.

Next we show the ”In addition” part. Assume that IH − S−1SJ is invertible on H.

Since {(Wi, vi)}i∈I is a fusion frame for H with frame bounds A,B, so for any f ∈ H we

get

f = S−1Sf

= S−1

( ∑
i∈J

v2
i πWi

f +
∑

i∈I\J
v2

i πWi
f

)

= S−1SJf +
∑

i∈I\J
v2

i S
−1πWi

f.
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Hence we have

(IH − S−1SJ)f =
∑

i∈I\J
v2

i S
−1πWi

f, ∀f ∈ H. (3.2)

Therefore we obtain

‖(IH − S−1SJ)f‖ =

∥∥∥∥
∑

i∈I\J
v2

i S
−1πWi

f

∥∥∥∥

= sup
g∈H,‖g‖=1

∣∣∣∣
〈 ∑

i∈I\J
v2

i S
−1πWi

f, g

〉∣∣∣∣

= sup
g∈H,‖g‖=1

∣∣∣∣
∑

i∈I\J
v2

i 〈πWi
f, S−1g〉

∣∣∣∣

= sup
g∈H,‖g‖=1

∣∣∣∣
∑

i∈I\J
v2

i 〈πWi
f, πWi

(S−1g)〉
∣∣∣∣

≤ sup
g∈H,‖g‖=1

∑

i∈I\J
v2

i ‖πWi
f‖ · ‖πWi

(S−1g)‖

≤ sup
g∈H,‖g‖=1

( ∑

i∈I\J
v2

i ‖πWi
f‖2

) 1
2

·
( ∑

i∈I\J
v2

i ‖πWi
(S−1g)‖2

) 1
2

≤ sup
g∈H,‖g‖=1

(〈S(S−1g), (S−1g)〉)
1
2 ·

( ∑

i∈I\J
v2

i ‖πWi
f‖2

) 1
2

≤
√

A−1

( ∑

i∈I\J
v2

i ‖πWi
f‖2

) 1
2

, (3.3)

where the last inequality is deduced by (2.5). It follows that IH − S−1SJ is well defined

in H. If IH − S−1SJ is invertible on H, then for any f ∈ H we have

‖f‖ = ‖(IH − S−1SJ)−1(IH − S−1SJ)f‖
≤ ‖(IH − S−1SJ)−1‖ · ‖(IH − S−1SJ)f‖,

it follows that

‖f‖
‖(IH − S−1SJ)−1‖ ≤ ‖(IH − S−1SJ)f‖, ∀f ∈ H. (3.4)

From (3.3) and (3.4) we have

A

‖(IH − S−1SJ)−1‖2
‖f‖2 ≤

∑

i∈I\J
v2

i ‖πWi
f‖2, ∀f ∈ H.

¤
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Combining with Lemma 2.2 and Theorem 3.2 we can have the following sufficient

conditions to judge the remainder after an erasure to be still a fusion frame.

Corollary 3.3 Let J ⊂ I. Suppose that {(Wi, vi)}i∈I is a fusion frame for H with frame

bounds A,B. If ‖S−1SJ‖ < 1, then {(Wi, vi)}i∈I\J is a fusion frame for H, with frame

bounds A(1− ‖S−1SJ‖)2 and B, where SJ is defined as in (3.1).

Proof. We only prove the lower frame bound. Since ‖S−1SJ‖ < 1, by Lemma 2.2 we

know that IH − S−1SJ is invertible on H. So for any f ∈ H, we have

f = (IH − S−1SJ)−1(IH − S−1SJ)f,

it follows that ‖f‖ ≤ ‖(IH − S−1SJ)−1‖ · ‖(IH − S−1SJ)f‖, by Lemma 2.2 we get

(1− ‖S−1SJ‖)‖f‖ ≤ ‖f‖
‖(IH − S−1SJ)−1‖ ≤ ‖(IH − S−1SJ)f‖, (3.5)

combining (3.3) we obtain

A(1− ‖S−1SJ‖)2‖f‖2 ≤
∑

i∈I\J
v2

i ‖πWi
f‖2.

¤

Corollary 3.4 Let J ⊂ I. Suppose that {(Wi, vi)}i∈I is a tight fusion frame for H with

frame bound A. If ‖SJ‖ < A, then {(Wi, vi)}i∈I\J is a fusion frame for H, with frame

bounds (A−‖SJ‖)2
A

and A, where SJ is defined as in (3.1).

Proof. Since {(Wi, vi)}i∈I is a tight fusion frame for H with frame bound A, then its

frame operator S = AIH, so S−1 = 1
A
IH, then the result follows from Corollary 3.3.

Corollary 3.5 Let J ⊂ I. Suppose that {(Wi, vi)}i∈I is a Parseval fusion frame for H.

If ‖SJ‖ < 1, then {(Wi, vi)}i∈I\J is a fusion frame for H, with frame bounds (1− ‖SJ‖)2

and 1, where SJ is defined as in (3.1).

Moreover, if J = {j0}, j0 ∈ I, from Theorem 3.2 we can easily have the following

corollaries. Note that the part (ii) ⇒ (iii) in Corollary 3.6 was first stated in Theorem

4.3 in [1].

Corollary 3.6 Suppose that {(Wi, vi)}i∈I is a fusion frame for H with frame bounds A,B.

Then the following statements are equivalent:

(i) IH − v2
j0

S−1πWj0
is invertible on H;

(ii) IH − v2
j0

πWj0
S−1 is invertible on H;
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(iii) {(Wi, vi)}i∈I\{j0} is a fusion frame for H.

Moreover, if (i) or (ii) is satisfied, then the fusion frame {(Wi, vi)}i∈I\{j0} has fusion

frame bounds A
‖(IH−v2

j0
S−1πWj0

)−1‖2 and B.

Combining with Corollary 3.7 and Proposition 3.1 (see also Corollary 3.4 in [10]) we

can get the following corollary.

Corollary 3.7 Suppose that {(Wi, vi)}i∈I is a tight fusion frame for H with frame bounds

A. Then the following statements are equivalent:

(i) v2
j0

< A;

(ii) IH − 1
A
v2

j0
πWj0

is invertible on H;

(iii) {(Wi, vi)}i∈I\{j0} is a fusion frame for H.

Moreover, if (i) or (ii) is satisfied, then the fusion frame {(Wi, vi)}i∈I\{j0} has fusion

frame bounds 1
A‖(AIH−v2

j0
πWj0

)−1‖2 and A.

4 Equalities for fusion frames

In [23] Theorem 2.2 the authors presented an equality for tight g-frames. In this section we

will generalize the version of tight fusion frame for Theorem 2.2 [23] to a pair of alternate

dual fusion frames. For this we need first to restate the Theorem 2.2 in [23] using the

setup of fusion frame.

Theorem 4.1 (The fusion frame version for Theorem 2.2 in [23]) Suppose that {(Wi, wi)}i∈I

is a tight fusion frame for H with frame bound A, then for any f ∈ H and {ai}i∈I ∈ l∞(I),

there is
∥∥∥∥

∑
i∈I

(1− ai)w
2
i πWi

f

∥∥∥∥
2

−
∥∥∥∥

∑
i∈I

aiw
2
i πWi

f

∥∥∥∥
2

= A
∑
i∈I

(1− ai)w
2
i ‖πWi

f‖2 − A
∑
i∈I

aiw
2
i ‖πWi

f‖2,

where ai is the conjugate of ai, l∞(I) = {{ai}i∈I | sup |ai| < ∞, i ∈ I}.
This theorem tells us that there is a good equality with coefficient {ai}i∈I ∈ l∞(I) for

tight fusion frames. The defect is that the fusion frames needs to be tight. So it’s natural

to consider whether it holds for any fusion frame? In the following Theorem 4.2 we will

prove that Theorem 4.1 can be held for any fusion frame with its alternate dual fusion

frames.
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Theorem 4.2 Suppose that {(Wi, wi)}i∈I is a fusion frame for H with frame operator S,

{(Vi, vi)}i∈I is an alternate dual fusion frame of {(Wi, wi)}i∈I . Then for any f ∈ H and

{ai}i∈I ∈ l∞(I), we have

∑
i∈I

aiviwi〈S−1πWi
f, πVi

f〉 −
∥∥∥∥

∑
i∈I

aiviwiπVi
S−1πWi

f

∥∥∥∥
2

=
∑
i∈I

(1− ai)viwi〈πVi
f, S−1πWi

f〉 −
∥∥∥∥

∑
i∈I

(1− ai)viwiπVi
S−1πWi

f

∥∥∥∥
2

, (4.1)

where ai is the conjugate of ai.

Proof. For any f ∈ H, {ai}i∈I ∈ l∞(I), let

L1f =
∑
i∈I

aiviwiπVi
S−1πWi

f, L2f =
∑
i∈I

(1− ai)viwiπVi
S−1πWi

f.

Next we prove that the operators L1, L2 are well defined in H. In fact, for any subset

J ⊂ I and any f ∈ H we have
∥∥∥∥

∑
i∈J

aiviwiπVi
S−1πWi

f

∥∥∥∥
2

= sup
g∈H,‖g‖=1

∣∣∣∣
〈 ∑

i∈J

aiviwiπVi
S−1πWi

f, g

〉∣∣∣∣
2

= sup
g∈H,‖g‖=1

∣∣∣∣
∑
i∈J

ai〈wiS
−1πWi

f, viπVi
g〉

∣∣∣∣
2

≤ sup
g∈H,‖g‖=1

( ∑
i∈J

|ai〈wiS
−1πWi

f, viπVi
g〉|

)2

≤ sup
g∈H,‖g‖=1

( ∑
i∈J

|ai| · |wiS
−1πWi

f | · |viπVi
g|

)2

≤ sup
g∈H,‖g‖=1

‖a‖2
∞

∑
i∈J

w2
i ‖S−1πWi

(f)‖2 ·
∑
i∈J

v2
i ‖πVi

(g)‖2

≤ sup
g∈H,‖g‖=1

‖a‖2
∞‖S−1‖2

∑
i∈J

w2
i ‖πWi

(f)‖2 ·
∑
i∈J

v2
i ‖πVi

(g)‖2

≤ sup
g∈H,‖g‖=1

‖a‖2
∞‖S−1‖2D‖g‖2

∑
i∈J

w2
i ‖πWi

(f)‖2

= D‖a‖2
∞‖S−1‖2

∑
i∈J

w2
i ‖πWi

(f)‖2,

where D is a Bessel bound for {(Vi, vi)}i∈I , it follows that L1 is well defined. By the same

way as above we can show L2 is well defined. We can easily obtain

L1f + L2f =
∑
i∈I

aiviwiπVi
S−1πWi

f +
∑
i∈I

(1− ai)viwiπVi
S−1πWi

f

=
∑
i∈I

viwiπVi
S−1πWi

f. (4.2)
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Since {(Vi, vi)}i∈I is an alternate dual fusion frame of {(Wi, wi)}i∈I , we then have

f =
∑
i∈I

viwiπVi
S−1πWi

f,

combining (4.2) we get

L1 + L2 = IH.

By Lemma 2.3 it follows that

L1 − L∗1L1 = L∗2 − L∗2L2,

so for any f ∈ H we obtain

〈L1f, f〉 − 〈L∗1L1f, f〉 = 〈L∗2f, f〉 − 〈L∗2L2f, f〉.

Moreover, since

〈L1f, f〉 − 〈L∗1L1f, f〉 =

〈 ∑
i∈I

aiviwiπVi
S−1πWi

f, f

〉
− ‖L1f‖2

=
∑
i∈I

aiviwi〈S−1πWi
f, πVi

f〉 −
∥∥∥∥

∑
i∈I

aiviwiπVi
S−1πWi

f

∥∥∥∥
2

,

〈L∗2f, f〉 − 〈L∗2L2f, f〉 =

〈
f,

∑
i∈I

(1− ai)viwiπVi
S−1πWi

f

〉
− ‖L2f‖2

=
∑
i∈I

(1− ai)viwi〈πVi
f, S−1πWi

f〉 −
∥∥∥∥

∑
i∈I

(1− ai)viwiπVi
S−1πWi

f

∥∥∥∥
2

,

so the conclusion follows. ¤

Remark 4.3 It is easily seen that Theorem 4.1 is indeed a special case of Theorem 4.2.

In fact, Theorem 4.2 also holds for g-frames which are more general than fusion frames,

we leave the proof to the interested readers.
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