
Recognizing simple 𝐾4−groups by few special conjugacy class sizes ∗

𝑎,𝑏Yanheng Chen, 𝑎Guiyun Chen†, 𝑐Jinbao Li
𝑎School of Mathematics and Statistics, Southwest University

Chongqing 400715, P. R. China
𝑏School of Mathematics and Statistics, Chongqing Three Gorges University

Chongqing, 404100, P. R. China
𝑐School of Mathematics and Statistics, Chongqing University of Arts and Sciences

Chongqing, 402160, P. R. China

E-mail: math yan@126.com, gychen@swu.edu.cn, and leejinbao25@163.com

Abstract

In 1987, J. G. Thompson put forward the following conjecture: Let 𝐺 be a finite group with
trivial center. If 𝐿 is a finite simple group satisfying that 𝑁(𝐺) = 𝑁(𝐿), then 𝐺 ∼= 𝐿. The second
author proved above conjecture holds for finite simple groups with non-connected prime graphes.
Vasilev proved above conjecture holds for two simple groups with connected prime graphes: 𝐴10

and 𝐿4(4). N. Ahanjideh proved that Thompson’s conjecture is true for 𝐿𝑛(𝑞). The authors are
interested in if it is possible to weaken the conditions in the conjecture. A finite simple group is
called a simple 𝐾𝑛-group if its order is divisible by exactly 𝑛 distinct primes. Here, the authors
prove that simple 𝐾4−groups are characterized by their orders and few special conjugacy class
sizes, which implies that Thompson’s conjecture is valid for simple 𝐾4−groups.
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1 Notations and Introduction

All groups considered in this paper are finite and simple groups are finite non-abelian simple groups.

Let 𝐺 be a group. We denote by 𝑁(𝐺) the set of conjugacy class sizes of 𝐺 and by 𝜋(𝐺) the set of

prime divisors of ∣𝐺∣. In the middle of the 1970s, Gruenberg and O. Kegel introduced the concept of

prime graph of a group 𝐺 as follows: the vertices are the primes dividing the order of 𝐺, two vertices

𝑝 and 𝑞 are joined by an edge if and only if 𝐺 contains an element of order 𝑝𝑞 (see [10]). Denote the

connected components of the prime graph of group 𝐺 by 𝑇 (𝐺) = {𝜋𝑖(𝐺)∣1 ⩽ 𝑖 ⩽ 𝑡(𝐺)}, where 𝑡(𝐺)
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is the number of the prime graph components of 𝐺. If the order of 𝐺 is even, we always assume that

2 ∈ 𝜋1(𝐺). In addition, for 𝑥 ∈ 𝐺, 𝑐𝑙𝐺(𝑥) denotes the conjugacy class in 𝐺 containing 𝑥, and we

denote by 𝐺𝑝 and 𝑆𝑦𝑙𝑝(𝐺) a Sylow 𝑝−subgroup of 𝐺 and the set of all of its Sylow 𝑝−subgroups for

𝑝 ∈ 𝜋(𝐺), respectively. We also denote 𝑆𝑜𝑐(𝐺) the socle of 𝐺 which is the subgroup generated by

all minimal normal subgroups of 𝐺, Mult(𝐺) the Schur multiplier of 𝐺, and Ω𝑖(𝐺) a subgroup and

Ω𝑖(𝐺) = ⟨𝑔 ∈ 𝐺∣𝑔𝑝𝑖 = 1⟩ if 𝐺 is a 𝑝−group. The other notations and terminologies in this paper are

standard and the reader is referred to [7] and [13].

In the past thirty years, many mathematicians try to recognize finite groups, especially simple

groups, by their quantitative characteristics. Such as quantitative characterizations by prime graph

(see [18, 19, 20, 21]), by group order and element orders (see [22, 23, 24, 25]), and by non-commuting

graph (see [26, 27, 28]), et al. Here we will continue to this topic. In 1987, J. G. Thompson posed

the following conjecture (announced by W. J. Shi in 1989, ref. to [9, Problem 12.38]):

Conjecture 1.1 (Thompson’s conjecture) Let 𝐺 be a group with trivial center. If 𝐿 is a simple

group satisfying that 𝑁(𝐺) = 𝑁(𝐿), then 𝐺 ∼= 𝐿.

In 1994, G. Y. Chen proved in his Ph. D. dissertation [2] that Thompson’s conjecture holds for

all simple groups with non-connected prime graph (also ref. to [3, 4, 5]). In 2009, A. V. Vasil’ev first

dealt with the simple groups with connected prime graph and proved that Thompson’s conjecture

holds for 𝐴10 and 𝐿4(4) (see [9]). Later on, N. Ahanjideh in [1] proved that Thompson’s conjecture

is true for 𝐿𝑛(𝑞). Recently, G. Y. Chen and J. B. Li contributed their interests on the Thompson’s

conjecture under a weak condition. They only used order and one or two special conjugacy class

sizes of finite simple groups, and successfully characterized sporadic simple groups (see J. B. Li’s Ph.

D. dissertation [14]) and simple 𝐾3−groups (A finite simple group is called a simple 𝐾𝑛-group if its

order is divisible by exactly 𝑛 distinct primes) by their orders and one special conjugacy class sizes,

from which the Thompson’s conjecture for sporadic simple groups and simple 𝐾3−groups follow. In

fact, they provided two new ways to characterize finite simple groups, and one of them doesn’t care

about if prime graph of a group is non-connected. Hence it is an interesting topic to characterize

simple groups by their orders and few conjugacy class sizes. In this paper, we focus our attention

on finite simple 𝐾4−groups, and characterize them by their orders and few special class sizes, by

which we show Thompson’s conjecture holds for simple 𝐾4−groups as corollary. For convenience, we

denote by 𝑙𝑐𝑠(𝐺), 𝑠𝑙𝑐𝑠(𝐺), 𝑡𝑙𝑐𝑠(𝐺), 𝑓 𝑙𝑐𝑠(𝐺), and 𝑠𝑐𝑠(𝐺) the largest, the second largest, the third

largest, the fourth largest, and the smallest conjugacy class size greater than one of 𝐺, respectively.

Our main result is the following theorem:

Theorem 1.2 Let 𝐺 be a group, 𝐿 a simple 𝐾4−group. Then one of the following holds:

(i) If 𝐿 is isomorphic to one of 𝐴7, 𝐴8, 𝐴10,𝑀12, 𝐿2(16), 𝐿2(25), 𝐿2(49), 𝐿2(81), 𝐿3(5), 𝐿3(7),
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𝐿3(8), 𝐿3(17), 𝑈3(7), 𝑈3(8), 𝑈3(9), 𝑆𝑧(32), 𝑆4(4), and 𝐿2(𝑟), where 𝑟 ≥ 11 is an odd prime satisfies

𝑟2 − 1 = 2𝑎 ⋅ 3𝑏 ⋅ 𝑣𝑐

with 𝑎, 𝑏, 𝑐 ≥ 1, then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿);

(ii) If 𝐿 is isomorphic to one of 𝑀11, 𝐽2, 𝐿3(4), 𝑈3(4), 𝑈3(5), 𝑈4(3), 𝑂+
8 (2), 𝐺2(3),

𝑆𝑧(8), 𝐿2(2
𝑚), where 𝑚 ≥ 5 satisfies

2𝑚 − 1 = 𝑢, 2𝑚 + 1 = 3𝑡𝑏, 𝑢 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑝𝑟𝑖𝑚𝑒𝑠, 𝑡 > 3, 𝑏 ≥ 1,

and 𝐿2(3
𝑛), where 𝑛 ≥ 3 satisfies

3𝑛 − 1 = 2𝑢, 3𝑛 + 1 = 4𝑡𝑏, 𝑢 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑝𝑟𝑖𝑚𝑒𝑠, 𝑏 ≥ 1,

then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿);

(iii) If 𝐿 is isomorphic to one of 𝐴9, 𝑆4(5),
2𝐹4(2

′), and 3𝐷4(2), then 𝐺 ∼= 𝐿 if and only if

∣𝐺∣ = ∣𝐿∣ and 𝑠𝑙𝑐𝑠(𝐺) = 𝑠𝑙𝑐𝑠(𝐿);

(iv) If 𝐿 ∼= 𝐿4(3), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑡𝑙𝑐𝑠(𝐺) = 𝑡𝑙𝑐𝑠(𝐿);

(v) If 𝐿 ∼= 𝑆4(9), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑓𝑙𝑐𝑠(𝐺) = 𝑓𝑙𝑐𝑠(𝐿);

(vi) If 𝐿 is isomorphic to one of 𝑆6(2) and 𝑈5(2), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣, 𝑙𝑐𝑠(𝐺) =

𝑙𝑐𝑠(𝐿), and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿).

(vii) If 𝐿 ∼= 𝑆4(7), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 52
∣∣∣𝑐𝑙𝐺(𝑤)∣ for every element 𝑤 of

order 𝑝 ∈ {2, 3, 7} of 𝐺.

(viii) If 𝐿 ∼= 𝐿2(3
𝑛), where 𝑛 ≥ 5 satisfies

3𝑛 − 1 = 2𝑢𝑐, 3𝑛 + 1 = 4𝑡, 𝑢 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑝𝑟𝑖𝑚𝑒𝑠, 𝑐 > 1,

then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑢𝑐
∣∣∣𝑐𝑙𝐺(𝑤)∣ for every element 𝑤 of order 𝑝 ∈ {2, 3, 𝑡} of 𝐺.

And we have the following corollary.

Corollary 1.3 Thompson’s conjecture holds for all simple 𝐾4−groups.

Proof. If 𝐿 ∕∼= 𝐴10, then the prime graph of 𝐿 is non-connected, and hence ∣𝐺∣ = ∣𝐿∣ by [2]. If

𝐿 ∼= 𝐴10, then ∣𝐺∣ = ∣𝐿∣ by [9]. Therefore the corollary follows from Theorem 1.2.

2 Preliminaries

First, we prove some preliminary lemmas to be used in the proof of Theorem 1.2.
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Lemma 2.1 Let 𝐺 be a group and 𝑥 ∈ 𝐺. Set 𝐺 = 𝐺/𝑍(𝐺) and 𝑥 the image of 𝑥 in 𝐺.

(a) If ∣𝐺𝑝∣ < 𝑠𝑐𝑠(𝐺) for every 𝑝 ∈ 𝜋(𝐺), then every minimal normal subgroup of 𝐺 is not solvable.

Especially, 𝑆𝑜𝑐(𝐺)⊴𝐺 ≲Aut(𝑆𝑜𝑐(𝐺)).

(b) For any 𝑥 ∈ 𝐺, ∣𝑐𝑙𝐺(𝑥)∣
∣∣∣𝑐𝑙𝐺(𝑥)∣. Moreover, 𝑠𝑐𝑠(𝐺) ≤ 𝑠𝑐𝑠(𝐺).

(c) If (∣𝑥∣, ∣𝑍(𝐺)∣) = 1, then 𝐶𝐺(𝑥) = 𝐶𝐺(𝑥)/𝑍(𝐺). Moreover, ∣𝑐𝑙𝐺(𝑥)∣ = ∣𝑐𝑙𝐺(𝑥)∣.
(d) If 𝑥 is a non-central 𝑝−element of 𝐺, then ∣𝑐𝑙𝐺(𝑥)∣𝑝′ = ∣𝑐𝑙𝐺(𝑥)∣𝑝′.

Proof. (a) Assume that 𝑁 is any minimal normal subgroup of 𝐺 and 𝑁 is the inverse image of 𝑁

in 𝐺. If 𝑁 is solvable, then 𝑁 is an elementary abelian 𝑝−group. Hence 𝑁 is a nilpotent normal

subgroup of 𝐺, and 𝑁𝑝 is a normal subgroup of 𝐺 not contained in 𝑍(𝐺). Thus, there is an element

𝑥 of 𝑁𝑝 ∖ 𝑍(𝐺) satisfying that

1 < ∣𝑐𝑙𝐺(𝑥)∣ = ∣𝐺 : 𝐶𝐺(𝑥)∣ ≤ ∣𝑁𝑝∣ < 𝑠𝑐𝑠(𝐺),

violating the hypothesis. Now, every minimal normal subgroup of 𝐺 is not solvable. Let 𝑆1, 𝑆2, . . . ,

and 𝑆𝑘 be all minimal normal subgroups of 𝐺, where 𝑘 is a positive integer. Then 𝑆𝑜𝑐(𝐺) =

𝑆1 × 𝑆2 × ⋅ ⋅ ⋅ × 𝑆𝑘. We assert that 𝐶𝐺(𝑆𝑜𝑐(𝐺)) = 1. Otherwise, there exists a minimal normal

subgroup 𝑆 of 𝐺 so that 𝑆 ≤ 𝐶𝐺(𝑆𝑜𝑐(𝐺))
∩

𝑆𝑜𝑐(𝐺). Thus 𝑆 is an abelian group, a contradiction.

By 𝑁/𝐶 Theorem, we have 𝑆𝑜𝑐(𝐺)⊴𝐺 = 𝐺/𝐶𝐺(𝑆𝑜𝑐(𝐺)) ≲Aut(𝑆𝑜𝑐(𝐺)), as desired.

(b) For any 𝑥 ∈ 𝐺, we have that 𝐶𝐺(𝑥)/𝑍(𝐺) ≤ 𝐶𝐺(𝑥), and so ∣𝑐𝑙𝐺(𝑥)∣
∣∣∣𝑐𝑙𝐺(𝑥)∣. It is easy to

know that 𝑠𝑐𝑠(𝐺) ≤ 𝑠𝑐𝑠(𝐺).

(c) If (∣𝑥∣, ∣𝑍(𝐺)∣) = 1, then 𝐶𝐺(𝑥)/𝑍(𝐺) = 𝐶𝐺(𝑥) by Theorem 1.6.2 of [12], and thus ∣𝑐𝑙𝐺(𝑥)∣ =
∣𝑐𝑙𝐺(𝑥)∣.

(d) Since 𝑥 is a noncentral 𝑝−element of 𝐺, it follows that 𝑥 ∕= 1 is a 𝑝−element of 𝐺 and

𝐶𝐺(𝑥) ≥ 𝐶𝐺(𝑥)/𝑍(𝐺).

If 𝐶𝐺(𝑥) is a 𝑝−group,Then 𝐶𝐺(𝑥)/𝑍(𝐺) is also a 𝑝−group. It follows that

∣𝑐𝑙𝐺(𝑥)∣𝑝′ = ∣𝐺 : 𝐶𝐺(𝑥)∣𝑝′ = ∣𝐺∣𝑝′ = ∣𝐺/𝑍(𝐺)∣𝑝′ = ∣𝐺/𝑍(𝐺) : 𝐶𝐺(𝑥)/𝑍(𝐺)∣𝑝′ = ∣𝑐𝑙𝐺(𝑥)∣𝑝′ ,

as desired.

Assume that 𝐶𝐺(𝑥) is not a 𝑝−group. Then, for every 𝑝′−element 𝑦 ∈ 𝐶𝐺(𝑥), there exists a

𝑝′−element 𝑦 of 𝐺 such that 𝑦 = 𝑦𝑍(𝐺), and thus [𝑥, 𝑦] ∈ 𝑍(𝐺). Let [𝑥, 𝑦] = 𝑥−1𝑦−1𝑥𝑦 = 𝑧. Then

𝑥−1𝑦−1𝑥 = 𝑦−1𝑧 and 𝑦−1𝑥𝑦 = 𝑧𝑥, and so 𝑧∣𝑦∣ = 𝑧∣𝑥∣ = 1. Note that (∣𝑥∣, ∣𝑦∣) = 1, then [𝑥, 𝑦] = 𝑧 = 1

and 𝑦 ∈ 𝐶𝐺(𝑥). Thus 𝑦 ∈ 𝐶𝐺(𝑥)/𝑍(𝐺), and so ∣𝐶𝐺(𝑥)∣𝑝′ = ∣𝐶𝐺(𝑥)/𝑍(𝐺)∣𝑝′ . Hence

∣𝑐𝑙𝐺(𝑥)∣𝑝′ = ∣𝐺 : 𝐶𝐺(𝑥)∣𝑝′ = ∣𝐺∣𝑝′/∣𝐶𝐺(𝑥)∣𝑝′ = ∣𝐺/𝑍(𝐺) : 𝐶𝐺(𝑥)/𝑍(𝐺)∣𝑝′ = ∣𝑐𝑙𝐺(𝑥)∣𝑝′ ,
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as claimed. So (d) holds.

Lemma 2.2 [15, Theorem 1] If 𝐿 is a simple 𝐾3−group, then 𝐿 is isomorphic to one of the following

groups:

𝐴5, 𝐴6, 𝐿2(7), 𝐿2(8), 𝐿3(3), 𝑈3(3), 𝑈4(2), 𝐿2(17).

Lemma 2.3 [16, Theorem 2] If 𝐿 is a simple 𝐾4−group, then 𝐿 is isomorphic to one of the following

groups:

(a) 𝐴7, 𝐴8, 𝐴9, 𝐴10, 𝑀11, 𝑀12, 𝐽2, 𝐿2(16), 𝐿2(25), 𝐿2(49), 𝐿2(81), 𝐿3(4), 𝐿3(5), 𝐿3(7), 𝐿3(8),

𝐿3(17), 𝐿4(3), 𝑆4(4), 𝑆4(5), 𝑆4(7), 𝑆4(9), 𝑆6(2), 𝑂
+
8 (2), 𝐺2(3), 𝑈3(4), 𝑈3(5), 𝑈3(7), 𝑈3(8), 𝑈3(9),

𝑈4(3), 𝑈5(2), 𝑆𝑧(8), 𝑆𝑧(32), 3𝐷4(2),
2𝐹4(2)

′
.

(b) 𝐿2(𝑟), where 𝑟 is a prime and satisfies

𝑟2 − 1 = 2𝑎 ⋅ 3𝑏 ⋅ 𝑣𝑐

with 𝑎, 𝑏, 𝑐 ≥ 1 and a prime 𝑣 > 3.

(c) 𝐿2(2
𝑚), where 𝑚 ≥ 2 satisfies

2𝑚 − 1 = 𝑢, 2𝑚 + 1 = 3𝑡𝑏,

where 𝑢 and 𝑡 are primes, 𝑡 > 3, 𝑏 ≥ 1.

(d) 𝐿2(3
𝑛), where 𝑛 ≥ 2 satisfies

3𝑛 − 1 = 2𝑢𝑐, 3𝑛 + 1 = 4𝑡

or

3𝑛 − 1 = 2𝑢, 3𝑛 + 1 = 4𝑡𝑏,

where 𝑢 and 𝑡 are odd primes, 𝑏 ≥ 1, 𝑐 ≥ 1.

In fact, we have by trivial computing that 𝑟 ≥ 11, 𝑚 ≥ 5, and 𝑛 ≥ 3 in (b), (c) and (d) of Lemma

2.3 respectively. Moreover, for any group 𝐿 a group in Lemma 2.2 or Lemma 2.3 except 𝑆𝑧(8) and

𝑆𝑧(32) , it follows that 3 divides ∣𝐿∣.

Lemma 2.4 [17, Theorem 2] Let 𝐿 be a simple 𝐾4−group. Then 𝐿 is determined uniquely up to

isomorphism by the set 𝜋(𝐿) unless one of the following cases occurs:

(a) 𝜋(𝐿) = {2, 3, 5, 𝑝} with 𝑝 ∈ {7, 11, 13, 17, 31, 41}.
(b) 𝜋(𝐿) = {2, 3, 7, 𝑝} with 𝑝 ∈ {13, 19}.
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For convenience we write out exceptional groups in Lemma 2.4 in following corollary by Lemma

2.3.

Corollary 2.5 Let 𝐿 be a simple 𝐾4−group. Then one of the following holds:

(a) 𝜋(𝐿) = {2, 3, 5, 7} if and only if 𝐿 is isomorphic to one of 𝐴7, 𝐴8, 𝐴9, 𝐴10, 𝐽2, 𝐿2(49), 𝐿3(4),

𝑈3(5), 𝑈4(3), 𝑆4(7), 𝑆6(2), and 𝑂+
8 (2).

(b) 𝜋(𝐿) = {2, 3, 5, 11} if and only if 𝐿 is isomorphic to one of 𝑀11, 𝑀12, 𝐿2(11), and 𝑈5(2).

(c) 𝜋(𝐿) = {2, 3, 5, 13} if and only if 𝐿 is isomorphic to one of 𝐿2(25), 𝑆4(5), 𝐿4(3), 𝑈3(4),

and 2𝐹4(2)
′
.

(d) 𝜋(𝐿) = {2, 3, 5, 17} if and only if 𝐿 is isomorphic to one of 𝐿2(16) and 𝑆4(4).

(f) 𝜋(𝐿) = {2, 3, 5, 31} if and only if 𝐿 is isomorphic to one of 𝐿2(31) and 𝐿3(5).

(e) 𝜋(𝐿) = {2, 3, 5, 41} if and only if 𝐿 is isomorphic to one of 𝐿2(81) and 𝑆4(9).

(h) 𝜋(𝐿) = {2, 3, 7, 13} if and only if 𝐿 is isomorphic to one of 𝐿2(13), 𝐿2(27), 𝐺2(3), and
3𝐷4(2).

(i) 𝜋(𝐿) = {2, 3, 7, 19} if and only if 𝐿 is isomorphic to one of 𝐿3(7) and 𝑈3(8).

Proof. It follows straight forward from Lemma 2.3 and [7].

Remark 2.6 By Lemma 2.3 and Corollary 2.5, it follows that 𝐿 is determined uniquely up to iso-

morphism by the set 𝜋(𝐿) if 𝐿 is a group in (b), (c), and (d) of Lemma 2.3 with 𝑟 ≥ 19 but ∕= 31,

𝑚 ≥ 5 and 𝑛 ≥ 5.

A group 𝐺 is a 2-Frobenius group if there exists a normal series 1 ⊲ 𝐻 ⊲ 𝐾 ⊲ 𝐺 such that 𝐾

and 𝐺/𝐻 are Frobenius groups with kernels 𝐻 and 𝐾/𝐻, respectively. Now we quote some known

results on Frobenius group or 2-Frobenius group which are useful in the sequel.

Lemma 2.7 [10, Theorem A] Let 𝐺 be a group with more than one prime graph component. Then

𝐺 is one of the following holds:

(i) a Frobenius or 2-Frobenius group;

(ii) 𝐺 has a normal series 1 ⊆ 𝐻 ⊆ 𝐾 ⊆ 𝐺, where 𝐻 is a nilpotent 𝜋1-group, 𝐾/𝐻 is a simple

group and 𝐺/𝐾 is a 𝜋1-group such that ∣𝐺/𝐾∣ divides the order of the outer automorphism group of

𝐾/𝐻. Besides, each odd order component of 𝐺 is also an odd order component of 𝐾/𝐻.

Lemma 2.8 [6, Theorem 1] Suppose that 𝐺 is a Frobenius group of even order and 𝐻, 𝐾 are

the Frobenius kernel and the Frobenius complement of 𝐺, respectively. Then 𝑡(𝐺) = 2, 𝑇 (𝐺) =

{𝜋(𝐻), 𝜋(𝐾)} and 𝐺 has one of the following structures:
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(i) 2 ∈ 𝜋(𝐻) and all Sylow subgroups of 𝐾 are cyclic;

(ii)2 ∈ 𝜋(𝐾), 𝐻 is an abelian group, 𝐾 is a solvable group, the Sylow subgroups of 𝐾 of odd order

are cyclic groups and the Sylow 2-subgroups of 𝐾 are cyclic or generalized quaternion groups;

(iii) 2 ∈ 𝜋(𝐾), 𝐻 is abelian, and there exists a subgroup 𝐾0 of 𝐾 such that

∣𝐾 : 𝐾0∣ ⩽ 2,𝐾0 = 𝑍 × 𝑆𝐿(2, 5), (∣𝑍∣, 2× 3× 5) = 1,

and the Sylow subgroups of 𝑍 are cyclic.

Lemma 2.9 [6, Theorem 2] Let 𝐺 be a 2-Frobenius group of even order. Then 𝑡(𝐺) = 2 and 𝐺 has

a normal series 1 ⊲𝐻 ⊲𝐾 ⊲ 𝐺 such that 𝜋(𝐾/𝐻) = 𝜋2, 𝜋(𝐻) ∪ 𝜋(𝐺/𝐾) = 𝜋1, the order of 𝐺/𝐾

divides the order of the automorphism group of 𝐾/𝐻, and both 𝐺/𝐾 and 𝐾/𝐻 are cyclic. Especially,

∣𝐺/𝐾∣ < ∣𝐾/𝐻∣ and 𝐺 is solvable.

Lemma 2.10 [11, Theorem 3.4.20] Let 𝑅 = 𝑅1 × ⋅ ⋅ ⋅ × 𝑅𝑘, where 𝑅𝑖 is a direct product of 𝑛𝑖

isomorphic copies of a simple group 𝐻𝑖, where 𝐻𝑖 and 𝐻𝑗 are not isomorphic if 𝑖 ∕= 𝑗. Then

Aut(𝑅)∼=Aut(𝑅1)×⋅ ⋅ ⋅× Aut(𝑅𝑘) 𝑎𝑛𝑑 Aut(𝑅𝑖)∼=Aut(𝐻𝑖) ≀𝑆𝑛𝑖, where in this wreath product Aut(𝐻𝑖)

appears in its right regular representation and the symmetric group 𝑆𝑛𝑖 in its natural permuta-

tion representation. Moreover these isomorphisms induce outer automorphisms Out𝑅∼=Out(𝑅1) ×
⋅ ⋅ ⋅×Out(𝑅𝑘) 𝑎𝑛𝑑 Out(𝑅𝑖)∼=Out(𝐻𝑖) ≀ 𝑆𝑛𝑖.

Lemma 2.11 [13, Theorem 4.5.3] Let 𝐺 be a 𝑝−group of order 𝑝𝑛, 𝑛 ≥ 1, and 𝑑 is the number of

minimal generators of 𝐺. Then ∣Aut(𝐺)∣∣∣𝑝𝑑(𝑛−𝑑)(𝑝𝑑 − 1)(𝑝𝑑 − 𝑝) ⋅ ⋅ ⋅ (𝑝𝑑 − 𝑝𝑑−1).

Lemma 2.12 Let 𝐺 be a group, 𝑁 a normal subgroup of 𝐺 with order 𝑝𝑛, 𝑛 ≥ 1. If (𝑟, ∣Aut(𝑁)∣) = 1,

where 𝑟 ∈ 𝜋(𝐺), then 𝐺 has an element of order 𝑝𝑟. Further there exists an edge connecting 𝑟 and

𝑝 in the prime graph of 𝐺.

Proof. Let an element 𝑔 of 𝐺 with order 𝑟 act on 𝑁 . Since (𝑟, ∣Aut(𝑁)∣) = 1, this action is trivial,

so that 𝑔 ∈ 𝐶𝐺(𝑁), which concludes the lemma.

3 Proof of Main Theorem

In this section, we divide the proof of Theorem 1.2 into several lemmas according to classification

of simple 𝐾4−groups in Lemma 2.4 and Corollary 2.5. Since the necessity of any case in Theorem

1.2 can be checked easily, it is enough to prove the sufficiency. We divide the proof into following

lemmas.

Lemma 3.1 Let 𝐺 be a group and 𝐿 one of the simple 𝐾4−groups with 𝜋(𝐿) = {2, 3, 5, 7}.
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(I) If 𝐿 is isomorphic to one of 𝐽2, 𝐿3(4), 𝑈3(5), 𝑈4(3), and 𝑂+
8 (2) , then 𝐺 ∼= 𝐿 if and only if

∣𝐺∣ = ∣𝐿∣ and 𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿);

(II) If 𝐿 is isomorphic to one of 𝐴7, 𝐿2(49), 𝐴8, and 𝐴10, then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣
and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿);

(III) If 𝐿 ∼= 𝐴9, then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑠𝑙𝑐𝑠(𝐺) = 𝑠𝑙𝑐𝑠(𝐿);

(IV) If 𝐿 ∼= 𝑆4(7), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 52
∣∣∣𝑐𝑙𝐺(𝑤)∣ for every element 𝑤 of

order 𝑝 ∈ {2, 3, 7} of 𝐺;

(V) If 𝐿 ∼= 𝑆6(2), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ , 𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿), and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿).

Proof. (I) In [14], the case of 𝐽2 have been done. So we only prove the remaining cases in (I).

Case 1. If 𝐿 ∼= 𝐿3(4), then it follows by [7] that ∣𝐺∣ = ∣𝐿∣ = 26 ⋅32 ⋅5⋅7 and 𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿) = 26 ⋅32 ⋅7.
Hence 𝐺 has an element 𝑥 of order 5 such that 𝑙𝑐𝑠(𝐺) = ∣𝐺 : 𝐶𝐺(𝑥)∣= 26 ⋅ 32 ⋅ 7. This means that

𝐶𝐺(𝑥) = ⟨𝑥⟩, and 𝐶𝐺(𝑥) is a Sylow 5-subgroup of 𝐺. By Sylow Theorem, we have that 𝐶𝐺(𝑦) = ⟨𝑦⟩
for any element 𝑦 ∈ 𝐺 of order 5 . Thus {5} is a prime graph component of 𝐺 and 𝑡(𝐺) ⩾ 2, i. e., 5

is an isolated vertex of the prime graph of 𝐺.

We first show that 𝐺 is neither a Frobenius group nor a 2-Frobenius group.

Suppose that 𝐺 is a Frobenius group with kernel 𝐻 and complement 𝐾. If 5 ∈ 𝜋(𝐻), then 𝐻 is

a Sylow 5-subgroup of 𝐺 and 𝜋(𝐾) = {2, 3, 7} by Lemma 2.8. Considering Sylow 5−subgroup of

𝐻 and a prime 7 ∈ 𝜋(𝐺), one can see that 5 is connected to 7 in prime graph of 𝐺 by Lemma 2.12,

a contradiction. If 5 ∈ 𝜋(𝐾), then, considering the Sylow 7-subgroup of 𝐻 and 5 ∈ 𝜋(𝐾), we come

to a contradiction by Lemma 2.12. Hence 𝐺 is not a Frobenius group.

Assume that 𝐺 is a 2-Frobenius group. By Lemma 2.9, we have that 𝐺 has a normal series

1 ⊲𝐻 ⊲𝐾 ⊲ 𝐺 such that 𝜋(𝐾/𝐻) = 𝜋2, 𝜋(𝐻) ∪ 𝜋(𝐺/𝐾) = 𝜋1, and ∣𝐺/𝐾∣∣∣∣Aut(𝐾/𝐻)∣. It forces

that ∣𝐾/𝐻∣ = 5 and 7 ∈ 𝜋(𝐻). Because of (5, ∣Aut(𝐻7)∣) = 1, it is a contradiction by Lemma 2.12.

Therefore 𝐺 is not a 2-Frobenius group.

Now, by Lemma 2.7, 𝐺 has a normal series 1 ⊆ 𝐻 ⊆ 𝐾 ⊆ 𝐺, where 𝐻 is a nilpotent 𝜋1-

group, 𝐾/𝐻 is a simple group, 𝐺/𝐾 is a 𝜋1-group such that ∣𝐺/𝐾∣ divides the order of the outer

automorphism group of 𝐾/𝐻 and each odd order component of 𝐺 is also an odd order component

of 𝐾/𝐻. It follows that 5 is an isolated vertex of prime graph of 𝐾/𝐻. By Lemma 2.2 and (a) of

Corollary 2.5, we have that 𝐾/𝐻 is isomorphic to one of the following simple groups:

𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐿3(4).

If 𝐾/𝐻 ∼= 𝐴5 or 𝐴6, then 7 ∈ 𝜋(𝐻) since ∣𝐺/𝐾∣ divides 22 by ∣Out(𝐴5)∣ = 2 and ∣Out(𝐴6)∣ = 22.

It follows that 5 and 7 are connected by Lemma 2.12, a contradiction.

If 𝐾/𝐻 is isomorphic to 𝐴7, then ∣Out(𝐴7)∣=∣Out(𝐾/𝐻)∣ = 2, and so ∣𝐺/𝐾∣ = 1 or 2. Hence

𝐻 is a group of order 22 or 23. Since (5, ∣Aut(𝐻)∣) = 1 by Lemma 2.11, we have that 5 and 2 are
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connected in the prime graph of 𝐺 by Lemma 2.12, a contradiction.

If 𝐾/𝐻 is isomorphic to 𝐴8. Then 𝐺 ∼= 𝐴8 by ∣𝐺∣ = ∣𝐴8∣, but 𝑙𝑐𝑠(𝐴8) = 25 ⋅ 3 ⋅ 5 ⋅ 7 by [7], a

contradiction.

Hence 𝐾/𝐻 must be isomorphic to 𝐿3(4), which immediately implies that 𝐺 ∼= 𝐿3(4).

Case 2. If 𝐿 ∼= 𝑈3(5), then ∣𝐺∣ = ∣𝐿∣ = 24 ⋅ 32 ⋅ 53 ⋅ 7 and 𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿) = 24 ⋅ 32 ⋅ 53. Therefore

there exsits an element 𝑥 of order 7 in 𝐺 satisfying that 𝑙𝑐𝑠(𝐺) = ∣𝐺 : 𝐶𝐺(𝑥)∣ and 𝐶𝐺(𝑥) = ⟨𝑥⟩, from
which 7 is an isolated vertex of prime graph of 𝐺 and 𝑡(𝐺) ⩾ 2.

Suppose that 𝐺 is a Frobenius group with kernel 𝐻 and complement 𝐾. If 7 ∈ 𝜋(𝐻), then 𝐻 is

a Sylow 7−subgroup of 𝐺 by Lemma 2.8. Since an element of 𝐾 of order 5 acts trivially on 𝐻, 5 and

7 are connected, a contradiction. If 7 ∈ 𝜋(𝐾), then 𝐻3, the Sylow 3− group of 𝐻, is a normal Sylow

3-subgroup of 𝐺 by nilpotency of 𝐻. Hence 𝐺 has an element of order 21 for (7, ∣Aut(𝐻3)∣) = 1 by

Lemma 2.12, a contradiction. Therefore 𝐺 is not a Frobenius group.

Assume that 𝐺 is a 2-Frobenius group. Then, by Lemma 2.9, 𝐺 has a normal series 1⊲𝐻⊲𝐾⊲𝐺

such that the Sylow 3-subgroup of 𝐻 is of order 3 or 32, and is normal in 𝐺. As above, we see that

3 and 7 are connected for (7, ∣Aut(𝐻3)∣) = 1, a contradiction. Thus 𝐺 is not a 2-Frobenius group.

Hence 𝐺 has a normal series 1 ⊆ 𝐻 ⊆ 𝐾 ⊆ 𝐺 by Lemma 2.7, where 𝐻 is a nilpotent 𝜋1-

group, 𝐾/𝐻 is a simple group and 𝐺/𝐾 is 𝜋1-group such that ∣𝐺/𝐾∣ divides the order of the outer

automorphism group of 𝐾/𝐻. Furthermore, {7} is a component of 𝐾/𝐻. By Lemma 2.2 and (a) of

Corollary 2.5, It follows that 𝐾/𝐻 is isomorphic to one of the following groups:

𝐿2(7), 𝐿2(8), 𝐴7, 𝑈3(5).

If 𝐾/𝐻 is isomorphic to 𝐿2(7). Since (∣𝐺/𝐾∣, 3) = 1 by ∣Out(𝐾/𝐻)∣ = 2, it follows that 𝐺 has

an element of order 21, a contradiction.

If 𝐾/𝐻 is isomorphic to 𝐿2(8), then 𝐺 has an element of order 14 by Lemma 2.12 since 7 ∈ 𝜋(𝐺)

and the Sylow 2-subgroup of 𝐻 of order 2 is normal in 𝐺, a contradiction;

If 𝐾/𝐻 is isomorphic to 𝐴7, then similarly, one can get that 𝐺 has an element of order 35 as the

Sylow 5-subgroup of 𝐻 is of order 52, a contradiction.

Therefore, 𝐾/𝐻 must be isomorphic to 𝑈3(5), which implies that 𝐺 ∼= 𝑈3(5) by ∣𝐺∣ = ∣𝑈3(5)∣.
Similar to Case 1 and Case 2, we can prove that the lemma holds for 𝑈4(3) and 𝑂+

8 (2). Hence

(I) follows..

(II) Let 𝐺 = 𝐺/𝑍(𝐺). If 𝐿 is one of 𝐴7, 𝐿2(49), 𝐴8 and 𝐴10, then the order of Sylow

𝑝−subgroup of 𝐺 is less than 𝑠𝑐𝑠(𝐺) for any prime 𝑝 ∈ 𝜋(𝐺) by the hypothesis and [7]. By (a) of

Lemma 2.1, every minimal normal subgroup of 𝐺 is non-solvable and 𝑆𝑜𝑐(𝐺) ⊴ 𝐺 ≤Aut(𝑆𝑜𝑐(𝐺)).

Let 𝑀 = 𝑆𝑜𝑐(𝐺) and 𝑆1, 𝑆2, . . . , and 𝑆𝑘(𝑘 ≥ 1) be all minimal normal subgroups of 𝐺. Then
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𝑀 = 𝑆𝑜𝑐(𝐺) = 𝑆1 × 𝑆2 × ⋅ ⋅ ⋅ × 𝑆𝑘 and 𝑆𝑖 is a direct product of some isomorphic simple groups for

𝑖 = 1, 2, . . . , 𝑘. Now, we continue the argument case by case.

Case 1. If 𝐿 ∼= 𝐴7, then ∣𝐺∣ = ∣𝐿∣ = 23 ⋅ 32 ⋅ 5 ⋅ 7 and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿) = 2 ⋅ 5 ⋅ 7 by [7]. By the

hypothesis, there exists an element 𝑥 in 𝐺 such that 𝑠𝑐𝑠(𝐺) = ∣𝐺 : 𝐶𝐺(𝑥)∣ = 2 ⋅ 5 ⋅ 7. Hence 5 and 7

do not divide the order of 𝑍(𝐺) because of 𝑍(𝐺) ≤ 𝐶𝐺(𝑥).

We assert that 5 ∈ 𝜋(𝑀). Otherwise, 𝑀 is a simple 𝐾3-group such that 7 ∈ 𝜋(𝑀) and 5 ∈
𝜋(Out(𝑀)). Checking the order of 𝑀 , 𝑀 may be isomorphic to 𝐿2(7) or 𝐿2(8) by Lemma 2.2. But

∣Out(𝐿2(7))∣ = 2 and ∣Out(𝐿2(8))∣ = 3, a contradiction.

If 7 ∕∈ 𝜋(𝑀), then 𝑀 is a simple 𝐾3-group such that 𝜋(𝑀) = {2, 3, 5} and 7 ∈ 𝜋(Out(𝑀)).

By Lemma 2.2, 𝑀 may be isomorphic to one of 𝐴5, and 𝐴6, but ∣Out(𝐴5)∣ = 2 and ∣Out(𝐴6)∣ = 4,

a contradiction to 7 ∈ 𝜋(Out(𝑀)). Hence 7 ∈ 𝜋(𝑀). Suppose that 5 ∈ 𝜋(𝑆𝑖), and 7 ∈ 𝜋(𝑆𝑗) for

𝑖, 𝑗 ∈ {1, 2, . . . , 𝑘}.
If 𝑖 ∕= 𝑗, then 𝑆𝑖 and 𝑆𝑗 are simple 𝐾3−groups with 𝜋(𝑆𝑖) = {2, 3, 5}, 𝜋(𝑆𝑗) = {2, 3, 7},

respectively. By checking their orders, one can see that it is impossible by Lemma 2.2.

Hence 𝑖 = 𝑗, and we obtain that 𝑘 = 1 and 𝑀 is isomorphic to 𝐴7, which implies that 𝐺 ∼= 𝐴7,

as desired.

Case 2. If 𝐿 ∼= 𝐿2(49), then ∣𝐺∣ = ∣𝐿∣ = 24 ⋅ 3 ⋅ 52 ⋅ 72 and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿) = 24 ⋅ 3 ⋅ 52. Set 𝑥 ∈ 𝐺

such that 𝑠𝑐𝑠(𝐺) = ∣𝑐𝑙𝐺(𝑥)∣ =24 ⋅ 3 ⋅ 52. Since 𝑍(𝐺) is contained in 𝐶𝐺(𝑥) for any 𝑥 ∈ 𝐺, we have

that 𝑍(𝐺) is a proper subgroup of 𝐺 and 2, 3 and 5 ∕∈ 𝜋(𝑍(𝐺)).

It is clear that 2, 3 ∈ 𝜋(𝑀). If 5 is not in 𝜋(𝑀), then 5 ∈ 𝜋(Out(𝑀)) and 𝑀 is a simple

𝐾3−group. Therefore 𝑀 may be isomorphic to 𝐿2(7) by Lemma 2.2, but ∣Out(𝐿2(7))∣ = 2, a

contradiction. Thus 5 ∈ 𝜋(𝑀). Checking the order of 𝑀 , we see that 𝑀 is isomorphic to 𝐴5 or

𝐿2(49). If 𝑀 ∼= 𝐴5, then 5 ∈ 𝜋(𝑍(𝐺)) by comparing three orders of 𝑀, 𝐺 and Aut(𝐺), which is a

contradiction.

Hence 𝑀 ∼= 𝐿2(49), and thus 𝐺 ∼= 𝐿2(49), as desired.

Case 3. If 𝐿 ∼= 𝐴8, then ∣𝐺∣ = ∣𝐿∣ = 26 ⋅ 32 ⋅ 5 ⋅ 7 and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿) = 3 ⋅ 5 ⋅ 7 by the hypothesis.

It follows that there is an element 𝑥 of 𝐺 such that 𝑠𝑐𝑠(𝐺) = ∣𝐺 : 𝐶𝐺(𝑥)∣ = 3 ⋅ 5 ⋅ 7. Hence 5 and 7

do not divide the order of 𝑍(𝐺) by 𝑍(𝐺) ≤ 𝐶𝐺(𝑥).

Similar to Case 1 and Case 2, we can obtain that 5 and 7 are contained in 𝜋(𝑀). Assume that

5 ∈ 𝜋(𝑆𝑖) and 7 ∈ 𝜋(𝑆𝑗) for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑘}.
Assume that 𝑖 ∕= 𝑗. Then 𝑆𝑖 and 𝑆𝑗 are simple 𝐾3−groups such that 𝜋(𝑆𝑖) = {2, 3, 5} and

𝜋(𝑆𝑗) = {2, 3, 7}, respectively. Checking the order of 𝑀 , we come to that 𝑀 is isomorphic to

𝐴5 ×𝐿2(7) by Lemma 2.2. Hence Aut(𝑀)=𝐴5 ⋅ 2×𝐿2(7) ⋅ 2 by Lemma 2.10 and [7]. It follows that

∣𝑍(𝐺)∣∣∣2. Therefore there exists an element 𝑤 of order 5 in 𝐺 such that 𝐶𝐺(𝑤)/𝑍(𝐺) = 𝐶𝐺(𝑤) ≥
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⟨𝑤⟩ × 𝐿2(7) by (c) of Lemma 2.1, where 𝑤 is the image of 𝑤 in 𝐺. Hence 1 < ∣𝑐𝑙𝐺(𝑤)∣ < 𝑠𝑐𝑠(𝐺), a

contradiction.

Hence 𝑖 = 𝑗, and then 𝑘 = 1 and 𝑀 is isomorphic to 𝐴7, 𝐿3(4), and 𝐴8 by checking the possible

order of 𝑀 . Recall that 𝑀 ⊴𝐺 ≲Aut(𝑀).

If 𝑀 ∼= 𝐴7, then 𝐺 ∼= 𝐴7 or 𝐴7 ⋅ 2, and thus ∣𝑍(𝐺)∣∣∣23. It follows that there exists an element 𝑤

of order 3 such that ∣𝑐𝑙𝐺(𝑤)∣ = ∣𝑐𝑙𝐺(𝑤)∣ = 2 ⋅ 5 ⋅ 7 < 𝑠𝑐𝑠(𝐺) by (c) of Lemma 2.1, a contradiction.

If 𝑀 ∼= 𝐿3(4), then 𝐺 ∼= 𝐿3(4) by ∣𝐺∣ = ∣𝐿3(4)∣, but 𝑠𝑐𝑠(𝐿3(4)) > 3 ⋅ 5 ⋅ 7 by [7], a contradiction.

Therefore 𝑀 ∼= 𝐴8 implies that 𝐺 ∼= 𝐴8, as claimed.

Case 4. If 𝐿 ∼= 𝐴10, then ∣𝐺∣ = ∣𝐿∣ = 27 ⋅ 34 ⋅ 52 ⋅ 7 and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿) = 24 ⋅ 3 ⋅ 5. It is clear

that 𝑍(𝐺) ⩽ 𝐶𝐺(𝑥) for any 𝑥 ∈ 𝐺. Set 𝑦 ∈ 𝐺 such that 𝑠𝑐𝑠(𝐺) =∣𝐺 : 𝐶𝐺(𝑦)∣= 24 ⋅ 3 ⋅ 5. Hence

∣𝐶𝐺(𝑦)∣ = 23 ⋅ 33 ⋅ 5 ⋅ 7 and 7 is not contained in 𝜋(𝑍(𝐺)) by the hypothesis.

It is clear that 2 and 3 ∈ 𝜋(𝑀). We assert that 7 ∈ 𝜋(𝑀). Otherwise, then 𝜋(𝑀) = {2, 3, 5}
and 7 ∈ 𝜋(Out(𝑀)). By checking the order of 𝑀 , 𝑀 may be isomorphic to one of following groups:

𝐴5, 𝐴6, 𝑈4(2), 𝐴5 ×𝐴5, 𝐴5 ×𝐴6, 𝐴6 ×𝐴6.

By [7], we see that outer automorphism groups of these groups above are 2−groups, contradicting the

fact that 7 ∈ 𝜋(Out(𝑀)). Hence 7 ∈ 𝜋(𝑀). It follows that 𝑀 may be isomorphic to one of groups:

𝐿2(7), 𝐿2(8), 𝑈3(3), 𝐴7, 𝐴8, 𝐿3(4), 𝐴9, 𝐽2, 𝐴10, 𝐴5 × 𝐿2(7), 𝐴5 × 𝐿2(8), 𝐴5 × 𝑈3(3), 𝐴5 ×𝐴7,

𝐿2(7)×𝐴6, and 𝐿2(8)×𝐴6.

Notice that 𝑀 ⊴ 𝐺 ≲Aut(𝑀). If 𝑀 is isomorphic to one of 𝐿2(7), 𝐿2(8) and 𝑈3(3), then

52
∣∣∣𝑍(𝐺)∣, so 52

∣∣∣𝐶𝐺(𝑤)∣ for any element 𝑤 of 𝐺. But by 52 ∥ ∣𝐺∣, one has that 5 ∤ ∣𝑐𝑙𝐺(𝑤)∣, a
contradiction to the hypothesis.

If 𝑀 ∼= 𝐴7, then 𝐺 ∼= 𝐴7 or 𝐴7 ⋅2 by ∣Out(𝐴7)∣ = 2. Assume that 𝐺 ∼= 𝐴7, then ∣𝑍(𝐺)∣ = 24 ⋅32 ⋅5,
which implies 24

∣∣∣𝐶𝐺(𝑤)∣ for every element 𝑤 of 𝐺. Hence ∣𝑐𝑙𝐺(𝑤)∣2
∣∣23, a contradiction to 24

∣∣𝑠𝑐𝑠(𝐺).

We assert that 𝐺 is not isomorphic to 𝐴7 ⋅ 2. Otherwise, ∣𝑍(𝐺)∣ = 23 ⋅ 32 ⋅ 5 and there exists a

noncentral element 𝑤 in 𝐺 of order 2 satisfying that ∣𝑐𝑙𝐺(𝑤)∣2′ = ∣𝑐𝑙𝐺(𝑤)∣2′ = ∣𝑐𝑙𝐺(𝑤)∣ = 3 ⋅ 7 by

(d)of Lemma 2.1 and [7], where 𝑤 is image of 𝑤 in 𝐺. By 24
∣∣∣⟨𝑤,𝑍(𝐺)⟩∣∣∣∣𝐶𝐺(𝑤)∣, we have that

∣𝑐𝑙𝐺(𝑤)∣ ≤ 23 ⋅ 3 ⋅ 7 < 𝑠𝑐𝑠(𝐺), a contradiction.

If 𝑀 ∼= 𝐴8, then 𝐺 ∼= 𝐴8 or 𝑆8 by ∣Out(𝐴8)∣ = 2. Assume that 𝐺 ∼= 𝐴8. Then 𝐺 is a central

extensive of 𝐴8 by 𝑍(𝐺) and ∣𝑍(𝐺)∣ = 2 ⋅ 32 ⋅ 5. If the extension is split, then 𝐺 ∼= 𝐴8 × 𝑍(𝐺).

Otherwise, 𝐺 ∼= 2 ⋅𝐴8×𝑍(𝐺)2′by ∣Mult(𝐴8)∣ = 2, where 𝑍(𝐺)2′ is a 2′-Hall subgroup of 𝑍(𝐺). Since

𝑠𝑐𝑠(𝐴8) = 𝑠𝑐𝑠(2 ⋅ 𝐴8) = 3 ⋅ 5 ⋅ 7 by [7], we come to that 𝑠𝑐𝑠(𝐺) = 3 ⋅ 5 ⋅ 7, a contradiction to the

hypothesis. We also assert that 𝐺 is not isomorphic to 𝐴8 ⋅ 2. Otherwise, ∣𝑍(𝐺)∣ = 32 ⋅ 5, and there

exists a noncentral element 𝑤 in 𝐺 of order 2 satisfying with ∣𝑐𝑙𝐺(𝑤)∣ = ∣𝑐𝑙𝐺(𝑤)∣ = 22 ⋅ 7 < 𝑠𝑐𝑠(𝐺)

by (c) of Lemma 2.1 and [7], where 𝑤 is image of 𝑤 in 𝐺, a contradiction.
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If𝑀 ∼= 𝐿3(4), then𝐺 is isomorphic to one of 𝐿3(4), 𝐿3(4)⋅21, 𝐿3(4)⋅22, 𝐿3(4)⋅23, 𝐿3(4)⋅3, 𝐿3(4)⋅6,
𝐿3(4) ⋅3 ⋅22, and 𝐿3(4) ⋅3 ⋅23 by Aut(𝐿3(4)) = 𝐿3(4) ⋅𝐷12. By (b) of Lemma 2.1 and [7], we have that

𝑠𝑐𝑠(𝐺) ≥ 280 > 𝑠𝑐𝑠(𝐺) if �̄� ∕∼= 𝐿3(4) ⋅ 22, a contradiction. If 𝐺 ∼= 𝐿3(4) ⋅ 22, then ∣𝑍(𝐺)∣ = 32 ⋅ 5 and

there exists a noncentral element 𝑤 in 𝐺 of order 2 such that ∣𝑐𝑙𝐺(𝑤)∣ = ∣𝑐𝑙𝐺(𝑤)∣ = 120 < 𝑠𝑐𝑠(𝐺) by

(a) of Lemma 2.1 and [7], a contradiction.

If 𝑀 ∼= 𝐴9, then 𝐺 ∼= 𝐴9 or 𝐴9 ⋅ 2 for ∣Out(𝐴9)∣ = 2. If 𝐺 ∼= 𝐴9, then ∣𝑍(𝐺)∣ = 2 ⋅ 5 and

𝐺 ∼= 𝐴9×𝑍(𝐺) or 2 ⋅𝐴9×𝑍(𝐺)2′ since ∣Mult(𝐴9)∣ = 2, where 𝑍(𝐺)2′ is a 2′-Hall subgroup of 𝑍(𝐺).

But 𝑠𝑐𝑠(𝐴9) = 23 ⋅ 3 ⋅ 7 and 𝑠𝑐𝑠(2 ⋅𝐴9) = 24 ⋅ 3 ⋅ 7 by [7], it follows that 𝑠𝑐𝑠(𝐺) = 23 ⋅ 3 ⋅ 7 or 24 ⋅ 3 ⋅ 7, a
contradiction. If 𝐺 ∼= 𝐴9 ⋅2, then ∣𝑍(𝐺)∣ = 5, and there exists a noncentral element 𝑤 in 𝐺 of order 3

satisfying that ∣𝑐𝑙𝐺(𝑤)∣ = ∣𝑐𝑙𝐺(𝑤)∣ = 23 ⋅ 3 ⋅ 7 < 𝑠𝑐𝑠(𝐺) by (c) of Lemma 2.1 and [7], a contradiction.

If 𝑀 ∼= 𝐽2, then 𝐺 ∼= 𝐽2 or 𝐽2 ⋅ 2 by ∣Out(𝐽2)∣ = 2. Comparing the orders of 𝑀, 𝐺 and Aut(𝑀),

we get that ∣𝑍(𝐺)∣ = 3 and 𝐺 ∼= 𝐽2. But ∣Mult(𝐽2)∣ = 2, so 𝐺 is a split extension of 𝐽2 by 𝑍(𝐺)

such that 𝐺 = 𝐽2 × 𝑍(𝐺). It follows that 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐽2) = 32 ⋅ 5 ⋅ 7 by [7], a contradiction.

If𝑀 ∼= 𝐴5×𝐿2(7), then 32⋅5∣∣∣𝑍(𝐺)∣ and 𝜋(𝑍(𝐺)) ⊆ {2, 3, 5} by comparing the orders of𝑀, 𝐺 and

Aut(𝐺). Hence there exists a noncentral element 𝑤 in𝐺 of order 7 such that 𝐶𝐺(𝑤)/𝑍(𝐺) = 𝐶𝐺(𝑤) ≥
𝐴5 × ⟨𝑤⟩ by (c) of Lemma 2.1. It follows that ∣𝐶𝐺(𝑤)∣ ≥ ∣𝑍(𝐺)∣∣𝐴5 ×⟨𝑤⟩∣ = 22 ⋅ 33 ⋅ 52 ⋅ 7 > ∣𝐶𝐺(𝑦)∣,
a contradiction.

If 𝑀 ∼= 𝐴5 × 𝐿2(8). When 𝐺 ∕∼= 𝐴5 ⋅ 2× 𝐿2(8) ⋅ 3, we have that 22 ⋅ 5 ≤ ∣𝑍(𝐺)∣ and 7 ∕∈ 𝜋(𝑍(𝐺)).

By (c) of Lemma 2.1, it follows that there exists a noncentral element 𝑤 in 𝐺 of order 7 such that

∣𝐶𝐺(𝑤)∣ ≥ ∣𝑍(𝐺)∣∣𝐴5 × ⟨𝑤⟩∣ = 24 ⋅ 3 ⋅ 52 ⋅ 7 > ∣𝐶𝐺(𝑦)∣, a contradiction. When 𝐺 ∼= 𝐴5 ⋅ 2× 𝐿2(8) ⋅ 3,
it follows that ∣𝑍(𝐺)∣ = 2 ⋅ 5. Then there exists a noncentral element 𝑧 in 𝐺 of order 5 satisfying

that ∣𝑐𝑙𝐺(𝑧)∣5′ = ∣𝑐𝑙𝐺(𝑧)∣5′ = 12 by (d) of Lemma 2.1 and [7], and so ∣𝑐𝑙𝐺(𝑤)∣ ≤ 12 ⋅ 5 < 𝑠𝑐𝑠(𝐺), a

contradiction.

If 𝑀 ∼= 𝐴5×𝑈3(3), then ∣𝑍(𝐺)∣ = 5 and 𝐺 ∼= 𝐴5×𝑈3(3). It follows that there exists a noncentral

element 𝑤 in 𝐺 of order 5 satisfying that ∣𝑐𝑙𝐺(𝑤)∣5′ = ∣𝑐𝑙𝐺(𝑤)∣5′ = 12 by (d) of Lemma 2.1 and [7],

and thus ∣𝑐𝑙𝐺(𝑤)∣ ≤ 12 ⋅ 5 < 𝑠𝑐𝑠(𝐺), a contradiction.

If 𝑀 ∼= 𝐴5 × 𝐴7, then 3
∣∣∣𝑍(𝐺)∣ and 𝜋(𝑍(𝐺)) ⊆ {2, 3}. Hence there exists a noncentral element

𝑤 in 𝐺 of order 5 such that ∣𝐶𝐺(𝑤)∣ ≥ ∣𝑍(𝐺)∣∣𝐴7 × ⟨𝑤⟩∣ = 23 ⋅ 33 ⋅ 52 ⋅ 7 > ∣𝐶𝐺(𝑦)∣ by (c) of Lemma

2.1 and [7], a contradiction.

If 𝑀 ∼= 𝐴6 × 𝐿2(7), then 15
∣∣∣𝑍(𝐺)∣ and 𝜋(𝑍(𝐺)) ⊆ {2, 3, 5}. It follows that there exists a

noncentral element 𝑤 in 𝐺 of order 7 satisfying that ∣𝑐𝑙𝐺(𝑤)∣ = ∣𝑐𝑙𝐺(𝑤)∣ = 24 < 𝑠𝑐𝑠(𝐺) by (c) of

Lemma 2.1 and [7], a contradiction.

If 𝑀 ∼= 𝐴6 × 𝐿2(8), then 5
∣∣∣𝑍(𝐺)∣ and 𝜋(𝑍(𝐺)) ⊆ {2, 5}. Similarly, there exists a noncentral

element 𝑤 in 𝐺 of order 7 such that ∣𝑐𝑙𝐺(𝑤)∣ = ∣𝑐𝑙𝐺(𝑤)∣ = 72 < 𝑠𝑐𝑠(𝐺), a contradiction.

Hence 𝑀 ∼= 𝐴10 and so 𝐺 must be isomorphic to 𝐴10 by ∣𝐺∣ = ∣𝐴10∣.
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(III) If 𝐿 ∼= 𝐴9, then ∣𝐺∣ = 26 ⋅ 34 ⋅ 5 ⋅ 7 and 𝑠𝑙𝑐𝑠(𝐺) = 26 ⋅ 34 ⋅ 5. It follows that 7 is an isolated

vertex in the prime graph of 𝐺 and 𝑡(𝐺) ⩾ 2.

Suppose that 𝐺 is a Frobenius group with kernel 𝐻 and complement 𝐾. If 7 ∈ 𝜋(𝐻), then 𝐻

has a Sylow 7− subgroup of order 7, which is normal in 𝐺. Hence 5 and 7 are connected in the

prime graph of 𝐺 by Lemma 2.12, a contradiction. If 7 ∈ 𝜋(𝐾), then 𝐺 has an element of order 35

by Lemma 2.12 and similar reasoning, a contradiction. Therefore 𝐺 is not a Frobenius group.

Suppose that 𝐺 is a 2-Frobenius group. By Lemma 2.9, 𝐺 has a normal series 1 ⊲𝐻 ⊲𝐾 ⊲ 𝐺

such that the Sylow 5-subgroup of 𝐻 is of order 5. It follows that 5 and 7 are connected in the prime

graph of 𝐺 by Lemma 2.12, a contradiction. Thus, 𝐺 is not a 2-Frobenius group.

Therefore 𝐺 has a normal series 1 ⊆ 𝐻 ⊆ 𝐾 ⊆ 𝐺, where 𝐻 is a nilpotent 𝜋1-group, 𝐾/𝐻 is a

simple group and 𝐺/𝐾 is 𝜋1-group such that ∣𝐺/𝐾∣ divides the order of the outer automorphism

group of 𝐾/𝐻. Moreover, {7} is a prime graph component of 𝐾/𝐻. By Lemma 2.2 and (a) of

Corollary 2.5, 𝐾/𝐻 may be isomorphic to one of the following simple groups:

𝐿2(7), 𝐿2(8), 𝐴7, 𝑈3(3), 𝐴8, 𝐿3(4), 𝐴9.

If 𝐾/𝐻 is isomorphic to one of 𝐿2(7), 𝐿2(8), and 𝑈3(3), then 𝐺 has an element of order 35

because the Sylow 5-subgroup of 𝐻 is of order 5 by ∣Out(𝐾/𝐻)∣∣∣6, and an element of order 7 of 𝐾

acts trivially on 𝐻5, a contradiction.

If 𝐾/𝐻 is isomorphic to one of 𝐴7, 𝐴8, and 𝐿3(4), then the Sylow 3-subgroup of 𝐻 is of order

3 or 32 by ∣Out(𝐴7)∣=∣Out(𝐴8)∣=2 and ∣Out(𝐿3(4))∣ = 12, which implies that 𝐺 has an element of

order 21, a contradiction.

Therefore 𝐾/𝐻 must be isomorphic to 𝐴9, which concludes 𝐺 ∼= 𝐴9.

(IV) If 𝐿 ∼= 𝑆4(7), then, by hypothesis, ∣𝐺∣ = 28 ⋅ 32 ⋅ 52 ⋅ 74 and 5 is an isolated vertex in the

prime graph of 𝐺.

Assume that 𝐺 is a Frobenius group with kernel 𝐻 and complement 𝐾. If 5 ∈ 𝜋(𝐻), then the

5−Sylow subgroup of 𝐻 is of order 52 and is normal in 𝐺, hence 5 and 7 are connected by Lemma

2.12, a contradiction. If 5 ∈ 𝜋(𝐾), then 𝐺 has an element of order 15 by (5, ∣Aut(𝐻3)∣) = 1 by

Lemma 2.12, a contradiction. Therefore 𝐺 is not a Frobenius group.

Suppose that 𝐺 is a 2-Frobenius group. By Lemma 2.9, 𝐺 has a normal series 1 ⊲𝐻 ⊲𝐾 ⊲ 𝐺

such that ∣𝐾/𝐻∣ = 52, 𝜋(𝐻) ∪ 𝜋(𝐺/𝐾) = {2, 3, 7}, and ∣𝐺/𝐾∣∣∣∣Aut(K/H)∣ = 20. Hence the Sylow

3-subgroup of 𝐻 is of order 32 and a normal subgroup of 𝐾,. It follows that 5 and 3 are connected

by Lemma 2.12, a contradiction. Thus, 𝐺 is not a 2-Frobenius group.

Therefore 𝐺 has a normal series 1 ⊆ 𝐻 ⊆ 𝐾 ⊆ 𝐺, where 𝐻 is a nilpotent 𝜋1-group, 𝐾/𝐻 is a

simple group and 𝐺/𝐾 is 𝜋1-group such that ∣𝐺/𝐾∣ divides the order of the outer automorphism

group of 𝐾/𝐻. Moreover, {5} is a prime graph component of 𝐾/𝐻. Checking the order of 𝐾/𝐻,
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we come to that 𝐾/𝐻 may be isomorphic to one of 𝐿2(49) and 𝑆4(7).

If 𝐾/𝐻 ∼= 𝐿2(49), then ∣Out(𝐾/𝐻)∣ = 22, so ∣𝐺/𝐾∣ ≤ 4. Hence the Sylow 3-subgroup of 𝐻 is

of order 3 and a normal subgroup of 𝐺. It follows that 5 and 3 are connected by Lemma 2.12, a

contradiction.

Hence 𝐾/𝐻 must be isomorphic to 𝑆4(7) , so that 𝐺 ∼= 𝑆4(7) by ∣𝐺∣ = ∣𝑆4(7)∣, as claimed.

(V) If 𝐿 ∼= 𝑆6(2), then ∣𝐺∣ = ∣𝐿∣ = 29 ⋅ 34 ⋅ 5 ⋅ 7, 𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿) = 29 ⋅ 34 ⋅ 5, and 𝑠𝑐𝑠(𝐺) =

𝑠𝑐𝑠(𝐿) = 32 ⋅ 7 by [7], from which 7 is an isolated vertex in the prime graph of 𝐺 and 𝑡(𝐺) ⩾ 2.

By the same reasoning as previous cases, one can show that 𝐺 is not a Frobenius group and a

2-Frobenius group. So it follows by Lemma 2.7 that 𝐺 has a normal series 1 ⊆ 𝐻 ⊆ 𝐾 ⊆ 𝐺, where

𝐻 is a nilpotent 𝜋1-group, 𝐾/𝐻 is a simple group and 𝐺/𝐾 is 𝜋1-group such that ∣𝐺/𝐾∣ divides
the order of the outer automorphism group of 𝐾/𝐻. Hence {7} is a prime component of 𝐾/𝐻. By

Lemma 2.2 and (a) of Corollary 2.5, we know that 𝐾/𝐻 is isomorphic to one of the following groups:

𝐿2(7), 𝐿2(8), 𝑈3(3), 𝐴7, 𝐴8, 𝐴9, 𝐿3(4), 𝑆6(2).

Suppose that 𝐾/𝐻 is isomorphic to one of 𝐿2(7), 𝐿2(8), and 𝑈3(3). then (∣𝐺/𝐾∣, 5) = 1 by

∣Out(𝐿2(7))∣ = 2, ∣Out(𝐿2(8))∣ = 3 and ∣Out(𝑈3(3))∣ = 2, Hence the Sylow 5-subgroup of 𝐻 is of

order 5 and is normal in 𝐺. Since (7, ∣Aut(𝐻5)∣) = 1, we have that 𝐺 has an element of order 35 by

Lemma 2.12, a contradiction.

If 𝐾/𝐻 is isomorphic to one of 𝐴7, 𝐴8, and 𝐿3(4), then 𝐺 has an element of order 21 by Lemma

2.12 as the Sylow 3-subgroup of 𝐻 is of order 3 or 9, a contradiction;

If 𝐾/𝐻 is isomorphic to 𝐴9, then 𝐺/𝐻 ∼= 𝐴9 or 𝐴9 ⋅2, and thus 𝐻 is a group of order 4 or 8. If 𝐻

is not an elementary abelian group of order 8, then 𝐺 has an element of order 14 by Lemma 2.12, a

contradiction. If 𝐻 is an elementary abelian group of order 8, then 𝐺/𝐻 ∼= 𝐴9 and 𝑠𝑐𝑠(𝐴9) = 23 ⋅3 ⋅7.
Note that 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿) = 32 ⋅ 7, then 𝑠𝑐𝑠(𝐺/𝐻) > 𝑠𝑐𝑠(𝐺), a contradiction. Hence 𝐾/𝐻 is not

isomorphic to 𝐴9.

Now we have that 𝐾/𝐻 ∼= 𝑆6(2), which concludes 𝐺 ∼= 𝑆6(2).

Remark 3.2 (a) It is an interesting fact that 𝐴10 is unique one having connected prime graph among

simple 𝐾4−groups. By our approach, we successfully characterize 𝐴10 by its order and smallest

conjugacy class sizes greater than 1.

(b) In the proofs (I), (III) and (IV), there is a crucial step to show that the prime graph of 𝐺

is non-connected by a special conjugacy class size. But some simple groups which have the same

order and the same one conjugacy class size are not isomorphic. For example, 𝐴8 and 𝐿3(4) have

the same order and the same second largest class size by [7], but they are not isomorphic. In fact,

the following counter example is true:

𝐴8 and 𝐿3(4) are of order 26 ⋅ 32 ⋅ 5 ⋅ 7, moreover and 𝑠𝑙𝑐𝑠(𝐴8) = 𝑠𝑙𝑐𝑠(𝐿3(4)) = 26 ⋅ 32 ⋅ 5.
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Lemma 3.3 Let 𝐺 be a group and 𝐿 one of the simple 𝐾4−groups with 𝜋(𝐿) = {2, 3, 5, 11}, then
one of the following holds:

(I) If 𝐿 is isomorphic to one of 𝑀12 and 𝐿2(11), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and

𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿);

(II) If 𝐿 ∼= 𝑀11, then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿);

(III) If 𝐿 ∼= 𝑈5(2), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣, 𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿), and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿).

Proof. Since the cases of 𝑀11 and 𝑀12 have been done in [14], (II) follows. Moreover it is enough

to show the sufficiency of the remaining groups 𝐿.

(I) If 𝐿 ∼= 𝐿2(11), then ∣𝐺∣ = ∣𝐿∣ = 22 ⋅3 ⋅5 ⋅11 and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿) = 5 ⋅11 by [7]. It follows that

5 and 11 do not divide the order of 𝑍(𝐺) because of 𝑍(𝐺) ≤ 𝐶𝐺(𝑥) for any 𝑥 ∈ 𝐺. Let 𝐺 = 𝐺/𝑍(𝐺).

Then the order of Sylow 𝑝−subgroup of 𝐺 is less than 𝑠𝑐𝑠(𝐺) for any prime 𝑝 ∈ 𝜋(𝐺). By (a) of

Lemma 2.1, we know that 𝑀 ⊴ 𝐺 ≤Aut(𝑀), where 𝑀 = 𝑆𝑜𝑐(𝐺) = 𝑆1 × 𝑆2 × ⋅ ⋅ ⋅ × 𝑆𝑘 and 𝑆𝑖 is a

direct product of some isomorphic simple groups for 𝑖 = 1, 2, . . . , 𝑘.

Since ∣𝐺∣ = 22 ⋅ 3 ⋅ 5 ⋅ 11, 𝑀 may be isomorphic to 𝐴5 or 𝐿2(11) by [7]. If 𝑀 ∼= 𝐴5, then 𝐺 is

isomorphic to 𝐴5 or 𝐴5 ⋅2 by ∣Out(𝐴5)∣ = 2, and thus 11 is a prime divisor of ∣𝑍(𝐺)∣, a contradiction.

Hence 𝑀 ∼= 𝐿2(11), and 𝐺 ∼= 𝐿2(11) as desired.

(III) If 𝐿 ∼= 𝑈5(2), then ∣𝐺∣ = 210 ⋅ 35 ⋅ 5 ⋅ 11, 𝑙𝑐𝑠(𝐺) = 210 ⋅ 35 ⋅ 5 and 𝑠𝑐𝑠(𝐺) = 3 ⋅ 5 ⋅ 11 by the

hypothesis and [7]. Hence 11 is an isolated vertex in the prime graph of 𝐺 and 𝑡(𝐺) ⩾ 2.

Suppose that 𝐺 is a Frobenius group with kernel 𝐻 and complement 𝐾. If 11 ∈ 𝜋(𝐻), then by

Lemma 2.8, 𝐾 has an element of order 5 acts trivially on 𝐻. It follows that 3 and 11 are connected

in the prime graph of 𝐺 by Lemma 2.12, a contradiction. If 11 ∈ 𝜋(𝐾), then the 5−Sylow subgroup

of 𝐻 is of order 5 and normal in 𝐺 by nilpotency of 𝐻. Hence 𝐺 has an element of order 55 by

Lemma 2.12, a contradiction. Therefore 𝐺 is not a Frobenius group.

Assume that 𝐺 is a 2-Frobenius group. Then 𝐺 has a normal series 1 ⊲ 𝐻 ⊲ 𝐾 ⊲ 𝐺 such

that 𝜋(𝐾/𝐻) = 𝜋2={11}, 𝜋(𝐻) ∪ 𝜋(𝐺/𝐾) = 𝜋1={2, 3, 5}, and ∣𝐺/𝐾∣∣∣∣Aut(𝐾/𝐻)∣ = 10. So

∣𝐺/𝐾∣ = 2, 5, or 10.

If ∣𝐺/𝐾∣ = 2, then the Sylow 5-subgroup 𝐻5 of 𝐻 is normal in 𝐺. Hence 5 and 11 are connected

in the prime graph of 𝐺 by Lemma 2.12, a contradiction.

If ∣𝐺/𝐾∣ = 10, then the Sylow 2-subgroup 𝐻2 of 𝐻 is of order 29 and normal in 𝐺. Considering

the characteristic subgroup Ω1(𝑍(𝐻2)) of 𝐻2, which is normal in 𝐺. Since 11 is prime to 2𝑖 − 1 for

𝑖 = 0, . . . , 9, ∣Aut(Ω1(𝑍(𝐻2)))∣ and 11 are co-prime by Lemma 2.11. It follows that 𝐺 has an element

of order 22 by Lemma 2.12, a contradiction.

If ∣𝐺/𝐾∣ = 5. Then the Sylow 2-subgroup 𝐻2 and Sylow 3-subgroup 𝐻3 of 𝐻 are normal in 𝐺.

It is difficult to reach a contradiction according to method above. We need to apply the hypothesis
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𝑠𝑐𝑠(𝐺) = 3 ⋅ 5 ⋅ 11. If one of 𝐻2 and 𝐻3 is not an elementary abelian subgroup, then we can get a

contradiction by Lemma 2.12 as above. If 𝐻2 and 𝐻3 are two elementary abelian subgroups, then

𝐻 is an ableian subgroup, and so there is an element 𝑦 of order 2 in 𝐻 satisfying that ∣𝑐𝑙𝐺(𝑦)∣ is less
than 5 ⋅ 11, a contradiction to 𝑠𝑐𝑠(𝐺) = 3 ⋅ 5 ⋅ 11. Thus 𝐺 is not a 2-Frobenius group.

Now 𝐺 has a normal series 1 ⊆ 𝐻 ⊆ 𝐾 ⊆ 𝐺 by Lemma 2.7, where 𝐻 is a nilpotent 𝜋1-group,

𝐾/𝐻 is a simple group and 𝐺/𝐾 is a 𝜋1-group such that ∣𝐺/𝐾∣ divides the order of the outer

automorphism group of 𝐾/𝐻. One has that {11} is a prime graph component of 𝐾/𝐻. By checking

the order of 𝐾/𝐻, we know that 𝐾/𝐻 is isomorphic to one of the following groups:

𝐿2(11), 𝑀11, 𝑀12, 𝑈5(2).

If 𝐾/𝐻 is isomorphic to 𝐿2(11). Then (∣𝐺/𝐾∣, 3) = 1 since ∣𝑂𝑢𝑡(𝐿2(11))∣ = 2, so the Sylow

3-subgroup 𝐻3 of 𝐻 is of order 34 and normal in 𝐺. Hence 𝐺 has an element of order 33 by Lemma

2.12, which is a contradiction.

If 𝐾/𝐻 is isomorphic to 𝑀11 or 𝑀12, then, by [7], 𝐺 has an element of order 33 by Lemma 2.12

as the Sylow 3-subgroup of 𝐻 is of order 33 or 32, and normal in 𝐺, a contradiction.

Therefore, 𝐾/𝐻 is isomorphic to 𝑈5(2), so that 𝐺 ∼= 𝑈5(2) by ∣𝐺∣ = ∣𝑈5(2)∣, as claimed.

Lemma 3.4 Let 𝐺 be a group and 𝐿 one of the simple 𝐾4−groups with 𝜋(𝐿) = {2, 3, 5, 13}, then
one of the following holds:

(I) If 𝐿 ∼= 𝑈3(4), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿);

(II) If 𝐿 ∼= 𝐿2(25), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿);

(III) If 𝐿 is isomorphic to one of 𝑆4(5) and 2𝐹4(2)
′, then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and

𝑠𝑙𝑐𝑠(𝐺) = 𝑠𝑙𝑐𝑠(𝐿);

(IV) If 𝐿 ∼= 𝐿4(3), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑡𝑙𝑐𝑠(𝐺) = 𝑡𝑙𝑐𝑠(𝐿).

Proof. It is enough to show the sufficiency of the lemma. By [7] and the hypothesis, we have the

following statements:

If 𝐿 ∼= 𝐿2(25), then the order of Sylow 𝑝−subgroup of 𝐺 is less than 𝑠𝑐𝑠(𝐺) for any prime

𝑝 ∈ 𝜋(𝐺);

If 𝐿 is isomorphic to one of 𝑈3(4), 𝑆4(5), 𝐿4(3), and
2𝐹4(2)

′, then 13 is an isolated vertex of the

prime graph of 𝐺, so that 𝑡(𝐺) ≥ 2.

In the next, we can finish the proof by similar reasoning as in proofs of Lemma 3.1 and 3.3, here

we omit the process.

Lemma 3.5 Let 𝐺 be a group and 𝐿 one of the simple 𝐾4−groups with 𝜋(𝐿) = {2, 3, 7, 13}, then
one of the following holds:
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(I) If 𝐿 is isomorphic to one of 𝐿2(27) and 𝐺2(3), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and
𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿);

(II) If 𝐿 ∼= 𝐿2(13), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿);

(III) If 𝐿 ∼= 3𝐷4(2)
′, then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑠𝑙𝑐𝑠(𝐺) = 𝑠𝑙𝑐𝑠(𝐿).

Proof. Similar to Lemma 3.4, we have the following:

If 𝐿 is isomorphic to one of 𝐿2(27) and
3𝐷4(2)

′, then {13} is a prime graph component of 𝐺, and

𝑡(𝐺) ≥ 2;

If 𝐿 ∼= 𝐺2(3), then {7} is a prime graph component of 𝐺, and 𝑡(𝐺) ≥ 2;

If 𝐿 ∼= 𝐿2(13), then 7, 13 ∕∈ 𝜋(𝑍(𝐺)), and the order of Sylow 𝑝−subgroup of 𝐺 is less than 𝑠𝑐𝑠(𝐺)

for any prime 𝑝 ∈ 𝜋(𝐺).

Therefore, it is easy to prove (I) and (III) by Lemma 2.7, and (II) by (a) of Lemma 2.1. The

details are omitted.

Lemma 3.6 Let 𝐺 be a group, and 𝐿 one of the simple 𝐾4−groups with 𝜋(𝐿) = {2, 3, 5, 17}, then
one of the following holds:

(I) If 𝐿 ∼= 𝐿2(16), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿);

(II) If 𝐿 ∼= 𝑆4(4), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿).

Proof. Similar to Lemma 3.4 and 3.5, we have the following:

If 𝐿 ∼= 𝐿2(16), then ∣𝐺∣ = 24 ⋅ 3 ⋅ 5 ⋅ 17 and 𝑠𝑐𝑠(𝐺) = 24 ⋅ 3 ⋅ 5 by the hypothesis, and thus {17} is

a prime graph component of 𝐺 and 𝑡(𝐺) ⩾ 2;

If 𝐿 ∼= 𝑆4(4), then ∣𝐺∣ = 28 ⋅ 32 ⋅ 52 ⋅ 17 and 𝑡𝑙𝑐𝑠(𝐺) = 28 ⋅ 32 ⋅ 52, and also {17} is a prime graph

component of 𝐺 and 𝑡(𝐺) ⩾ 2.

Hence, it is easy to prove (I) and (II) by using a similar way as in Lemma 3.1, and the details

are omitted.

Lemma 3.7 Let 𝐺 be a group and 𝐿 one of 𝐿2(31) and 𝐿3(5). Then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣
and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿).

Proof. The lemma can be proved by similar reasoning as in the proof for (II) of Lemma 3.1.

Lemma 3.8 Let 𝐺 be a group, and 𝐿 one of the simple 𝐾4−groups with 𝜋(𝐿) = {2, 3, 5, 41}, then
one of the following holds in the class of simple 𝐾4 groups:

(I) If 𝐿 ∼= 𝐿2(81), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿);

(II) If 𝐿 ∼= 𝑆4(9), then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑓𝑙𝑐𝑠(𝐺) = 𝑓𝑙𝑐𝑠(𝐿).
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Proof. The necessity of is obvious, and so we only prove the sufficiency. By the hypothesis and [7],

we have the following:

If 𝐿 ∼= 𝐿2(81), then ∣𝐺∣ = 24 ⋅ 34 ⋅ 5 ⋅ 41 and 𝑠𝑐𝑠(𝐺) = 34 ⋅ 41. It follows that the order of Sylow

𝑝−subgroup of 𝐺 is less than 𝑠𝑐𝑠(𝐺) for any 𝑝 ∈ 𝜋(𝐺).

If 𝐿 ∼= 𝑆4(9), then ∣𝐺∣ = 28 ⋅ 38 ⋅ 52 ⋅ 41 and 𝑓𝑙𝑐𝑠(𝐺) = 28 ⋅ 38 ⋅ 52, and so {41} is a prime graph

component of 𝐺 and 𝑡(𝐺) ⩾ 2.

We can apply (a) of Lemma 2.1 to prove (I), and apply Lemma 2.7 to prove (II). The details are

omitted for the processes are similar.

Lemma 3.9 Let 𝐺 be a group and 𝐿 one of 𝐿3(7) and 𝑈3(8). Then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣
and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿).

Proof. Because for each case of 𝐿 the order of Sylow 𝑝−subgroup of 𝐺 is less than 𝑠𝑐𝑠(𝐺) for any

𝑝 ∈ 𝜋(𝐺), we can prove this lemma with similar approach as the proof of (II) in Lemma 3.1. Hence

we omit the detail.

Lemma 3.10 Let 𝐺 be a group and 𝐿 a simple 𝐾4−group. Then one of the following holds:

(I) If 𝐿 is one of 𝐿3(8), 𝐿3(17), 𝑈3(7), 𝑈3(9), 𝑆𝑧(32) and 𝐿2(𝑟), where 𝑟 ≥ 19 is an odd prime

∕= 31 and satisfies

𝑟2 − 1 = 2𝑎 ⋅ 3𝑏 ⋅ 𝑣𝑐

with 𝑎, 𝑏, 𝑐 ≥ 1 and a prime 𝑣 > 3, then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿);

(II) If 𝐿 is one of 𝑆𝑧(8), 𝐿2(2
𝑚), where 𝑚 ≥ 5 satisfies

2𝑚 − 1 = 𝑢, 2𝑚 + 1 = 3𝑡𝑏, 𝑢 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑝𝑟𝑖𝑚𝑒𝑠, 𝑡 > 3, 𝑏 ≥ 1,

and 𝐿2(3
𝑛), where 𝑛 ≥ 5 satisfies

3𝑛 − 1 = 2𝑢, 3𝑛 + 1 = 4𝑡𝑏, 𝑢 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑝𝑟𝑖𝑚𝑒𝑠, 𝑏 ≥ 1,

then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿).

(III)If 𝐿 ∼= 𝐿2(3
𝑛), where 𝑛 ≥ 5 satisfies

3𝑛 − 1 = 2𝑢𝑐, 3𝑛 + 1 = 4𝑡, 𝑢 𝑎𝑛𝑑 𝑡 𝑎𝑟𝑒 𝑝𝑟𝑖𝑚𝑒𝑠, 𝑐 > 1,

then 𝐺 ∼= 𝐿 if and only if ∣𝐺∣ = ∣𝐿∣ and 𝑢𝑐
∣∣∣𝑐𝑙𝐺(𝑤)∣ for every element 𝑤 of order 𝑝 ∈ {2, 3, 𝑡} of 𝐺.

Proof. Similar to the preceding lemmas, we need only to prove the sufficiency of this lemma. By

Lemma 2.4, we know that every simple 𝐾4-group in this lemma is characterized by the set of prime

divisors of its order. Next we prove the sufficiency of the lemma case by case.
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Case 1. If 𝐿 is one of 𝐿3(8), 𝐿3(17), 𝑈3(7), 𝑈3(9), and 𝑆𝑧(32), then for each case of 𝐺, we see that

the order of Sylow 𝑝−subgroup of 𝐺 is smaller than 𝑠𝑐𝑠(𝐺) for any prime 𝑝 ∈ 𝜋(𝐺) by the hypothesis

and [7]. Hence we can deal this lemma with similar method in the (II) of Lemma 3.1 such that we

omit it.

Case 2. If 𝐿 is isomorphic to 𝑆𝑧(8), then by the hypothesis, ∣𝐺∣ = 26 ⋅5 ⋅7 ⋅13 and 𝑙𝑐𝑠(𝐺) = 26 ⋅7 ⋅13.
It follows that {5} is a prime graph component of 𝐺 and 𝑡(𝐺) ⩾ 2. Analogous to (I) of Lemma 3.1,

we can apply the Lemma 2.7 to deal with this case such that we omit it.

Case 3. If 𝐿 ∼= 𝐿2(𝑟), where 𝑟 is an odd prime with 𝑟 ≡ 1(𝑚𝑜𝑑 4) and satisfies

𝑟2 − 1 = 2𝑎 ⋅ 3𝑏 ⋅ 𝑣𝑐

with 𝑎, 𝑏, 𝑐 ≥ 1, and 𝑟 ≥ 19 but ∕= 31, then ∣𝐺∣ = ∣𝐿∣ = 𝑟(𝑟 − 1)(𝑟 + 1)/2 and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿) =

(𝑟 − 1)(𝑟 + 1)/2 by the hypothesis, from which {𝑟} is a prime graph component of 𝐺 and 𝑡(𝐺) ⩾ 2.

Suppose that 𝐺 is a Frobenius group with kernel 𝐻 and complement 𝐾. If 𝑟 ∈ 𝜋(𝐻), then

𝐻 is a Sylow 𝑟-subgroup of 𝐺, and 𝜋(𝐾) = {2, 3, 𝑣} by Lemma 2.8. Since 𝑟 ≡ 1(𝑚𝑜𝑑 4) and

(𝑟 + 1, 𝑟 − 1) = 2, we get that 4∣(𝑟 − 1) and ((𝑟 + 1)/2, 𝑟 − 1) = 1. Thus, for any prime divisor 𝑝

of (𝑟 + 1)/2, 𝑟 is connected to 𝑝 in prime graph of 𝐺 by Lemma 2.12, a contradiction. If 𝑟 ∈ 𝜋(𝐾),

then by Lemma 2.8, 𝐾 is a Sylow 𝑟-subgroup of 𝐺 and 𝜋(𝐻) = {2, 3, 𝑣}, and thus ∣𝐻2∣ = 2𝑎, 𝑎 ≥ 2.

Hence 2𝑎 ≤ 𝑟 − 1 < 𝑟, which implies that (𝑟, ∣Aut(𝐻2)∣) = 1 by Lemma 2.11, consiquently 2 and

𝑟 connected in the prime graph of 𝐺 by Lemma 2.12, a contradiction. Hence 𝐺 is not a Frobenius

group.

Assume that 𝐺 is a 2-Frobenius group. By Lemma 2.9, we have that 𝐺 has a normal series

1 ⊲ 𝐻 ⊲ 𝐾 ⊲ 𝐺 such that 𝜋(𝐾/𝐻) = {𝑟} = 𝜋2, 𝜋(𝐻) ∪ 𝜋(𝐺/𝐾) = 𝜋1, and ∣𝐺/𝐾∣∣∣(𝑟 − 1). Now,

we have that 𝐾/𝐻 is of order 𝑟 and 𝜋(𝑟 + 1/2) ⊆ 𝜋(𝐻). Hence (𝑟, ∣Aut(𝐻𝑝)∣) = 1 for any prime

𝑝 ∈ 𝜋(𝑟 + 1/2), 𝑟 can be connected to 𝑝 by Lemma 2.12, a contradiction. Therefore 𝐺 is not a

2-Frobenius group either.

Now, 𝐺 has a normal series 1 ⊆ 𝐻 ⊆ 𝐾 ⊆ 𝐺, where 𝐻 is a nilpotent 𝜋1-group, 𝐾/𝐻 is a simple

group, 𝐺/𝐾 is a 𝜋1-group such that ∣𝐺/𝐾∣ divides the order of the outer automorphism group of

𝐾/𝐻, and {𝑟} is a prime graph component of𝐾/𝐻. By 𝜋(𝐾/𝐻) ⊆ 𝜋(𝐺), 𝐾/𝐻 is a simple𝐾3−group

or 𝐾4−group.

Since 𝑟 ≥ 19, it is impossible that 𝐾/𝐻 is a simple 𝐾3−group. Therefore 𝐾/𝐻 is a simple

𝐾4−group, which implies that 𝜋(𝐾/𝐻) = 𝜋(𝐺) = 𝜋(𝐿). Hence 𝐾/𝐻 must be isomorphic to 𝐿 such

that 𝐺 ∼= 𝐿 by ∣𝐺∣ = ∣𝐿∣, as desired.

Case 4. If 𝐿 ∼= 𝐿2(𝑟), where 𝑟 is an odd prime with 𝑟 ≡ 3(𝑚𝑜𝑑 4) and satisfies

𝑟2 − 1 = 2𝑎 ⋅ 3𝑏 ⋅ 𝑣𝑐,
where 𝑎, 𝑏, 𝑐 ≥ 1, and 𝑟 ≥ 19 but ∕= 31. Then ∣𝐺∣ = ∣𝐿∣ = 𝑟(𝑟 − 1)(𝑟 + 1)/2 and 𝑠𝑐𝑠(𝐺) = 𝑠𝑐𝑠(𝐿) =

𝑟(𝑟−1)/2 by the hypothesis. Set 𝑥 ∈ 𝐺 such that 𝑠𝑐𝑠(𝐺) = ∣𝑐𝑙𝐺(𝑥)∣ =𝑟(𝑟−1)/2. Then for any prime
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𝑝 ∈ 𝜋(𝑟(𝑟 − 1)/2), 𝑝 ∕∈ 𝜋(𝑍(𝐺)) because of 𝑍(𝐺) ≤ 𝐶𝐺(𝑥) for any 𝑥 ∈ 𝐺. Consider 𝐺 = 𝐺/𝑍(𝐺).

Since the order of Sylow 𝑞−subgroup of 𝐺 is less than 𝑠𝑐𝑠(𝐺) for any prime 𝑞 ∈ 𝜋(𝐺), we know that

𝑀 ⊴𝐺 ≤Aut(𝑀) by (a) of Lemma 2.1, where 𝑀 = 𝑆𝑜𝑐(𝐺) = 𝑆1 × 𝑆2 × ⋅ ⋅ ⋅ × 𝑆𝑘 and 𝑆𝑖 is a direct

product of some isomorphic simple groups for 𝑖 = 1, 2, . . . , 𝑘.

It is clear that 2, 3 ∈ 𝜋(𝑀). If 𝑟 is not in 𝜋(𝑀), then 𝑟 ∈ 𝜋(Out(𝑀)), and 𝑀 is s a direct

product of some simple 𝐾3−groups. Note that Out(𝑀)=Out(𝑆1)× ⋅ ⋅ ⋅×Out(𝑆𝑘) by Lemma 2.10.

Hence for some 𝑖 ∈ {1, 2, . . . , 𝑘}, 𝑟 divides the order of Out(𝑆𝑖). Suppose that 𝑆𝑖 is a direct of 𝑡𝑖

isomorphic simple 𝐾3 groups 𝑆. By Lemma 2.10 again, ∣Aut(𝑆𝑖)∣=∣Aut(𝑆)∣𝑡𝑖 ⋅ 𝑡𝑖!, and then 𝑡𝑖 ⩾ 𝑟 by

[7]. Consequently, 22𝑟 divides the order of 𝐺, a contradiction. Therefore 𝑟 ∈ 𝜋(𝑀).

If 𝑣 is not in 𝜋(𝑀), then 𝑀 is a simple 𝐾3−group with 𝜋(𝑀) = {2, 3, 𝑟}. Hence 𝑟 = 5, 7, 13,

or 17, contradicting to 𝑟 ≥ 19. Therefore 𝑣 ∈ 𝜋(𝑀), and so 𝜋(𝑀) = {2, 3, 𝑣, 𝑟}.
Assume that 𝑟 ∈ 𝜋(𝑆𝑖) for some 𝑖 ∈ {1, 2, . . . , 𝑘}. Then 𝑣 belongs to 𝜋(𝑆𝑖). Otherwise, 𝑆𝑖 is a

simple 𝐾3−group with 𝜋(𝑆𝑖) = {2, 3, 𝑟}, we come to a contradiction by similar reasoning above.

It follows that 𝑆𝑖 is a simple 𝐾4−group with 𝜋(𝑆𝑖) = {2, 3, 𝑣, 𝑟}, which implies that 𝑆𝑖
∼= 𝐿 by

Lemma 2.4. Hence 𝑘 = 1, and 𝐺 ∼= 𝐿 by ∣𝐺∣ = ∣𝐿∣, which concludes the lemma.

Case 5. Assume 𝐿 ∼= 𝐿2(2
𝑚), where 𝑚 ≥ 5 satisfies

2𝑚 − 1 = 𝑢, 2𝑚 + 1 = 3𝑡𝑏,

where 𝑢 and 𝑡 are primes, 𝑡 > 3, 𝑏 ≥ 1. Then by the hypothesis, ∣𝐺∣ = ∣𝐿∣ = 2𝑚(2𝑚− 1)(2𝑚+1) and

𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿) = 2𝑚(2𝑚 + 1). Hence {𝑢} is a prime graph component of 𝐺 and 𝑡(𝐺) ⩾ 2.

Suppose that 𝐺 is a Frobenius group with kernel 𝐻 and complement 𝐾. If 𝑢 ∈ 𝜋(𝐻), then 𝐻 is a

Sylow 𝑢-subgroup of 𝐺 and 𝜋(𝐾) = {2, 3, 𝑡} by Lemma 2.8. Since 𝑢−1 = 2𝑚−2 = 3𝑡𝑏−3 = 3(𝑡𝑏−1),

we get that (𝑡, 𝑢− 1) = 1, and so 𝑢 and 𝑡 are connected in the prime graph of 𝐺, a contradiction. If

𝑢 ∈ 𝜋(𝐾), then 𝐾 is a Sylow 𝑢-subgroup of 𝐺 and 𝜋(𝐻) = {2, 3, 𝑣} by Lemma 2.8. Since ∣𝐻3∣ = 3

and 𝑢 is odd, 𝐾 can act trivially on 𝐻3, we get a contradiction by Lemma 2.12. Hence 𝐺 is not a

Frobenius group.

Assume that 𝐺 is a 2-Frobenius group. By Lemma 2.9, we have that 𝐺 has a normal series

1⊲𝐻 ⊲𝐾⊲𝐺 such that 𝜋(𝐾/𝐻) = {𝑢} = 𝜋2, 𝜋(𝐻)∪𝜋(𝐺/𝐾) = 𝜋1, and ∣𝐺/𝐾∣∣∣(𝑢− 1) = 3(𝑡𝑏− 1).

Thus 𝐾/𝐻 is of order 𝑢 and ∣𝐻𝑡∣ = 𝑡𝑏, 𝑏 ≥ 1. Since 𝑡𝑏 − 1 < 𝑢 and 𝑡 < 𝑢, it is impossible by Lemma

2.12. Therefore 𝐺 is not a 2-Frobenius group.

Now 𝐺 has a normal series 1 ⊆ 𝐻 ⊆ 𝐾 ⊆ 𝐺, where 𝐻 is a nilpotent 𝜋1-group, 𝐾/𝐻 is a simple

group, 𝐺/𝐾 is 𝜋1-group such that ∣𝐺/𝐾∣∣∣∣Out(𝐾/𝐻)∣ and {𝑢} is a prime graph component of 𝐾/𝐻.

By 𝜋(𝐾/𝐻) ⊆ 𝜋(𝐺), 𝐾/𝐻 may be a simple 𝐾3−group or 𝐾4−group.

It is clear that 𝐾/𝐻 cannot be a simple 𝐾3−group by 𝑚 ≥ 5. So 𝐾/𝐻 is a simple 𝐾4−group,

which implies that 𝜋(𝐾/𝐻) = 𝜋(𝐺) = 𝜋(𝐿). Hence 𝐾/𝐻 ∼= 𝐿 so that 𝐺 ∼= 𝐿 by ∣𝐺∣ = ∣𝐿∣, as
claimed.
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Case 6. If 𝐿 ∼= 𝐿2(3
𝑛), where 𝑛 ≥ 5 satisfies

3𝑛 − 1 = 2𝑢, 3𝑛 + 1 = 4𝑡𝑏,

where 𝑢 and 𝑡 are odd primes, 𝑏 ≥ 1. Then ∣𝐺∣ = ∣𝐿∣ = 3𝑛(3𝑛 − 1)(3𝑛 + 1)/2 and 𝑙𝑐𝑠(𝐺) = 𝑙𝑐𝑠(𝐿) =

3𝑛(3𝑛 + 1) by the hypothesis. It follows that 𝑢 > 𝑡 ≥ 5, and 𝜋(𝐺) = {2, 3, 𝑡, 𝑢}, and then {𝑢} is a

prime graph component of 𝐺 and 𝑡(𝐺) ⩾ 2.

Let 𝐺 is a Frobenius group with kernel 𝐻 and complement 𝐾. If 𝑢 ∈ 𝜋(𝐻), then 𝐻 is a Sylow

𝑢-subgroup of 𝐺 and 𝜋(𝐾) = {2, 3, 𝑡} by Lemma 2.8. By 𝑢 + 1 = 2𝑡, it follows that (𝑡, 𝑢 − 1) = 1,

which implies that 𝑢 is connected to 𝑡 in prime graph of 𝐺 by Lemma 2.12, a contradiction. If

𝑢 ∈ 𝜋(𝐾), then by Lemma 2.8, 𝐾 is a Sylow 𝑢-subgroup of 𝐺 and 𝜋(𝐻) = {2, 3, 𝑡}. Since ∣𝐻2∣ = 22

and 𝑢 > 5 is an odd prime, it follows that 𝑢 and 2 are connected in the prime graph of 𝐺 by Lemma

2.12, a contradiction. Hence 𝐺 is not a Frobenius group.

Assume that 𝐺 is a 2-Frobenius group. By Lemma 2.9, we have that 𝐺 has a normal series

1⊲𝐻⊲𝐾⊲𝐺 such that 𝜋(𝐾/𝐻) = {𝑢} = 𝜋2, 𝜋(𝐻)∪𝜋(𝐺/𝐾) = 𝜋1 = {2, 3, 𝑡}, and ∣𝐺/𝐾∣∣∣(𝑢−1).

It follows that 𝐾/𝐻 is of order 𝑢 and ∣𝐻𝑡∣ = 𝑡. By 2(𝑡−1) = 𝑢−1, 𝑢 and 𝑡 are connected by Lemma

2.12, a contradiction. Therefore 𝐺 is not a 2-Frobenius group.

Hence 𝐺 has a normal series 1 ⊆ 𝐻 ⊆ 𝐾 ⊆ 𝐺, where 𝐻 is a nilpotent 𝜋1-group, 𝐾/𝐻 is a

simple group, 𝐺/𝐾 is 𝜋1-group such that ∣𝐺/𝐾∣ divides the order of the outer automorphism group

of 𝐾/𝐻, and {𝑢} is a prime graph component of 𝐾/𝐻. By 𝜋(𝐾/𝐻) ⊆ 𝜋(𝐺), We have that 𝐾/𝐻 is

a simple 𝐾3−group or 𝐾4−group.

Assume that 𝐾/𝐻 is a simple 𝐾3−group. Since 𝑢 > 𝑡 ≥ 5 and 4 ∥ ∣𝐺∣, 𝐾/𝐻 is isomorphic to

𝐴5. It follows that 𝑡 = 5 and 𝑢 ∈ 𝜋(𝐻). Thus 𝐾 has an element of order 5. But (5, ∣Aut(𝐻𝑢)∣) =
(𝑡, 𝑢− 1) = 1, it follows that 𝐺 has an element of order 5𝑢 by Lemma 2.12, a contradiction.

Therefore 𝐾/𝐻 is a simple 𝐾4−group. It follows that 𝜋(𝐾/𝐻) = 𝜋(𝐺) = 𝜋(𝐿), which implies

that 𝐾/𝐻 ∼= 𝐿, and 𝐺 ∼= 𝐿 by ∣𝐺∣ = ∣𝐿∣.
Case 7. If 𝐿 ∼= 𝐿2(3

𝑛), where 𝑛 ≥ 5 satisfies

3𝑛 − 1 = 2𝑢𝑐, 3𝑛 + 1 = 4𝑡,

where 𝑢 and 𝑡 are odd primes, 𝑐 > 1, then by hypothesis, ∣𝐺∣ = ∣𝐿∣ = 3𝑛(3𝑛 − 1)(3𝑛 + 1)/2 and {𝑢}
is a prime graph component of 𝐺, and thus 𝑡(𝐺) ⩾ 2.

Suppose that 𝐺 is a Frobenius group with kernel 𝐻 and complement 𝐾. If 𝑢 ∈ 𝜋(𝐻), then 𝐻

is a Sylow 𝑢-subgroup of 𝐺 and 𝜋(𝐾) = {2, 3, 𝑡} by Lemma 2.8. By 𝑢𝑐 + 1 = 2𝑡, it follows that

(𝑡, 𝑢𝑖 − 1) = 1 for 𝑖 = 1, 2, . . . , 𝑐, which implies that 𝑢 connects to 𝑡 in prime graph of 𝐺 by Lemma

2.11 and 2.12, a contradiction. If 𝑢 ∈ 𝜋(𝐾), then by Lemma 2.8, 𝐾 is a Sylow 𝑢-subgroup of 𝐺 and

𝜋(𝐻) = {2, 3, 𝑡}. But ∣𝐻2∣ = 22 and 𝑢 ≥ 5 is an odd prime, it is impossible by Lemma 2.12, a

contradiction. Hence 𝐺 is not a Frobenius group.
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Assume that 𝐺 is a 2-Frobenius group. By Lemma 2.9, we have that 𝐺 has a normal series

1⊲𝐻⊲𝐾⊲𝐺 such that 𝜋(𝐾/𝐻) = {𝑢} = 𝜋2, 𝜋(𝐻)∪𝜋(𝐺/𝐾) = 𝜋1 = {2, 3, 𝑡}, and ∣𝐺/𝐾∣∣∣𝑢𝑐−1(𝑢−1).

It follows that 𝐾/𝐻 is of order 𝑢𝑐 and ∣𝐻𝑡∣ = 𝑡. By 2(𝑡−1) = 𝑢𝑐−1, 𝑢 can be connected to 𝑡 because

of (𝑢, ∣Aut(𝐻𝑡)∣) = (𝑢, 𝑡− 1) = 1, a contradiction. Therefore 𝐺 is not a 2-Frobenius group.

Thus 𝐺 has a normal series 1 ⊆ 𝐻 ⊆ 𝐾 ⊆ 𝐺, where 𝐻 is a nilpotent 𝜋1-group, 𝐾/𝐻 is a simple

group, 𝐺/𝐾 is 𝜋1-group such that ∣𝐺/𝐾∣ divides the order of the outer automorphism group of 𝐾/𝐻,

and {𝑢} is a prime graph component of 𝐾/𝐻. By 𝜋(𝐾/𝐻) ⊆ 𝜋(𝐺), 𝐾/𝐻 is a simple 𝐾3−group or

𝐾4−group.

If 𝐾/𝐻 is a simple 𝐾3−group, then by 𝑡 > 𝑢 ≥ 5 and 4 ∥ ∣𝐺∣, 𝐾/𝐻 is isomorphic to 𝐴5. It

follows that 𝑢 = 5 and 𝑡 ∈ 𝜋(𝐻). Then there exists an element of order 5 of 𝐾 can act trivially on

𝐻𝑡 by (5, ∣Aut(𝐻𝑡)∣) = (5, 𝑡− 1) = 1, a contradiction.

Therefore 𝐾/𝐻 is a simple 𝐾4−group. It follows that 𝜋(𝐾/𝐻) = 𝜋(𝐺) = 𝜋(𝐿), which implies

that 𝐾/𝐻 must be isomorphic to 𝐿. Hence 𝐺 ∼= 𝐿 by ∣𝐺∣ = ∣𝐿∣, as claimed.

Proof of the Theorem 1.2. The Theorem follows from Lemma 3.1 to 3.10.
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