
*Corresponding author.  
E-mail addresses: olive_001@163.com (C. Chen), hetieshan68@163.com (T. He). 

My accepted manuscript 

Sign-changing solutions for discrete second-order  
periodic boundary value problems 

Tieshan He a, Yiwen Zhou b, Yuantong Xu c, Chuanyong Chena,* 

a School of Computation Science, Zhongkai University of Agriculture and Engineering, 

 Guangzhou, Guangdong 510225, People’s Republic of China 
b School of Mathematics and Computational Science, Hunan University,  

Changsha, Hunan 411105, People’s Republic of China  

 c School of Mathematics and Computational Science, Sun Yat-Sen University, 

 Guangzhou, Guangdong 510275, People’s Republic of China 
  

Abstract 
In this paper, we study the existence of sign-changing solutions and positive solutions for second-order nonlinear difference 

equations on a finite discrete segment with periodic boundary condition provided that the nonlinearity is asymptotically linear at 

infinity. The critical point theory and variational methods are employed to discuss this problem.  

Keywords: Periodic boundary value problem; Difference equation; Asymptotically linear; Invariant sets of descending flow; 

Sign-changing solution 

2010 Mathematics Subject Classification: 39A10  

1. Introduction  

We are concerned with the existence of sign-changing solutions and positive solutions for the following 
periodic boundary value problem ( BVP for short)  

[ ( 1) ( 1)] ( ) ( ) ( , ( )) , [1, ],
(0) ( ), (0) ( ),

p t u t q t u t f t u t t T
u u T u u T
      

    
                              (1.1) 

where T  is a fixed positive integer, [1, ] : {1,2, , }T T  ; : [1, ] R Rf T    is continuous in the second 

variable; : [0, ] (0, )p T    with (0) ( )p p T , : [1, ] [0, )q T    with [1, ]max ( ) 0t T q t  ;   is 

the forward difference operator defined by ( ) ( 1) ( )u t u t u t    .   

   Many authors have contributed to the study of Problem (1.1). They made use of various methods to investigate 
(1.1) and obtained some interesting results. For example, Atici and Guseinov [3], using fixed point theorem and 
the properties of the Green’s function, obtained the existence of positive solutions of BVP (1.1). Based on the 
methods of upper and lower solutions, Atici and Cabada [2] investigated the existence and uniqueness of periodic 
solutions of BVP (1.1). By minimax principle, Guo and Yu studied the existence of periodic solutions to BVP (1.1) 

with 1p   and 0q  , where the nonlinearity is of sublinear growth and superlinear growth at infinity in [8, 9], 

respectively. By applying the critical point theory, there are also some existence results for periodic solutions of 

BVP (1.1), see [10, 12, 13, 19, 21]. Very recently, by considering the sublinearity, superlinearity of f  and using 

the fixed point index theory, He and Xu [11] obtained the existence, multiplicity and nonexistence results for 
positive solutions of BVP (1.1). However, to the authors’ knowledge, there were few papers that considered the 
sign-changing solutions for BVP (1.1). For results on nonlinear difference equations with other boundary 
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conditions, see [1, 6] and reference therein.  
   Invariant sets of descending flow defined by a pseudogradient vector field of a functional in a Banach space 
plays an important role in the existence of sign-changing solutions. For the properties of invariant sets of 
descending flow and applications, one can refer to [15, 17, 18]. The Dirichlet boundary value problem  

      
( , ), ,

0
u f x u x

u 

  
 

 

was studied in [15] by invariant sets of descending flow, and sign-changing solutions was obtained. In this 
direction, one can find more results in [4, 5, 7]. Still by means of invariant sets of descending flow, Zhang and 
Perera [22] got sign-changing solutions of the nonlocal Kirchhoff type problem 

      
2( ) ( , ) in ,

0 on ,

a b u u f x u

u


     


 

   

under the 4-sublinear case, asymptotically 4-linear case and 4-superlinear case. For the recent progress of such 
problems, one can refer to [16, 20]. It is natural for us to think that invariant sets of descending flow may be also 
applied to prove the existence of sign-changing solutions of difference equations. The main purpose of this paper 
is to give some sufficient conditions for the existence of sign-changing solutions and positive solutions to BVP 
(1.1) via invariant sets of descending flow and variational techniques. Let us point out that the nonlinearity 
satisfies locally Lipschitz continuity in [7, 16, 20, 22] or Ambrosett-Rabinowitz type condition in [4, 5, 15], which 
are unnecessary in our results. Moreover, comparing the results in [3, 11] with the results of this paper, we allow 
the nonlinearity to change sign. 
   To state our main results, we define the linear eigenvalue problem 

[ ( 1) ( 1)] ( ) ( ) ( ) , [1, ],
(0) ( ), (0) ( ).

p t u t q t u t u t t T
u u T u u T

      
    

                                 (1.2) 

Denote by 1 2 3 T        the eigenvalues of (1.2) and by 1 2, , , T    corresponding 

eigenfunctions. We will see in the next section that 1 2, , , T    are also the eigenvalues of an appropriate 

matrix.  
   We assume that  

(H1) 0
1f  , where 0

[1, ] 0

( , )max limsup
t T x

f t xf
x 

 . 

(H2) 
( , )lim

x

f t x l
x

  uniformly in [1, ]t T  where (0, )l   is a constant, or l    with 2s   and 

0C   such that 
1( , ) (1 )sf t x C x   ,   [1, ]t T , Rx .  

(H3) Either 

   (i) lim[2 ( , ) ( , )]
x

F t x xf t x


   , uniformly for [1, ]t T , 

or 

(ii) lim[2 ( , ) ( , )]
x

F t x xf t x


   , uniformly for [1, ]t T , 
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where 
0

( , ) ( , )d
x

F t x f t s s  . 

   Here are the main results. 

Theorem 1.1. Assume that (H1) and (H2). Suppose that 2l  . Then the following hold:  

(i) If 2( , ]l    is not an eigenvalue of (1.2), then Problem (1.1) has at least a positive solution, a negative 

solution and a sign-changing solution. 
(ii) If condition (H3) is satisfied, then the conclusion of (i) holds even if l  is an eigenvalue of (1.2).  

Theorem 1.2. Assume that 0 1limsup ( , ) /x f t x x    and 1lim inf ( , ) /x f t x x    uniformly for 

[1, ]t T . Then Problem (1.1) has at least a positive solution and a negative solution. 

   The rest of the paper is arranged as follows. Section 2 presents some preliminaries. In Sections 3 and 4, we 
prove the existence of sign-changing solutions and positive solutions of Problem (1.1), respectively.  

2. Preliminaries  

Let { : ( (0), (1), , ( ), ( 1)), (0) ( ), (1) ( 1)}H u u u u u T u T u u T u u T      . For any given 0m   

we define new inner product of H  as follows 

1
, [ ( 1) ( 1) ( 1) ( ( ) ) ( ) ( )]

T

m
t

u v p t u t v t q t m u t v t


        . 

The inner product induces the norm 

1
2 2 2

1
( [ ( 1) ( 1) ( ( ) ) ( ) ])

T

m
t

u p t u t q t m u t


      . 

Let E  be the T -dimensional Hilbert space. We denote by ( , )   and   the usual inner product and the usual 

norm in E . It is easy to see that H  is isomorphic to E . In the following, when we say 

( (1), , ( ))u u u T E  , we always imply that ( (0), (1), , ( ), ( 1))u u u u T u T H   . Clearly the norm 

m  is equivalent to the norm  . Let max{ ,0}u u  , min{ ,0}u u  . Then for any u E , 

, 0
m

u u   .  

Now define the functional :J E  R  as  

2 2

1 1

1( ) [ ( 1) ( 1) ( ) ( ) ] ( , ( ))
2

T T

t t
J u p t u t q t u t F t u t

 

       .                           (2.1) 

Note that the norm m  is a part of the functional J , which makes it convenient to estimate J . By a direct 

computation, we can rewrite ( )J u  as  
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1

1( ) (( ) , ) ( , ( ))
2

T

t
J u P Q u u F t u t



                                                   (2.2) 

for any ( (1), (2), , ( ))u u u u T E  , where   is the transpose of the vector   on E  and P , Q  are 

T T  identity matrices: 

( ) (1) (1) 0 0 ( )
(1) (1) (2) (2) 0 0

0 (2) (2) (3) 0 0

0 0 0 ( 2) ( 1) ( 1)
( ) 0 0 ( 1) ( 1) ( )

p T p p p T
p p p p

p p p
P

p T p T p T
p T p T p T p T

   
    
  

  
 
     
       





     



, 

(1) 0 0 0 0
0 (2) 0 0 0
0 0 (3) 0 0

0 0 0 ( 1) 0
0 0 0 0 ( )

q
q

q
Q

q T
q T

 
 
 
 

  
 
 
  
 





     



. 

   We consider the following BVP 

[ ( 1) ( 1)] ( ( ) ) ( ) ( ) , [1, ],
(0) ( ), (0) ( ),

p t u t q t m u t h t t T
u u T u u T
       
    

                             (2.3) 

where : [1, ] Rh t T   and 0m  . It is easy to see that BVP (2.3) is equivalent to the system of linear 

algebra equations ( )P Q mI u h   , where I  is the T T  identity matrix. By matrix theory, P Q  is 

positive definite. Then the unique solution of BVP (2.3) is  

1( )u P Q mI h   ,                                                              (2.4) 

and 1 2, , , T    are also the eigenvalues of matrix P Q . It follows from Lemma 2.3 in [11] that the first 

eigenvalue 1 0   is simple and the corresponding eigenfunction 1  satisfies 1 0   in [1, ]T . On the other 

hand, we have  
Lemma 2.1 ([3]). The unique solution of BVP (2.3) is given by  

1
( ) ( , ) ( )

T

m
s

u t G t s h s


 ,  [0, 1]t T  , 

where  
( ) ( ) ( )( , ) ( ) ( ) ( ) ( )m
T p T TG t s t s t s

D D
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( ) ( ) 1 ( ) 1( ) ( ) ( ) ( ),0 1,

( ) ( ) 1 ( ) 1( ) ( ) ( ) ( ),0 1,

p T T Tt s s t s t T
D D

p T T Ts t t s t s T
D D

 
   

 
   

               


 

and 1
0{ ( )}T

tt 
 , 1

0{ ( )}T
tt 
  are the solutions of the corresponding homogeneous equation 

[ ( 1) ( 1)] ( ( ) ) ( ) 0, [1, ]p t u t q t m u t t T        , 

under the initial conditions that (0) (1) 1   ; (0) 0  , (0) (1) 1p   .  

Lemma 2.2 ([3]). ( , ) ( , ) 0m mG t s G s t  , , [0, ]t s T .  

Define operators , , :fm m mK A E E , respectively, by 

1
( )( ) ( , ) ( )

T

m m
k

K u t G t k u k


 , u E , [1, ]t T ;    

( )( ) ( , ( )) ( )fmu t f t u t mu t  , u E , [1, ]t T ;  

= fm m mA K .  

According to [3, Lemmas 3.1 and 3.2], :mA E E  is a completely continuous operator. It follows from (2.4) 

and Lemma 2.1, we have 

1( )mK P Q mI    .                                                              (2.5) 

Remark 2.1. By Lemma 2.1, it is easy to see that 1{ ( )}T
tu u t E   is a fixed point of the operator mA  if and 

only if 1
0{ ( )}T

tu t 
  is a solution of BVP (1.1), where (0) ( )u u T , ( 1) (1)u T u  . 

Lemma 2.3. The functional J  defined by (2.1) is Fre/chet differentiable on E  and ( ) fm mJ u u K u    for 

all u E .  

Proof. It follows from the mean value theorem that for any ,u v E , 

1
( ) ( ) [ ( 1) ( 1) ( 1) ( ) ( ) ( ) ( , ( ) ( ) ( )) ( )]

T

t
J u v J u p t u t v t q t u t v t f t u t t v t v t



            

2 2

1

1 [ ( 1) ( 1) ( ) ( ) ]
2

T

t
p t v t q t v t



     ,  

where 0 ( ) 1t  , [1, ]t T . Since : [1, ] R Rf T    is continuous in the second variable, we have  
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1
( ) ( ) , ( ( , ( )) ( )) ( )

T

m
t

J u v J u u v f t u t mu t v t


      

2 2

1

1 1[ ( , ( )) ( , ( ) ( ) ( ))] ( )
2 2

T

m
t

f t u t f t u t t v t v t v m v


     (1)mv  .                              

Hence J  is Fre/chet differentiable on E  and  

1
( ), , ( ( , ( )) ( )) ( )

T

m m
t

J u v u v f t u t mu t v t


    . 

On the other hand, the T  periodicity of { ( )}v v t  and { ( )}w w t  in t  implies that  

1 1
( ) ( 1) ( ) ( )

T T

t t
w t v t v t w t

 

      .  

This together with the definition of inner product and Lemma 2.1 gives that  

1
, , [ ( 1) ( )( 1) ( 1) ( ( ) )( )( ) ( )]f f f

T

m m m m m mm m
t

u K u v u v p t K u t v t q t m K u t v t


           

1
, { [ ( 1) ( )( 1)] ( ( ) )( )( )} ( )f f

T

m m m mm
t

u v p t K u t q t m K u t v t


         

1
, ( ( , ( )) ( )) ( )

T

m
t

u v f t u t mu t v t


   .  

Therefore, ( ), ,fm mm mJ u v u K u v    for all ,u v E . Then ( ) fm mJ u u K u    for any u E . The 

proof is complete.  □ 

Remark 2.2. By Lemma 2.4 and Remark 2.1, we reduce the existence of solutions to Problem (1.1) to the 
existence of critical points of the functional J  defined on E . 
   The following Lemma will be useful in the proofs of our main results.  

Lemma 2.4 ([15]). Let E  be a Hilbert space and J  be a 1C  functional defined on E . Assume that J  

satisfies the (PS) condition on E  and ( )J u  has the expression ( )J u u Au    for u E . Assume that 

1D  and 1D  are two open convex subsets of E  with the properties that 1 1( )A D D  , 2 2( )A D D   and 

1 2D D  . If there exists a path :[0,1]h E  such that  

1 2(0) \h D D ,  2 1(1) \h D D , 

and  

1 2 [0,1]
inf ( ) sup ( ( ))

u D D
J u J h




  
 ,  

then J  has at least four critical points, one in 1 2D D , one in 1 2\D D , one in 2 1\D D , and one in 
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1 2\ ( )E D D . 

Remark 2.3. It follows from Theorem 5.1 in [14] that if the usual (PS) condition is replaced by the weaker (C) 
condition, Lemma 2.5 still holds.  

3. Existence of sign-changing solutions of Problem (1.1) 

In the following we consider the convex cones { : 0}u E u     and { : 0}u E u    . The 

distance in E  with respect to m  is denoted by distm. For 0  , we define 

{ : dist ( , ) }mD u E u      ,   { : dist ( , ) }mD u E u      . 

Obviously, D D 
   . Note that D

  and D
  are open convex subsets of E . Moreover, 

\ ( )E D D 
   contains only sign changing functions.  

Lemma 3.1. Assume that (H1) and (H2) hold. Then there exist 0m   and 0 0   such that for 00    , 

one has  

(i) ( )mA D D 
   , and if u D

  is a nontrivial critical point of J , then u  is a negative solution of 

Problem (1.1); 

(ii) ( )mA D D 
   , and if u D

  is a nontrivial critical point of J , then u  is a positive solution of 

Problem (1.1).  
Proof. (i) By assumptions (H1) and (H2), we may fixed 0m   such that  

( ( , ) ) 0x f t x mx                                                                  (3.1) 

for all 0x   and [1, ]t T . For u E , we denote ( )mv A u  and max{ ,0}u u  , min{ ,0}u u  . 

Then  

1 1

1 1inf inf dist ( , )mmw P w P
u u w u w u

m m 


 
     

 
.                      (3.2) 

It follows from (H1) and (H2) that there exist 0  , 0C   and 2s   such that  
1

1( , ) ( ) sf t x mx m x C x       ,  ( , ) [1, ] Rt x T   .                          (3.3) 

Since u E  is finite-dimensional, there exists 0D   such that  

1

1
: ( ( ) ) min{ , }

T
s s

s m
t

u u t D u u


  ,  u E  .                                     (3.4) 

Obviously, 
2

u u . The fact that v v v    and v   implies dist ( , )m m m
v v v v     . 

Then by (3.3), (3.4) and (3.2), we have,  
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2

1
dist ( , ) , [ ( , ( )) ( )] ( )

T

m m m m
t

v v v v v f t u t mu t v t   



      

1
[ ( , ( )) ( )] ( )

T

t
f t u t mu t v t  



   

1

1( )
s

s s
m u v C u v 

         

11

1

ss
m

m u CD u v
m
 


  
  

    
 

11
1

1 1

dist ( , ) (dist ( , ))
( )

s
s

m m ms

m CDu u v
m m
 
 

 



      
   

 

Hence  

11
1

1

dist ( , ) dist ( , ) (dist ( , ))s
m m m

mv u C u
m
 


 
    


,  

where 1 1
1( )

s

s

CDC
m  




. So there exists 0 0   such that for any u D
  with 00    ,  

1

1

2( )dist ( ( ), ) dist ( , )
2( )m m m
mA u u

m
 


 
  


.                                       (3.5) 

Then  

( )mA u D
 , u D

  .   

If u D
  is a nontrivial critical point of J , then ( ) 0mJ u u A u    , that is, mA u u . By (3.5), 

\{0}u . According to (3.1) and Lemma 2.2, ( ) 0u t   in [1, ]T . Hence, u  is a negative solution of 

Problem (1.1).  
The proof of (ii) is similar and omitted.  □  

Lemma 3.2. Assume that one of the following condition holds.  
(i) l    or 
(ii) l    is not an eigenvalue of Problem (1.2), 
where l  is defined as in condition (H2). Then the functional J  (see (2.2)) satisfies the (PS) condition, i.e., for 

any sequence  nu  such that ( )nJ u is bounded and ( ) 0nJ u   as n  , there exists a subsequence of 

 nu  which is convergent in E .  

Proof. First suppose that l   . Recall that E  is a finite dimensional Hilbert space. Consequently, in order to 

prove that J  satisfies the (PS) condition, we only need to prove that  nu  is bounded. Let  nu  be a 

sequence in E  such that ( )nJ u  is bounded and ( ) 0nJ u   as n  . By l   , we know that there 
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exists a constant 1 0a   such that for any [1, ]t T  and Rx , 2
1( , ) TF t x x a  . Thus,  

2 2
1

1

1 1( ) (( ) , ) ( , ( ))
2 2

T

n n n n T n T n
t

J u P Q u u F t u t u u a T 


      .                  (3.6) 

Since ( )nJ u  is bounded, the above inequality implies that  nu  is a bounded sequence, and the (PS) condition 

is verified. 

Now, suppose that l    is not an eigenvalue of Problem (1.2). We claim that  nu  is bounded. Suppose 

the contrary, then there exists a subsequence of  nu  (still denoted by  )nu  such that n nu     as 

n   and for each [1, ]t T , either ( )nu t    or   ( )nu t  is bounded. Set n
n

n

uv


 . Obviously, 

1nv  . Therefore, there exist a subsequence of  nv  (still denoted by  )nv  and v E  such that nv v  

as n  . Put 
(1, (1)) ( , ( ))( (1), , ( ))

(1) ( )
n n

n n n
n n

f u f T u Tw v v T
u u T

  . Since 
( , )lim

x

f t x l
x

  uniformly in 

[1, ]t T , we have 

0 0 0 0
( ) 1 fn

n n n n
n n

J u v K u v K w v lK v
 


      .  

Bearing in mind that  
( ) 0n

n

J u



  as n  , we get that 0 0v lK v  . According to Lemma 2.3, l  is an 

eigenvalue of the matrix P Q , contrary to assumption. Hence,  nu  is bounded. The proof is complete.  □ 

Lemma 3.3. Assume that (H3). Then J  satisfies the Cerami condition ((C) condition for short), i.e., if any 

sequence  nu  such that ( )nJ u  is bounded and (1 ) ( ) 0n nm mu J u   as n   has a convergent 

subsequence in E .  

Proof. First suppose that (H3)(i) holds. Let  nu E  be a sequence such that ( )nJ u  is bounded and 

(1 ) ( ) 0n nm mu J u   as n  . Then there exists a constant 1 0R   such that  

1( )nJ u R ,   1(1 ) ( )n nm mu J u R  .   

This gives that  

13 2 ( ) (1 ) ( ) 2 ( ) ( ),n n n n n nm m mR J u u J u J u J u u         

1
[ ( ) ( , ( )) 2 ( , ( ))]

T

n n n
t

u t f t u t F t u t


  .                                            (3.7) 



 10 

Then, { }nu  is bounded. In fact, if { }nu  is unbounded, there exists a subsequence of  nu  (still denoted by 

 )nu  and some 0 [1, ]t T  such that 0( )nu t    as n  . By (H4)(i), we have   

0 0 0 0 0( ) ( , ( )) 2 ( , ( ))n n nu t f t u t F t u t     as  n  . 

By (H3)(i) again and the continuity of f , there exists a constant 2 0R   such that for any [1, ]t T  and 

Rx , 2( , )) 2 ( , )xf t x F t x R  . Thus,  

0 0 0 0 0 2
1
[ ( ) ( , ( )) 2 ( , ( ))] [ ( ) ( , ( ) 2 ( , ( ))] ( 1)

T

n n n n n n
t

u t f t u t F t u t u t f t u t F t u t T R


       ,  

which contradicts to (3.7). Thus, { }nu  is bounded in E  and J  satisfies the condition (C).  

Now, suppose that (H4)(ii) holds. By a similar argument as above, we know that J  satisfies the condition (C). 
The proof is complete.  □ 

Lemma 3.4. Assume that 2l  . Then ( )J u   as mu   , where 2 1 2span{ , }u E    , and 

1 2,   are eigenfunctions corresponding to eigenvalues 1 2,   of problem (1.2).  

Proof. First suppose that l   . By (3.6), we know that for any u E , ( )J u   as mu   . Now, 

suppose that 2( , )l   . For 2u E , 1 1 2 2u      . Without loss of generality, we can suppose that 1  

and 2  are orthogonal, i.e., 1 2( , ) 0   . Then 
2 2 22 2

1 1 2 2mu      . Choose   such that 

 1 20 min ,l l      . By 
( , )lim

x

f t x l
x

 , we have that there exists 2 0a   such that for any 

[1, ]t T  and Rx , 2
2( , )

2
lF t x x a

  . Hence, for 2u E ,  

2 2 22 2
1 1 1 2 2 2 2

1

1 1( ) (( ) , ) ( , ( )) ( )
2 2 2

T

t

lJ u P Q u u F t u t u a T
     




          

2 22 2
1 1 1 2 2 2 2

1 1( ) ( )
2 2

l l a T                 

as mu   . The proof is complete.  □ 

Proof of Theorem 1.1. (i) Our aim is to apply Lemma 2.4. By (3.3), we have  
2 2

1
1( , ) ( )

2 2
sm CF t x x m x x

s
      .  

This together with (3.4) gives that  

2 2 21

1

1 1( ) , [ ( , ( )) ( ) ]
2 2 2 2

T
s

m m s
t

m m CJ u u u F t u t u t u u u
s
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2

12( )

s
s

m m

CDu u
m s



 


.  

We note that (3.2) implies that for any u D D 
   , 0

1 1

1 1dist ( , )mu u
m m


 

   
 

 . Thus 

there exists 0c    such that 0inf ( )
u D D

J u c
 
  

 . Lemma 3.4 yields that there exists 02R   such that 

0( ) 1J u c   for 2u E  and mu R . Define a path 2: [0,1]h E  as  

1 2

1 2

cos( ) sin( )( )
cos( ) sin( ) m

s sh s R
s s
   
   





. 

Then 1

1

(0) \
m

h R D D 



   , 1

1

(1) \
m

h R D D 



     and  

[0,1]
inf ( ) sup ( ( ))

u D D
J u J h

  


   
 .  

According to Lemmas 3.1, 3.2 and 2.4, there exists a critical point in \ ( )E D D 
  , which is a sign-changing 

solution of Problem (1.1). Also we have a critical point in \D D 
   and a critical point in \D D 

  , which 

correspond to a positive solution and a negative solution of Problem (1.1), respectively. This completes the proof 
for (i). Note that Lemma 3.3 and Remark 2.3. The proof for (ii) is similar and thus omitted.  □  

   Now we give an example to illustrate the conclusion of Theorem 1.1.  

Example 3.1. Let ( ) 1p t  , ( ) 1q t   and ( , )
1

x b
f t x ax

x





, where 21 4sina
T


  , 
10 b
a

  . Then,  

2

2

( 1)( ln(1 )), 0,
2( , )

( 1)( ln(1 )), 0.
2

ax a b x x x
F t x

ax a b x x x


     

     

 

By simple calculation, we have  

lim[2 ( , ) ( , )]
x

F t x xf t x


   , uniformly for [1, ]t T  

It is easy to see that 1 1   and 2
2 1 4sin

T
   . In addition, 0 1f ab   , 2l a   . Hence by 

Theorem 1.1, Problem (1.1) has at least a positive solution, a negative solution and a sign-changing solution.  

4. Existence of positive solutions of Problem (1.1) 

In this section, we will prove existence of positive solutions of Problem (1.1) by the mountain pass lemma. Let 

max{ ,0}u u  , min{ ,0}u u   and ( ,0) 0f t   for any [1, ]t T . Consider the functionals  
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0
1

1( ) , ( , ( ))
2

T

t
J u u u F t u t




  ,   u E .  

where 
0

( , ) ( , )d
x

F t x f t s s  . Then J   and J   are continuously differentiable. The critical points of the 

functional J   (respectively J  ) correspond to positive (respectively negative) solutions of Problem (1.1).  

Lemma 4.1. Suppose that 1lim inf ( , ) /x f t x x    uniformly for [1, ]t T , then J   and J   satisfy the 

(PS) condition.  

Proof. Let  nu  be a sequence in E  such that ( )nJ u  is bounded and ( ) 0nJ u   as n  . Since E  

is finite dimensional, it suffices to show that  nu  is bounded. Let ( )( ) ( , ( ))+f u t f t u t , u E , [1, ]t T . 

Then  
2

0 0 0 0 0
, , ( ), (1)+fn n n n n n n n nu u u u K u u J u u u    

      

so 0nu   as n  . We claim that  nu  is bounded. Suppose the contrary, then there exists a subsequence 

of  nu (still denoted by  )nu  such that 
0n nu     as n   and for each [1, ]t T , either 

( )nu t    or   ( )nu t  is bounded. Set n
n

n

uv




 . Obviously, 
0

1nv  . Therefore, there exists a 

subsequence of  nv (still denoted by  )nv and v E  such that nv v  as n  . Denoting 1 0   by 

the eigenfunction associated with 1 . Then  

1 1 1 1 1 0
1 1

( ) ( ) [ ( 1) ( 1) ( 1) ( ) ( ) ( )] ,
T T

n n n n
t t

u t t p t u t t q t u t t u    
 

          

1 10
, ( )+f n nK u J u   1 1 0

1
( , ( )) ( ) ( ),

T

n n
t

f t u t t J u 




  .  

By divding both sides of the above equality by n , we get  

1 1 1
1 1

( , ( ))( ) ( ) ( ) ( ) (1)
( )

T T
n

n n
t t n

f t u tv t t v t t
u t

   



 

   .                                      (4.1) 

If ( )nu t    then [1, ] 1min liminf ( , ) /t T x f t x x     by assumption, and if  ( )nu t  is bounded then 

( , ( )) 0n

n

f t u t




  and ( ) 0v t  . Since 0v  , there is a t  for which ( )nu t    and ( ) 0v t  , so 

passing to the limit in (4.1) yields a contradiction. Hence,  nu  is bounded and J   satisfies the (PS) condition. 
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By a similar argument as above, we know also that J   satisfies the (PS) condition. The proof is complete.□ 

Proof of Theorem 1.2. By [1, ] 0 1max limsup ( , ) /t T x f t x x    , we can choose 1 0   and 0   such 

that 
2

1 10

1( , ) ( , )d ( )
2

x
F t x f t s s x    ,  [1, ]t T , x  .  

Let 
0

{ : }B u E u    . Then for u B , we have  

0
1

1( ) , ( , ( ))
2

T

t
J u u u F t u t




  2 2
1 10

1 1 ( )
2 2

u u    2
1

1

1 :
2

  


  .  

By [1, ] 1min liminf ( , ) /t T x f t x x    , we can choose 2 0   such that [1, ]min liminf ( , ) /t T x f t x x   

1 2   .  Then there is some 0C   such that  

2
1 2

1( , ) ( )
2

F t x x C    , ( , ) [1, ] Rt x T   . 

Therefore  

1( )J s

2 2
2 2

1 1 2 10 0
1

( )
2 2
s s C   


   

2
22

1 0
1

0
2
s C




     

for s  large enough. Lemma 4.1 and the mountain pass lemma now give that there exists w E  with 

( ) 0J w   and ( ) 0J w    . Then  

2

0 0 0 0
, , ( ), 0+fw w w w K w w J w w   

     .  

Thus 0w  , and so 0w  . If ( ) 0w t   for some [1, ]t T  then  

( ) ( 1) ( 1) ( 1) [ ( 1) ( 1)] ( ) ( ) ( , ( )) 0p t w t p t w t p t w t q t w t f t w t             ,  

so ( 1) 0w t   , and it follows that if w  is zero somewhere in [1, ]T  then it vanishes identically. Then by 

( ) 0J w  , 0w   in [1, ]T . Hence, w  is a positive solution of Problem (1.1). Similar, a negative solution 

can be obtained for the case of J  . The proof is completed.  

   From the proof of Theorem 1.2, we can easily get the following corollary. 

Corollary 4.1. Assume that ( ,0) 0f t   for any [1, ]t T , then the following hold: 

(i) If 10
limsup ( , ) /

x
f t x x 

  and 1lim inf ( , ) /x f t x x    uniformly for [1, ]t T , then Problem 

(1.1) has at least a positive solution. 

(ii) If 10
limsup ( , ) /

x
f t x x 

  and 1lim inf ( , ) /x f t x x    uniformly for [1, ]t T , then Problem 

(1.1) has at least a negative solution. 
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Example 4.1. Let ( ) 1p t  , ( ) 1q t   and 5 4( , ) (1 sin )f t x x t x ax    , where 1a  . Then 1 1  . In 

addition, ( ,0) 0f t   for all [1, ]t T , 0 1limsup ( , ) /x f t x x    and 1lim inf ( , ) /x f t x x    

uniformly for [1, ]t T . Hence by Theorem 1.2, Problem (1.1) has at least a positive solution and a negative 

solution. 

Remark 4.1. It is easy to see that ( , )f t x  is unbounded from below and sign-changing for 0x   in Examples 

4.1 and 3.1. The existence of positive solutions could not be obtained by any theorems in [3, 11].  
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