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Abstract

In this paper, we deal with the existence of solutions for the following variable exponent
system Neumann boundary value problem with Hardy critical exponent and approximate
Sobolev critical growth condition

—div(|[VulP 2 Vu) + a(z) [ufP' "2 u = Fy(z,u,v) in Q,
—div(|Vo| "™ 2 Vo) + b(2) [v| "D %0 = Fy(z,u,v) in Q,

ou _ n_ v
877_0_37 on 0f).

We give several sufficient conditions for the existence of solutions, when F'(z, -, -) satis-
fies sub-(p(x), ¢(x)) growth condition, or super-(p(z), ¢(x)) growth condition and approx-
imate Sobolev critical growth condition. Especially, we obtain the existence of infinitely
many solutions, when F'(z, -, v) satisfies sub-p(z) growth condition, and F(x,u, -) satisfies
super-q(z) growth condition.

Key words: Variable exponent system; Variable exponent Sobolev spaces; Critical
points; Hardy critical exponent

1 Introduction

The study of differential equations and variational problems with variable exponent has at-
tracted intense research interests in recent years. Such problems arise from the study of elec-
trorheological fluids, image processing, and the theory of nonlinear elasticity (see [1,10,39,52]).
These problems are interesting in applications (see [25,26,28,32]). Many results have been ob-
tained on this kind of problems, for examples [1-7,11,12,14-22,25-42 45-53]. On the existence
of solutions for variable exponent elliptic systems with subcritical growth condition, we refer

to [4,27,45,48]. The results to the equations with critical exponent growth conditions are rare
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(see [21,22]). In this paper, we consider the existence of solutions for the following system with

Hardy critical exponent and approximate Sobolev critical growth condition

—dw(|Vu|p(x) 2Vu) + a(z) [uf " u = Fy(z,u,0) in Q,

—div(|[Vo|"™ 2 V) + b(x) |02 2 v = F,(x,u,v) in Q, (1)
g—: =0= g—fy on 012,

where Q C RV is a bounded domain and JQ possesses cone property, p,q € C(Q) and
p(x),q(x) > 1, = Dyy u = —div(|Vul' > Vu) is called the p(z)-Laplacian, a,b € L™(%),

ess })nfa(m) =aqay > 0, ess glfb(l’) = by > 0, v is the outward unit normal to 9. F' satisfies
Te Te

F(z,s,t) = ZF:cst Z)\az Gi(z,s,1),Y(x,5,t) € A xR xR,

Throughout the paper, the following conditions are satisfied
(A) For every i = 1,---,m, )\; is a parameter, a; € L")(Q), we assume that G; €

C' Q2 xR?2—=R) (i=1,---,m) and satisfies

|Gi7u(x,u, U)| < G(|U|ai(I)—1 + |U|,3i(a:)/a?($) + 1)72' =1,---,m,

Gyn(m,u,v)] < C(jo)%@1 4 | @@ L) =1, m,

where G, ,, = %Gi, Giy = %Gi, 7i(+) = 400 or 74(+) € C(Q) with r;(z) > 1, a4, B; € C(Q) with
a;(x), Bi(x) > 1 and satisfy

1< T?(CL’) <

. . . wx) e 0Q)
where the notation °(z) means the conjugate function of (), namely u°(z) = “(f’f)fl ’ N
= +00

)

and

p*(z) = { Np(z)/(N = p(z)), p(z) <N,

oo, p(z) > N.

When p(z) = p (a constant), p(z)-Laplacian becomes the usual p-Laplacian. The p(z)-
Laplacian is nonhomogeneity and possesses more complicated nonlinearities than the p-Laplacian
(see [18]). On the p-Laplacian problems with singular coefficients, we refer to [8,13,23,24]. But
the existence of solutions for p(x)-Laplacian equations with singular coefficients are rare (see
[19,50]). On the existence of solutions for variable exponent elliptic systems, if F'(z, -, -) satisfies

the sub-(p~, ¢~) growth condition, i.e. the following condition

maxa;(r) < minp(z), maxf;(z) < ming(z),i =1, -+, m,
e e e €N



we can see that the corresponding functional is coercive, if F(x,-, -) satisfies the super-(p™, ¢*)

growth condition (subcritical), i.e. the following condition

0 < Gi(x,s,t) < igGi(a:,s,t) + igGi(ﬂﬁ,s,t), for z € Q and |s|” + [t|”* > 2M > 0,
01 Js 92 ot

where M is a positive constant, the positive constants ¢, and 6, satisfy

maxp(z) < 6, < minp*(x) and maxq(z) < 6y < ming*(z),
e e z€) z€Q

we can see that the corresponding functional satisfies Palais-Smale conditions. On the variable
exponent equations, many results are focused on the case of F'(x, -, -) satisfy sub-(p~, ¢7) growth
condition or super-(p*, ¢") growth condition (see [4,27,45,47]). If F(x,-,-) satisfy subcritical
growth condition, but it does not satisfy the sub-(p~,¢~) growth condition or super-(p™, ¢™)
growth condition, it is difficult to testify the corresponding functional be coercive or satisfying
Palais-Smale conditions, the results on this case are rare. This paper give the existence of
solutions for (1), when F(z,-,v) satisfies sub-p(x) growth condition, and F(z,u,-) satisfies
super-¢(x) growth condition. This paper was motivated by [4,19,27].

Our aim is to give the existence of solutions and infinitely many solutions for (1), when
F(z,-,-) satisfies sub-(p(z),q(z)) growth condition i.e. the condition a;(z) < p(z), fi(x) <

q(z),z € Q, or super-(p(x), q(z)) growth condition (subcritical) i.e. the condition

0 t 0 _
0 < Gy(z,s,t) < @%Gi(:@s,t} + %EGi(x,s,t), for z € @ and |s|” + |t > 2M > 0,

where M is a positive constant, the positive functions 0;(z) and 6y(x) satisfy

p(x) < 01(x) < p*(x) and q(z) < Os(x) < ¢*(z),x € €,

and our results permit some G; satisfies the following approximate Sobolev critical growth
condition
Gi(w,5,1) = ([ul™ + 0" ) /In(1 + [u] + [v]),

and the principle of concentration compactness should be used in the discussions. This paper
partly generalized the results of [4,17,19,21,27,45].

This paper is organized as four sections. In Section 2, we introduce some basic properties
of the variable exponent Lebesgue-Sobolev spaces. In Section 3, several important properties
of p(x)-Laplacian and variational principle are presented. In Section 4, we give the existence

of solutions for problem (1).



2  Preliminary results and notations

Throughout this paper, the letters ¢, ¢;, C;, © = 1,2, - - -, denote positive constants which may
vary from line to line but are independent of the terms which will take part in any limit process.

In order to discuss problem (1), we need some theories on space W'P()(Q) which we call
variable exponent Sobolev space. Firstly, we state some basic properties of spaces W'2()((Q)

and p(z)-Laplacian which we will use later (for details, see [14,17,19-21]). Write
CL(Q)={h|h e C(Q), h(z) >1forz € Q},

ht = esssuph(x), h~ = essinfh(z), for any h € L>(Q),
r=t9) ze

S(Q) = {u | u is a real-valued measurable function on Q},
PO(Q) = {u € S(Q) | [, u(z)[" da < oo} .
We can introduce a norm on LP1)(Q) by

u(z)

p(z)
/ de <1,
Q

and (LPO(Q), || p(.)) becomes a Banach space, we call it variable exponent Lebesgue space.

|ul,., = inf {)\ >0

Proposition 1 (see [14]) (i) The space (LP*)(Q), |l,)) 15 a separable, reflezive, uniform convex
Banach space, and its conjugate space is LP"O(Q), where 1/p(x) + 1/p°(x) = 1. For any u €
LPO(Q) and v € LP"O)(Q), we have

/ uvdx
Q

(ii) If p1, pa € CL(Q), pi(z) < pa(x) for any x € Q, then LP2O)(Q) C LPO)(Q), and the

1 1
< (=4 52 lulyey [0y 3
pm ()

imbedding is continuous.

k
Denote Y = [[L7*")(Q2) with the norm

=1

k
H Yy ||Y: Z ‘yl}pl() ) vy = (ylv U 7yk) S Y7
=1

where p;(z) € C(Q), i =1,--- ,m, then Y is a Banach space.



Proposition 2 (see [9,17]) Suppose f(x,y) : Q x R¥ — R™ is a Caratheodory function, i.e.,
f satisfies
(i) For a.e. x € Q, y — f(x,y) is a continuous function from R* to R™,

(ii) For any y € R*, x — f(x,y) is measurable.

If there exist B(z), pi(x),--- ,pr(z) € CL(Q), p(x) € LPO(Q) and positive constant ¢ > 0
such that

k
f(@,9)] < p(a) + > ™7 for any z € Q,y € R,
=1

then the Nemytsky operator from Y to (L°0)(Q))™ defined by (Nyu)(x) = f(z,u(z)) is contin-

uous and bounded.
The space WP (Q) is defined by
WHPO(Q) = {u e L’V (Q) ||Vu| € L'V () },

and it can be endowed with the norm

||u||p(.) = [ul,) + Vul,y, Vu € WPt (Q).

Denote
/ ' oy [P ul() [P
_ =) <
K inf {)\ >0 /Q 3 dx +/Qa(x) ) de <13,
q(z) q(z)
ull,v = inf{A>0 @ drx+ | blx @ de <1 .
q()
0 0 A

Since a,b € L>(Q), ess })nfa(ac) =ap > 0, ess ianb(x) = by > 0, we can easily see that the

TE e
norm H-H;(_) is equivalent to |-, on Wtrt)(Q), and H-H;(_) is equivalent to |-, on What)(Q).
In the following, we will use ||-||;(.) to replace [[-[|,, on Wir0)(€)), and use ||-||;(.) to replace

Ill,) on WHO(Q).
We denote by Wol’p(')(Q) the closure of Cg° () in WP (Q).

Proposition 3 (see [14]) (i) W'P)(Q) is a separable reflevive Banach space;
(i) If B € C1 (Q) and B(z) < p*(z) for any x € Q, then the imbedding from W0 (Q) to

L) (Q) is compact and continuous.



Let 8 € C,(Q),u € S(Q), and u(z) > 0 for a.e. x € Q. Define

L) ={ulue s@, [ )@l do < oo},

with the norm

u(z)

A

/Q p(z)

B(x)
[ulzz0@) = [l u0) = 10 {)\ >0 dz < 1} :

then Ligg(Q) is a Banach space.

Proposition 4 (see [19]) Assume that the boundary of Q possesses the cone property and
1 <pe Q). Suppose that u € L™(Q), a(z) > 0 foraex € Q, r € C(Q). If B € CL(Q)

and

1< Bz) < T<f(>x; Lyt (2), Vo € 0,

then there is a compact continuously embedding WP (Q) — Lﬁg;(@)

Denote X = WP0(Q) x WHO)(Q). Let us endow the norm |[|-|| on X as

1, 0) | = maxc{lull, , ollyc)}-

The dual space of X will be denoted as X*, then for any H € X*, there exist f €
(WP (Q))*, g € (WL1O(Q))* such that H(u,v) = f(u) + g(v). If we denote |-, , [I[]. .y and
]l 4y the norms of X*, (WO(Q))* and (W90)(Q))*, respectively, then

VL = 11y + oy
and X* = (WLPO(Q))* x (W10 (Q))*. Therefore

1t )|, = D27 (1 0) |,y + 1D (0, 0)] g -

*,p(:

For every (u,v) and (p,%) in X, set

1
Oy (u) = /—\Vu|p(m) da:—i—/—a 7) u|P™ da,
Q Q

p(x) p(z)
Dy(v) = /Q ﬁ V| dz + /Q % 0|7 d,
O(u,v) = P1(u)+ Po(v), U(u,v) = /QF(.Z‘, u,v)dx,



then

(w,v)(p,¥) = Di®(u,v)(p) + Da®(u, v)(¢),

U(u,v)(,¥) = Di¥(u,v)(p) + Do (u,v)(¥),
where
D1 ®(u,v)(p) = /Q IVulP 72 VuVpds + /Q a(@) [ulP " updr = O (u)(p),
Dad(u, 0) (1)) = /Q Vo792 VoVida + /Q b() [0] 2 wipdar = Bl(v) (),
Dy, v)(p) = /Q %F(m,u,v)gpdw,Dg‘I’(u,v)(w): /Q %F(a:,u,v)wd:c.

The integral functional associated with the problem (1) is
J(u,v) = ®(u,v) — U(u,v).

It is easy to see that J € C'(X,R) (see [9]). Without loss of generality, we may assume

that Gy(z,0,0) = 0,Vx € Q,i=1,--- ,m. Obviously, we have
1
Gi(z,u,v) = / (U0 Gy (, tu, tv) + vVO3G(x, tu, tv)|dt, i =1, m,
0

where 0; denotes the partial derivative of G w.r.t. its j-th variable, then the condition (A)
holds
fi@) p ) Ve e Qi=1,---,m. (2)

|Gz, u, )] < eful @ + v

From Proposition 2 and condition (A), it is easy to see that J € C'(X,R) and satisfies
J'(w,0)(p, ) = DiJ (u, v) (@) + Do (u, v) (),
where

DiJ(u,v)(p) = Di®(u,v)(p) — D1V¥(u,v)(p),

Dy (u,0)(¥) = Da®(u,v)(¥)) — D2¥(u, v)(1)).
(u,v) € X is called a critical point of J if

I (u,v)(p,9) = 0,Y(p, ) € X.



Proposition 5 (i) If G satisfies

1 1 —
G(z,s,t) > e—sGs(x, s, t) + e—th(x,s,t) >0 forz € Q and |s|™ + [t|” > 2M,
1 2

then G(z,u,v) < c1[([u™ + |v|?) + 1], V(z,u,v) € A x R x R,
(i1) If G satisfies

1 1 _
0 < G(z,s,t) < H—SGS(ar,s,t) + e—th(x, s,t) for x €  and |s|01 + |t|92 > 2M,
1 2

then G(z,u,v) > co[([u|™ + |v|”) — 1], V(z,u,v) € QA x R x R.

Proof (i) Similar to the proof of [27], we omit it here. [J
Let M(Q) denote the class of nonnegative Borel measures of finite total mass, and . — p

in M(Q) is defined by [;ndu. — [gndu for every test function n € C(Q) N C>=(Q).

Proposition 6 (see [21]) If Q is an open bounded domain in RY | p is Lipschitz continuous on
Q and satisfy 1 < p(x) < N. Let {w.} is a sequence in Wol’p(')(Q) of norm ||[Vwe||py < 1 such
that

we = w in WeP(Q), |[Vw P 2 in M(Q), |we”™™ 2 v in M(Q).

Set

Ch = sup{/Q |we|” ™ da

we € Wy (Q), | Ve, < 1}

and 0 < C}. < +00. The limit measure are of the form

po= Vol +> pide, + i p(@) < 1,
jeJ
v o= |wff"@ 4 Zyj@j, v(Q) < C*,
jeJ

where x; € Q, J is a countable set, i € M(Q) is nonatomic positive measure. The atoms and
the reqular part satisfy the generalized Sobolev inequality

p*t —
v(Q) < Crmax{u(Q)r~, u(Q) "},

vi < C'max{p ,,uj”+ }.

+




3  Properties of operators and variational principle

In this section, we will discuss the properties of p(x)-Laplacian and Nemytsky operator, and

present several variational principles.

Proposition 7 (see [45]) (i) ® is a convex functional;
(1) ®" is strictly monotone, i.e., for any (uy,v1), (uz,ve) € X with (uy,vy) # (ug,vs), we
have

(@'(ul,vl) — (I),(UQ,UQ))(Ul — U, V1 — UQ) > 0,

(111) ' is a mapping of type (Si), i.e. if (un,v,) = (u,v) in X and

lim [@ (up, vy) — ' (u, )] (up, — u, v, —v) <0,

n—oo
then (un,v,) — (u,v) in X.

(1V) ® : X — X* is a bounded homeomorphism.

Theorem 8 (i) ¥ € C'(X,R);
(i) If r; € C4(Q), and

1. . 1
Ay (= Al < Sars

1< ai(r) < q (x),i=1,---,m,

then W; and V! are weak-strong continuous, i.e., (u,,v,) — (u,v) (in X ) implies V;(u,,v,) —

Ui (u,v) and V(un,v,) = Vi(u,v).

Proof (i) From the continuity of the Nemytsky operator, we can see that ¥ and W' are
continuous.
(i) Since (un, vy) = (u,v), we have |u, — ul,y — 0 and v, — v,y = 0. Thus u, — u and

v, — v a.e. on Q. Therefore a;(x)Gy(x, un(z)) — a;(2)Gi(z,u(z)) a.e. on Q. Obviously

/ la;(2)Gi(x, up, vy,)| da
U

¢ [ fas@)| (1 luy

U

et [ Jaitw
U
1 « ri(€4)
+0( [ a@? )T ([ " dn) 75 0 [ fa) de
U U U

’Bi(x))dx

IN

) 1 o,

r;(€2)

0y o
U

IN

9



where U C €, 1,6, &3, & € U, then {|a;(2)Gi(z, u,, v,)|} is uniformly integrable.
Thus {|a;(2)G;(x, uy, v,) — a;(x)G;i(x, u,v)|} is uniformly integrable, and then
lim | |a;(2)Gi(x, un, v,) — a;(2)Gi(x, u,v)| d

n—o0 e

= / lim |a;(2)Gi(z, Uup, v,) — a;(2)Gi(z,u,v)| dx = 0.

n—oo

Similarly, we can get the weak-strong continuity of W.

Since X be a reflexive and separable Banach space, there are sequences {e;} C X and
{ej} C X* such that
X =3span{e;, j=1,2,---}, X' = span“’*{e;f, j=12---}
Li=7,

0,i# j.

For convenience, we write

and < €}, e; >= {

k )
Xj = spcm{ej}, Yk = EBlXj, Zk = EB]CXJ (3)
J= Jj=

Definition 9 (i) We say J satisfies (PS) condition in X, if any sequence {(u,,v,)} C X such
that {J(un,v,)} is bounded and || J' (u,, vy,)||, = 0 as n — oo, has a convergent subsequence; (ii)
We say J satisfies (PS); condition in X, if any sequence {(uy,,vn,)}C X such that nj — oo,
(Unj, Vn;) € Yo, J(Un,, vn;) — c and (J|ynj)’(unj,vnj) — 0, contains a subsequence converging

to a critical point of J.

Lemma 10 If {(upn,v,)} is a bounded (PS) sequence of J, then there ezists a small enough

positive constant Cy < 1 such that, if
|sFy(x, 5, 8)| + [tFy(x, 5, 1) < C(x) + Col|s|” @ + |t|7 ™), V(z,5,t) € Q x R,
where C(-) € LY(Q), then {u,} has a convergent subsequence in X .
Proof Let {(u,,v,)} be a bounded (PS) sequence of J, i.e.

I (U, vy) = ¢, J (U, v,) — 0 as n — 0o.

10



Since {(uy, v,)} is bounded, there exists a (u,v) € X, such that (u,,v,) = (u,v) in X. By
Proposition 6, we may assume that there exist p, v, py, v4 € M(Q2) and sequence {z,},c; in Q

such that

Uy — win WPPO(Q),

[V g = (Va4 Y g0, + R i M),
jeJ
|un p*(r) L v — |’U/’p*(m) —|— Zyjéxj, ln M(ﬁ),
JjeJ
p* pT*

= T
v; < Chomax{u/ ,pf },

ii) +liwe WOLP(A)(Q)a |Vw|p(.) <1} < +o0, and

where C5. = sup{|w

vy — vin WPT(Q),

‘an|p(x) N fy = |VU’tJ($) + Z’u#jéxj —i—/j#, n M(Q),
jeJ
o vy = ol D b, in M(Q),
jed
at*
ve < Cpmax{ng i) ),

where

Cr. = sup{|w

) Tt Lo € Wt (Q), [Vwl ) < 1} < +oo.

Next we will complete the proof of this Lemma in three steps.
Step 1. We will prove p({z;}) = v({z;}) = 0 and pp({z;}) = ve({z;}) = 0 for all
j = 17 27 Tt

Obviously, there exists r, > 0 such that

p(zn) : = inf  p(y) <pT(z,):=  sup  p(y)
YEBr (zn)NQ2 YEB (z,)NQ
< p(xy,) = inf  p*(y) <p(z,) = sup p*(y),Vr e (0,r,],
YEBy (zn)NQ YEB, (xn)NQ
¢ (v,) = inf q(y) <q (zn):= sup q(y)
YEB ()N y€B (zn)NQ
< ¢ (zn):= inf ¢ (y)<qg (z,):= sup q*(y),Vr e (0,r,)
yGBT(In)ﬁQ yeBr(-Tn)mﬁ

11



For every ¢ > 0, we set ¢.(z) = ¢((x —x1)/e),x € Q, where ¢ € CP(RY), 0< ¢ <1, 9= 1

in B;{0} and ¢ = 0 in R¥\By{0} and |V¢| < 2. Since J'(uy,,v,) — 0 in X* as n — oo and

{(tn,vy,)} is bounded, we have
/Q |V, [ Y, - V(geu)da + /Q |t [P 2wy o d
= /QﬁgF(x,un,vn)gbgundm +o(1)
< [10@)+ Collual”™ + ol + o(1)
which implies that

/ . |Vu, [P dz + / |t [P poda + / Uy |V P72 Vu, Voeda
Q Q Q

= /[C(f’f) + Col[un|”™ ) 4 |0 | ") pedz + o(1).
Q
Since {(un,v,)} is bounded in X, we may assume

Vu, P2V, — T e (LPOQ)N,

O F (2, un,v) — glz) € LP O (Q).

Since J'(up,v,) — 0 in X* as n — oo, we also have

/ VP2 Vu,, - V(pou)da + / |t [P wppouds = / Do F (2, U, vy ) peudx + o(1).
Q Q Q

then
/ T -V(p-u)dx +/ uf ¢.dx = / O F(x,u,v)up.dz.
Q Q 0
We claim
/Qun |Vun|p("’“")72 Vu,Vo.dr — /QuTVQSde as n — 0o.
In fact

/ {tn |V, ' Vu, Vb — uTV. }da
Q

(4)

- /(un — ) [V, [P Vu, V.dz + / uV o {| Vi, P2 Vu, — Thdz — 0 as n — oo.
Q Q

It follows from (4), (5) and (6) that

/ d-dp + / ™ ¢.dr < / C(z)p-dx + / Cod=dv + / Codedvsy — / uT'V $oda
Q Q Q Q Q Q

12



= /QC("L‘)QSECZ*T""/QCOQbadV"f'/QCOQbadV#
_ _ p(z) _ .
{/QGQF(:E,u,U)u@dx /Q]u\ ¢-dx /QqﬁgT Vudx}.

Letting ¢ — 0, we have

p({z1}) < Co(v({z1}) + v ({x1})).
Similarly, we have
pp({z1}) < Cov({a}) + ve({z})),
p({z;}) < Co(v({z;}) + vge({an}),j =2.3,,
pa({xi}) < Co(v({a}) +vp({21})),j = 2.3,

Suppose that p({z;}) + px({z;}) > 0 for some j, then v({z;}) + vx({z;}) > 0. Let M, be

a constant such that
/[|un|p*(‘r) + |va|”®)dz < M, < 0 for all n. (7)
Q

If v; + vy; > 1, then we have

Pty (=) Pt (aj) P+ (2)
“(x; + (=
v < Cpomax{p) ™ "} < Cpomax{[Co(v; + vgy)] L [Colws + 1) 7 }
P+ () A C))

S C;* [Co] pt(a;) (VJ —+ V#j) P_(afj) ,

*F(x)) (rp "t (aj) a* " (z;)
vy S Cmax{ag " w ;) < Copemax{[Co(vs + )] 70, [Coly + vgy)] T )
~(z;) *+(ac

S C:;* [Co] q+($j) (1/] —+ V#]) q_(;cj) ,

which implies that

max{ p*t(z; ) q*
1 - (I)’q (z

. . >
Vit Vg 2 pe— (@) = (z;)
+(z. +(z.
Cr|Col 7@ 4 Cp[Co] &

} 1

Similarly, if v; + v4; <1, then we have

1
min{p*_(%j)’Q*_(%j)
1 pT(z;) " at(z)
Vi + Vy; >
i Va2 e (2,) 7= (x5)

C;* [Co] P ()) -+ C;;* [C(]] 7t (=)

}—1

13



When (j is small enough, it is a contradiction to (7). Now we completed the step 1.
Step 2. We will show (u,,v,) — (u,v) strong in LP")(Q) x LT () as n — oo.

Since [u, [P 2 v = [u”" ™ we have

lim / |t
n—oo [¢)

notice that [u, [P — |u[""® in measure, then we can see {|u,

P (@) dq;:/|u|p*(x) d.
Q

@)} is uniformly integrable.

Since

|y, — U‘P*(ff) < Qp*(x)(‘un‘p*(w) + ‘u|p*(ﬂc))7

we can see that {|u, — u|"" '} is uniformly integrable. Thus

lim / lun — u|” @ da = / lim |u, — u[”"® dz = 0.
Q —00

n—>00 qn
Similarly, we have v,, — v strong in L? )(Q2) as n — oo.

Step 3. We will show (un,v,) — (u,v) strong in X as n — oo.

Since J'(tn, vn) = D (Un,vp) — V' (Up,v,) — 0 and (up,,v,) — (u,v) strong in LP"O(Q) x

LT0(Q) as n — oo, then we can see ¥ (uy,, v,) — ¥'(u,v) and
O (uy,, v,) = ¥ (u,v) as n — 0.

As L = @' is a homeomorphism, then we can see (u,,v,) — L™V (u,v)) in X as n — oo.
U

For each 7 = 1,--- ,m, we assume \;, a; and G; satisfy one of the following conditions

(B1) ai(z) < pla), Bi(x) < q(z) and ri(z) = (p(z)/ai(2))® and ri(z) > (q(x)/Bi(x))’, YV €
Q.

(By) \ia; > 0, r;(-) € O, (), and there exist functions 0;(-),0y(-) € C*(Q) (which are

independent on ) satisfy

p(z) < b:(x) <

r(x) r(x)

such that G, satisfies

%, t _
0 < Gy(x,s,t) < %%Gi(x, s,t) + H—Z%Gi(as, s,t),Vr e Q, 5| +]t|” > 2M > 0.

(BY) Mia; € L(Q), and for the functions 61 () and 65(-) in (Bs), G satisfies

| o

B, t o _
Gy(x,5,t) + ——=Gi(x, s, 1), Vo € Q, |s|” +t|” > 2M > 0,

0<Gilz,st) < 5o 0, ot

)

14



and
5 2G5, 0|+ |£5Gi(w.5,1)

|8|p*(l‘) + |t|q*($)

— 0 uniformly as |[s| + |[t| = +o0.

(B3) M\ia; < 0, and for the functions 6,(-) and 65(-) in (B2), there exists a small positive

constant ¢ such that G; satisfies

146 0 146 0 _
; 55-Gil,5,1) + ;2 taGi(x,s,t)>0,‘v’m€Q,|s|91+|t|9222M>0.

Gi(xasat) Z
Denote A = {1,--- ,m}, and

Uy = {ieA| N, a; and G; satisfies (By)},
Uy = {ie A\U |\, a; and G; satisfies (By) or (Bj)},

U = {i € A\(Uy UU) | N\i,a; and G; satisfies (B3)}.

Lemma 11 If U; UUs = A, or Uy is nonempty and there are some 11,15 € Uy such that

|a;, ()] PO/ OO0 g ()71 0=0740) ¢ L1Q) then J satisfies (PS) conditions in X.
Proof For any € > 0, it is easy to see that
|sFy(x,5,8)| + [tFy(z, 5,8)] < Ce(x) +e(|s]” @ + [¢|7 @), vz € Q,

where C.(-) € L'(Q) is dependent on e.
According to Lemma 10, we only need to prove that every (PS) sequence of J are bounded
in X.

(i) If Uy Ul = A. Let {(uyn,v,)} be a (PS) sequence, then it is easy to see that

@) 4 o, | de — €.

¢ 2 J(tn, 1) > Bty va) = 3 /Q i ()] ([t

1€U

For any ¢ € U, since r;(z) > (p(x)/c;(x))? and r;(z) > (¢(x)/Bi(z))°, from Yang inequality,

we have
; - Uy 1 (2) 7 a;(x
Neas(e) fua @) < PO =) (L R 4 2D 0B 50521, m,
p(x) £ p(z)
’)\iai(l')l ’Un Bi(x) < M(_ |)\i Z-(l')’)(;i(z))o + 6 (:L’) (g’ n Bi( ))ﬁqz(z)’g >0,1=1, ,m

g(r) e q()

Suppose the positive number ¢ is small enough, we can see that

; (@) ;i @ b —
S )G < 9 ana YDA v e
€Uy p(x) €U q(x>



Thus

1
¢ > J(up,vn) > O(uy,v,) — §CI>(un,vn) —Cy >

It means that {(un,v,)}C X is bounded.
(ii) If Uy is nonempty. The conditions (Bs), (B}) and (A) imply that, for any (z,s,t) €

Q x R?, we have

1 1 _
E(xa Sat) S e_sﬂ,s(xa S,t) + e_tFi,t(J:a Sat) + |)\’Lal($)| Ci,VZB S Q) (RS UQ,
1 2
1446 1446 —
E(mv Sat) S ;_ SE,S(x7 S7t) ;_ i,t(x757t> + ‘)\Za’t(x” Ci7vx € Qa (&S Z/{3'
1 2
Thus
1 1
F(x,s,t) —( + 65F5(x, s, t) + i 5tFt(x, s,1))
0 2
1406 140
< Z[E(x,s,t) - (9—155,3(95,8,75) 5, e (x,s,1)) Z(SF x,s,t) Z |Nia; ()] ¢
€Uy 1EU 1€EUUU3
< > @) e+ [aa(@)] (14 [s]™ 4 17) = 6 Naa(@)| (s + [£]™).
1€U2UU3 €U 1€EUs
Denote
1 1+96 1 1+0
l{ =min(— — ——),ls = min(— — ——), 8
' xe?ipp(lﬁ 91(%)) ? xefi(Q(lﬁ 92($)) ¥
where the positive constant ¢ is small enough such that [y, [y > 0.
Let {(un,v,)} be a (PS) sequence, then we have
c+ 1+ ([lunll,iy + llvally)
1—1—(5 1—0—5
2 Jun,vn)—J' umvn)( )
( Ctms 00) Gy ( X
1
— /—(|Vun\p(x) + a(x) ]un]p /— (|Vu,|? (@) + b(x )]vnlq(m))d:v—/F(x,un,vn)dx
o p(x) (2) Q
1496 1496
— Vu,[P@ + a(x) |u, ") da +/ Un (2, U, vy )d
| G5 (V) + ale) P + [ oS e v0)
149 1490
+ Uy, |V, PP "2V, VO, (2)dr — / Vo,|"® 1 b(2) v, |7 dx
| oty 9 e~ [ SS90, 4 b))
149 1+6 9
+ | —— v, Fy(x, up,, v, dx+/ 0 [V, | "2 W, Vs (2)d
eyt v + | oV 2 ()
1 1+96 . 1 1496 m x
> [ = DIVl ala) [P + [ (s = S (T0P b))

p(z)  bi(x) o q(x)  Ox(x)
+5Z/ (2, Up, vy)dx —/ (1+9)[Vé(x) |t | |Vt [P dae

2
it 01 (x )
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ﬁi(x))d$ iy

ai(z)+/ |vn,
Q

ll/(!Vunlp(z)Jra(fC) |un|p($))dx+l2/(|wn|ﬂ’($>+b(x) (0P diz
@ Q

(@ o(a 149)|Voi(z o) —
3 [ (W ()] "+ W o) s — [ LD )1< M 9, o

_/Q(+5)yve2( W o] [V 7~ dx—Clz/Maz (i

03(x) =

v

1490) Ve . .
/( - )|( )2( N o (Ve i — € - Olz/u ai ()] (|| + [0, 7)) d.
Q 1€EU
Note that |a;, (-)| 7?0/ @O ¢ £1(Q), we have
1+6 0
( + )QIV 1(1’)‘ |un| |Vun|p(x)*1
07 (z)
1 1 p(z) — &
< p(x) C p(z)—1 \V4 p(x)
— () s’f(””)| e R
11 Oi(x)—plx), 1 -33 0 () P(T) | pa) 56 ), 4 2)
= 0429(:70) ok 01(x) [5P(:c) o (@) 91(96)[ a1 (@) fu ") 7}
1
_ ]_ p(z
+o 2L g, o
p()
1 6(z) — pla) FEELED _pa) 2 P(T) 6, (@)—p(a 01(z
_ C4p(g;){ 91( ) 5191( )—p(x) i@;( )—p( >($) + 91(;5)61 (z)—p( )%(f) |Un| ( )}
1 e
4}9(1’) p(z |Vun|p
p()
Similarly, since |az, (-)|77/@0710) ¢ L1(Q), we have
1 i _q(z)
( +59)2’(Z) 2(1’)‘ |Un| |vvn|q($)*1 < 05 ( 2 ) 5(96) 1 |an|q
3
1 0s(2) — q(2) 72205 90) autm () _02(@)—q(x) 02(2)
+C. g 2T a; 27" () + e 2T g (1) v, |2
5(](1’){ 02(1‘) 2 io ( ) 92($) 2 2( >| ’ }

Suppose positive constants €; and €5 are small enough. It follows from the definitions of

01(-) and 65(-) that

¢+ 1 (flunllpey + lonlly)
1—|—6 1496

> J Up, Un) — J, Upy Up Unp, Un
2l 2l
> ?1 (IVun ' + a(@) Jun ")) dz + ?2 (IV0a " + b(x) |v,["))dx — Cg
—03Z/|)\a, |unalmd:p+/|vnﬁl
1€EU

Similar to the proof of (i), we have

+ (lunllyey + llonlly))
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1446 1496

> J Uy, Up) — J’ Uy, Up U, Un
2 Tty ) = It va) (s, grsen)
l l
> 3 / (V"™ + a(w) fun")der + 5 / (IVonl"™ +b() [0l — Cr.
Q Q

Thus {{|unll, } and {[[v,]l,.)} are bounded. O

Lemma 12 (see [17]) Assume that © : X — R is weakly-strongly continuous and ©(0,0) = 0,

v >0 s a given number. Let

O = Or(7) = sup{O(u, v) | [[(u, v)|| < 7v,u € Zi},

then ¢ — 0 as k — oo.

Lemma 13 (see [19]) If [u|*") € LsO/SO(Q), where s(z),<(z) € L¥(Q), and 1 < ¢(z) < s(x),

then u € L*")(Q) and there is a number < € [¢~,¢*] such that Nl o0y ) = (lulyy)*

Proposition 14 (Fountain theorem, see [43,44]) Assume X is a Banach space, J € C'(X,R)
is an even functional and satisfies (PS) condition, the subspace Xy, Yy and Zy are defined by
(3). If for each k = 1,2, -, there exist v, > pr. > 0 such that

(F1) g :=inf {J(u,v) | (u,v) € Z, ||[(u,v)|| = pr} = +o0 (k — o0);

(F2) G = max{J(u,v)| (u,v) € Yy, [|(u, v)]| = %} < 0.

then J has a sequence of critical values tending to +oc0.

Proposition 15 (Dual Fountain theorem, see [44]) Assume X is a Banach space, J € C1(X,R)
is an even functional, the subspace Xy, Yy and Zy, are defined by (3), and there is a kg > 0 such
that, for each k > ky, there exists pp > vy > 0 such that

(Dy) inf {J(u,v) | (u,v) € Z, || (u, ) || = pr} = 0,

(D2) G = max {J(u,v)| (u,v) € Yy, [|(w, 0)]| = %} <0,

(Ds) i == inf {J(u, ) | (u,0) € Z, [|(u, )| < pr} = 0 (k= 00),

(Dy) J satisfies (PS): condition for every ¢ € [ng,,0),

then J has a sequence of critical values tending to 0.

Proposition 16 (see [/3, Theorem 6.3]) Suppose J € C'(X,R) is even, and satisfies (PS)
condition. Let VT, V'~ C X be closed subspaces of X with codimV ™ + 1=dim V~, and suppose
there holds

18



(1°) J(0,0) = 0.
(2°) 37 >0, p > 0 such that ¥(u,v) € VT : ||(u,v)|| = p = J(u,v) > 7.
(3°) 3R > 0 such that V(u,v) € V™ : ||(u,v)|| > R = J(u,v) < 0.

Consider the following set:
['={g€ CO(X, X) | g is odd, g(u,v) = (u,v) if (u,v) € V™ and ||(u,v)| > R},

then
(a) V6 >0,g€l, SyNg(V™)#a, here Sy = {(u,v) € VT | ||(u,v)| = d6};

(b) the number w = ing sup J(g(u,v)) > 7 >0 is a critical value for J.
g€l (uw)ev-

4  Existence of solutions

In this section, using the critical point theory, we give the existence of solutions for problem

(1).
Definition 17 We say that (u,v) € X is a weak solution for (1), if

Jo [V V- Vi + [ @) [ - e = [, Fula,u, o), Yo € WHO(@),
o (V| "2 Wy - Vipda + Jo, b(z) 0|72y - pda = Jo, Fo(@, u,v)pdz, Vi € WhHO(Q).

It is easy to see that the critical point of J is a solution for (1).

Theorem 18 If (A) is satisfied, and (By) is satisfied fori=1,--- m, then problem (1) has
a solution. Furthermore, if F' satisfies the following properties
(i) F(z,—s,—t) = F(x,s,t), ¥(z,s,t) € Q x R?,

(i1) There exist constants 0,6 > 0, an open bounded subset Qg of Q, such that
F(x,s,t) > o(s4@ 4 12@) v(z,5,t) € Q x (0,0) x (0,6),

where 1 < €1(x) < p(x),1 < ea() < q() on Ny,
then the problem (1) has a sequence of solutions {£(ux,vx) | kK = 1,2,---} such that

J(£(ug,vx)) <0 and J(£(ug,vx)) — 0 as k — oo.

Proof At first, let’s prove that J is coercive on X. According to (2), similar to the proof

of Lemma 11, we have

1
/ W (u,0)] dr < 0o, v) + <o
Q
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Therefore

—_

1
J(u,v) 2 S®(u,0) — ¢ 2 2—+ lullp, HUHq<) — o = +00, as [|(u,v)[| = +oo.

From Theorem 8, it is easy to see that J is weak lower semi-continuous. Then J can achieve
its infimum in X, this provides a solution for (1).
From Lemma 11, we know that J satisfies (PS) condition on X. From condition (i), J is

an even functional. Denote by 7(A) the genus of A (see [9]). Set

® = {AcC X\{0}]| Ais compact and A = —A},
R = {AeR[y(4) =k},

by = inf sup J(u,v),k=1,2,---,
g Ae%k(uv)IG)A( )

we have

—00<b Kby <+ Kby Kby <-0-

Now, let’s prove that b, < 0 for every k.

Obviously, Wol’p(')(Qo) X W(}’Q(')(Qo) is a subspace of X. For any k, we can choose a k-

dimensional linear subspace Ej, of Wy (€2) x W% (Q,) such that
By, = span{(uy,v1), - -+, (ur, )} C C57(Q0) x Cg° (o)

satisfy suppu;, suppv; @ g, suppu; N suppu; = < and suppv; N suppv; = I when ¢ # 7, and
lwill ).y = llvillyy,¢ = 1,--,k. As the norms on Ej, are equivalent each other, there exists

pr € (0,1) such that (u,v) € Eg with [|(u,v)|| < pg implies |u|; + [v]; < 0. Set

Spy = {(u,v) € B | [(uw,0)]| = pi}-

Obviously, there are real numbers ¢y, - - - , ¢x, such that

k

k
- Zci(uia v;) = Z(Cﬂ%” civi), V(u,v) € S;()’Z).
=1

i=1
For any (u,v) € SSZ), from the definition of S,(f,:) and the norm ||-||, without loss of generality,
we may assume that [|(u,v)|| = [[u],,, and we have
max [leguill,) < flullye) = pe < Z lesuill iy < e max fleus],.)
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then

Pk
— < .
1n<1a<}§€ ||Czqu < Pk
Obviously, we have
k
gl < ey < 3 el < kpna el
Since [lcivsll ) = llcswill oy .2 =1, -+, k, we have
k
- = ||U||q(-) <
Thus we have
Pk Pk
P < ulyy < pur 25 < ol < V() € SED.
It follows from the compactness of Sél,:) and the definition of the norm ||-|| that there exists

constant 9?& > () such that

/ o ‘u|61(fﬂ) dx > 91?7 / o ’U|€2(m) dr > 9;:&, V(u,v) € ng).
Q() Q0

Without loss of generality, we may assume that maxe;(z) < minp(x), maxes(z) < ming(z).
e e xeo xe

For any (u,v) € S;(JI,:) and t € (0,1), combining the definition of Ej and condition (ii), we have
J (tu, tv) < @ (tu,tv) —/ (tﬁl(ff |u|€1 (@) 4 geo(a |U|62 x))dx
Qo

1
< =5 [ ol e o2
2 Qo

1
< —§tp++q+9,f ast— 0F.

We can find ¢, € (0,1) and ¢; > 0 such that

J (tpu, tpv) < —e <0, Y(u,v) € Splz),

that is

J (u,v) < —g, <0, V(u, v) e S

tkpr*

Obviously, (St =k, s0 by < —e < 0.

kPk)
By the genus theory (see [9], page 219 Theorem 3.3), each by is a critical value of J, hence
there is a sequence of solutions {£(ug,v) | k= 1,2,-- -} such that J(%(ug,v)) < 0.

It only remains to prove by — 0 as kK — oo.
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Since J is coercive, there exists a constant R > 1 such that J(u,v) > 0 when |[(u,v)|| > R.
Taking arbitrarily A € Ry, then v(A) > k. Let Y}, and Z; be the subspaces of X as mentioned

in (3), according to the properties of genus we know that AN Z, # &. Let
b = sup {0 (u, v)|| (1, v) € Zy, [|(u,0) | < R}.
By Lemma 3.6, we have ¢, — 0 as k — oo. Thus
J(u,v) = ®(u,v) — ¥(u,v) > —¥(u,v) > —¢x, when (u,v) € Z and ||(u,v)]| < R.

Hence sup J(u,v) > —¢y, and then by > —¢y, this concludes by — 0 as k — oco. O
(u,w)EA

Theorem 19 If F satisfies (A), for everyi=1,--- ,m, Gi(z,s,t) = o(|s|"™*" + [¢|"F7) for
x € Q uniformly, as (s,t) — (0,0), where T is a positive constant, and G; satisfies one of the
following conditions

(i) Nia; > 0 and (Bs) or (B}) is satisfied;

(11) Nia; <0 and (Bs) is satisfied;

and Ay = {i € A |(i) is satisfied} is nonempty, and there exist some iy,iy € Ay such that
|a;, ()] 7P/ O OPO) g (700740 ¢ LYQ) | then (1) has a nontrivial solution.

Proof We will prove J satisfies the conditions of Mountain Pass lemma (see [44]).

Since F satisfies (A), then F(z,u(z),v(x)) is integrable on 2 for any (u,v) € X. According
to Lemma 11, J satisfies (PS) condition.

Denote A = {i = 1,--- ;m}, Ay = {i € A |(i) is satisfied}, Ay = {i € A |(ii) is satisfied},
then A; UAy = A.

We divided (2 into small disjoint measurable subsets €2y, - -, §2,,,, such that
minp(x) + 7 > maxp(z),ming(x) + 7 > maxq(zr),j = 1,-- -, no,
CCEQJ' Z’EQ]' CEEQj .Z‘EQj
and
oy = mina;(z) > pf = maxp(z), and §;; := minf;(z) > ¢ = maxg,(x),i € Ay, j=1,--- ,no.
’ acGKTj mESTj ’ xGKTj mGKTJ'

In the following, for any f € C(€2), we denote

fj_ = mgf(x)afj_ = m@f('r)a] = 17 s, No,
IGQ]‘ IEQj
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and

wo) = [ L (TulP® © gl P L9l 4 ) ]9 g
o, (1.0) = [ (VP @) e+ [ (90 b o]

i £
Hence, when ||(u,v)|| = ¢ is small enough, we have
J(u,v) 2 Z{% u, ) Z/ iy ()| [e(lul™ 7+ [0l T7) + Ce)(Jul ) + o )] do
€A Qj
5 L, @ P 1447+ Ol ol
lGAz
. ;T ’L]
2 Z{%j(u,v) = (|l 3+ gl ot logllgry ™ + ol + ||Ug|| )},
j=1

where u; = ulq;, v; = vlq,.

Since p; + T, a; 917j > pj, and ¢; + 7, 5,

Z-J-,Qij > q;-L, we can get

1,57
1 1

J(u,v) > ZZ@QJ.(U,U) = Z@(u,v),V(u,v) € X with ||(u,v)|| = 0 is small enough.
=1

Let ¢ > 0 is small enough, then J(u,v) > ¢ > 0 for any (u,v) € X with [[(u,v)] = §.

From (i) and Proposition 5, we have

Gi(z,s,t) > a(|s|™ + [t]) — 1],¥(z, s,t) € Q x R Vi € Ay,

01 0o _
Gi(z,8,t) < cof(|s|TF + |t[T55) + 1], V(z, 5,t) € Q x R*, Vi € As.
For fixed (ug,vo) € X\ {0} with suppuo, suppvy C Q1 and ¢ > 1, we have

J(tug, tvg) < Dg, (tug, tvg) — Z/ (x, tug, tvg)dx
o

1€No

—clz/ i ()] (2 ot + 12 [uo|*)dz + o

1€\

< (tuo —|— @2 tUO + Z/ |/\ az |t|1+6 |u0|1+6 —+ |t|1+6 |U0|1+5) T
i€\o
_Clz/ Niati ()] (£ uo|™ + 1% Jvo|™)daz + Cs.

i€h

Without loss of generality, we may assume that pi, 67, /(1+6) < 67, and ¢, 63, /(1+6) <
05. Since pf, 07, /(1+6) < 6, and ¢ ,03, /(1 +6) < 65, on O, we have J(tug, tvg) — —o0
(t = 400). Obviously, J(0,0) = 0, then J satisfies the conditions of Mountain Pass Lemma.

So J admits at least one nontrivial critical point. [
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Theorem 20 If F satisfies (A), and Gi(x,u) satisfy one of the following conditions

(i) Ma; > 0 and (By) or (B}) is satisfied, Gi(x,s,t) = o(|s/"* + [t} for 2 € Q
uniformly as (s,t) — (0,0),

(ii) Nia; < 0 and (Bs) is satisfied, Gy(z, s,t) = o(|s|"T7 + [{| %7 for z € Q uniformly
as (s,t) — (0,0),

(113) |\;| is small enough, and (By) is satisfied,

and Ny = {i € A |(i) is satisfied} # &, and there exist some iy,i5 € Ny such that

|a;, ()] PO/ OO0 g, (71000740 ¢ LY then (1) has a nontrivial solution.

Proof We will prove J satisfies the conditions of Mountain Pass lemma (see [44]). Since F
satisfies (A), F(z,u(z),v(x)) is integrable on Q for any u € X.

According to Lemma 11, J satisfies (PS) condition. Denote A = {1,--- ,m}, Ay = {i |(i)
is satisfied}, A = {i € A |(ii) is satisfied}, Ay = A\(A; UAz). When ||(u,v)|| < 1, we have

i€A3
_Z/P\ ai(@)] [e([ul™™*T + [0 "T) + C(e) (jul™ + [v]*)]de
€A
=3 | e P+ ol )l + ol
i€No

Similar to the proof of Theorem 19, there exists an positive constant ¢ < 1, such that

()~ 3 / N (@)U + [T @Y 1 O (ul + o] )] da

i€y

_Z/|)\ a;(x |u|p +T_|_| |q +T)+C( )(|U|91+|U|92)]dx

ZEAQ

+ 1 +
H oy + g 10llgey » when I(w, vl = 6.

Let

1

max a;(2)Gi(z, u,v)|dx + 1’
max [ Jai(0)Gi (e 0,0)

1 + 1 +
Al < [ iy + = vl
4pt p(-) Aqt q(’) ZZE% |

then we have
1 o+ 1 e
T) > g ullfy + 1 ol > € > 0, when [[(w.0)] =4,

Similar to the proof Theorem 19, we get the existence of solutions for (1). O
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Theorem 21 If F satisfies (A), F(x,—s,—t) = F(x,s,t), and we assume for each i =
1,--+-,m, F; satisfy one of the following

(1°) (B,) is satisfied,

() Nia; > 0 and (Bsy) or (BY) is satisfied,

() Nia; < 0 and (Bs) is satisfied,

and Ay = {i |(2) is satisfied} # @, and there exist some iy, iz € Ay such that |a; ()| "0/ O0O=20)
|az, ()| @0O0) ¢ L1Q), then problem (1) has solutions {+(ug, vy) | k = 1,2,---} such

that J(%(uk, vy)) = +00 as k — +o0.

Proof It is easy to see that (PS) condition is satisfied.

Let
ik(R) = sup {/Q | Xiai(@)]|Gi(@, u,v)|dz| (u,v) € Zy, ||(u,v)|| < R}.

If G; doesn’t satisfy (BY), from Theorem 8 and Lemma 12, we have klim ¢ir(R) = 0.
—00

If G; satisfies (B}), since G; € C*(Q x R?), we have

Gl u,0)| < Cel(fu] + [o]) + 5 (Juf”" ™ + |7 ™)), ve > 0,

£
(Coe +C5)
from Lemma 12 we can see that ¢; (R) < ¢ when k is large enough. Therefore /}1—{20 oix(R) =0.
Thus, for any ¢ = 1,--- ,m, we have I}l_)rgloqﬁzk(R) = 0. Denote ¢i(R) = 1%%>§L¢i’k(R)’ then
lim ¢, (R) = 0. o

k—o0

For fixed R > 1, and (u,v) € Z with ||(u,v)|| = R, we have

Juy0) > @(u,v)—z/Q|/\iai(a:)|]Gi(x,u,v)|dx

IS
. 1
> min(—, q—+)R — maoy(R)
1 1 1
> émin(];, —)R, as k — 400

Let Ry = 1, then there exists a constant k; is large enough such that

1 1 1
J(u,v) > §min(F, q—+)R1, V(u,v) € Zy with ||(u,v)|| = Ry and k > k.

Let R, = 2", then there exists a constant k, > k,_; is large enough such that

1 1 1

J(u,v) > Emin(p+, q+>R"’ V(u,v) € Zy with [|(u,v)|| = R, and k > k,.
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For fixed (ug,vp) € X\ {0} with suppug, suppvy C Qi and t > 1, where Q; is defined in

Theorem 19, we have

J(tug, tvg) < Do, (tug, tvo) + > [ [ Niaa(@)] (%) Jug| ™ + 7 Jug | ")) e
i€ I

3 | Il (5 ol 5+ 655 o )
i€A3

—Z/ aas(@)] (£ Juol® + 1% [uo|)dz + C,

i€No

where ®q (tug, tvg) is defined in Theorem 19. Without loss of generality, we may assume that

0 0
max{maxp(z), max 1(m)} < minf; (), max{maxq(z), max— x)} < minfy(z),
zeQy ey 1 +0 €0 ze zen 1 +0 zeQy

then the definitions of ; implies J(tug,tvg) — —oco (t — +00). Since J(0,0) = 0, J satisfies

the conditions of Fountain theorem. [

Theorem 22 [If F(x,—s,—t) = F(z,s,t), and for each i = 1,--- ,m, G; satisfies one of the

following

;i ()

(1°) Nai(z) > 0, Gi(z,u,v) = |u

+|v

@) and (B,) is satisfied,

(%) Na; > 0 and (By) or (B)) is satisfied, Gy(z,s,t) = o(|s|"™*" + [t|"F7) for z € Q
uniformly as (s, t) — (0,0), and |a;(-)| 7O/ O 7P |q,(-)71 7000 ¢ L1Q), where 6, and 6,
are constants,

() Nia; < 0 and (Bs) is satisfied, Gi(x,s,t) = o(|s|"™77 + [t|"F7) for x € Q uniformly
as (s,t) — (0,0),

and Ay = {i |(1°) is satisfied} # @, then problem (1) has solutions {£(ug,vs) |k =1,2,---}
such that J(£(ug,vx)) < 0 and J(£(ug, vx)) — 0 as k — oo.

Proof Let’s verify the conditions of Proposition 15 item by item.

Let
o () = sup {¥(u,v) | [[(uw,v)[| <7, (u,v) € Zi}.

Similar to the proof of Theorem 21, we have ¢x(y) — 0 as k — oo. Thus there exists a
positive integer ko such that ¢ (1) < m1n{p+, q+} for all k£ > ko. Setting pr = 1, then for

k > ko and u € Z;, N Sy, we have

. 1 .1 1
J(u,v)Zmln{p+, +} (1 )>§mln{];7q—+},
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which shows that the condition (D;) of Proposition 15 is satisfied.

Denote Ay ={i |(2°) is satisfied}, Az ={i |(3°) is satisfied}. We may choose {Y; | k =
1,2,---}, a sequence of finite dimensional vector subspaces of X defined by (3). For each Y,
because all the norms on Y} are equivalent, there exists € € (0, 1) such that for every (u,v) €

Yi 0 Be, [|(u, v)[| and. [t ay),jas)) + 0]

(8:(-),Jas (1)) are small enough. For every (u,v) € Y, N B,
similar to the proof of Theorem 19, we have

J(u,v) < Z{% wv) ey / i ()] (P& 4 o] 4 a4 o] 50 da

i€EN2

tey / et ()] (uPEH 4 [0l @ 4l 1 o] da

i€A3
—Z/ Doas ()] ([ + [o]@)dz)
l€A1
< —Z{ ) / ()] ([ + o] )dr}
€A
- ——Z/rm (a4 Jof ).
1€\

According to the definition of Ay, Ay and A, there exists v, € (0, €) which is small enough,
such that

G := max {J(u,v)| (u,v) € Yy, |[(u,v)|| =1} < 0.

Thus the condition (Ds) of Proposition 15 is satisfied.

Because Y, N Z, # @ and v < pi, we have np < ¢ < 0.

On the other hand, for any (u,v) € Z; with ||(u,v)|| <1 = pi, we have J(u,v) = ®(u,v) —
U(u,v) > —V(u,v) > —¢i(1). Noting that ¢r(1) — 0 as k — oo, we obtain n, — 0, i.e., (D3)
of Proposition 15 is satisfied.

At last, let’s prove that J satisfies (P.S)* condition for every ¢ € R on X.

Suppose that {(u,,v,,)}C X such that n; — 00, (Un;,Vn;) € Yo, , J(Un,,vn;) — ¢ and
(J ]ynj)’ (Un;,vp,;) — 0. Similar to the process of verifying the (P.S) condition in the proof of
Lemma 11, we can get the boundedness of {(u,,,v,,)}. Going if necessary to a subsequence,
we can assume that (uy,,;,v,,) — (u,v) in X. As X = m, we can choose (U, Un;) € Yy, such

n;

that (U, Un,) — (u,v). Since {(un,, vs,)} is bounded and J is C* and bounded on X, we have

n}linoo{]’(un],vn])(unj U, Uy, — )
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= n%ig})OJ’(unj,vnj)(unj — Up;, Uy, — Un;) + niiinoojl(unj’ Un, ) (U, — U, U, — )

- n%iinoo(ﬂynj )/(u"ﬁvna‘)(u”ﬁ o a"ﬁvnj - 571]') = 0.
As J is of (S1) type, we can conclude (up,,v,;) — (u,v) in X. Furthermore, we have

J' (Un;, n;) — J'(u,v). It only remains to prove J'(u,v) = 0. Taking arbitrarily (uk#, v,f&) €Yy,

notice that when n; > k we have

I, 0) W o) = (T (w0) = I (g, v )@ 0F) + Tty 00,) (i, o)
= (J'(u,0) = T (tny, 0, ) (W 00) 4 (Tly,,)) (o 00 (i 0.
Going to limit in the right side of above equation, yields
J' (u,v) (], vf) = 0,Y(ul o) € V.

So J'(u,v) = 0, which shows that J satisfies the (PS)! condition for every ¢ € R. Then
(Dy4) of Proposition 15 is satisfied. [
In the following, we will consider the existence of solutions for (1), when F'(z,-,v) satisfies

sub-p(z) growth condition, and F(z,u, -) satisfies super-q(z) growth condition.

Theorem 23 If F' satisfies (A), and F satisfies the following condition

(i) ar(z) > 0 and |ay(-)| PO OPO) ¢ p1(Q),

(ii) for i = 1,---,m, Gi(x,s,t) = o(|s|""* 4 [t|"*7) for x € Q uniformly as (s,t) —
(0,0), where T is a positive constant, and F;(x,u,v) satisfies one of the following

(1°) (B,) is satisfied,

(2) ai(x) < p(x), q(z) < Bi(x) < ¢*(2)(ri(x) — 1)/ri(x), r:(-) € CL(Q), and Fi(z,u,-)

satisfies
v 0
O (z) Ov

where q(x) < O2(z) < Bi(x), and Fi(z,u,v) > 0 when |[u| > M, |v] > M,Vz € Q,

0 < Fy(z,u,v) < Fi(x,u,0),¥(z,u) € QA xR, [u] > M,

then (1) has a nontrivial solution.

Proof Without loss of generality, we may assume that 0y(z) < p(z). Let {(un,v,)} be a
(PS) sequence. Similar to the proof of the Lemma 11, we have

1+46 l
c+ 1+ [lvallyy = J(un, vi) — J (U, v,) (0, —9;(—33)1},1) > é@(un,vn) as n — 0o,
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where [y is defined in (8).

Thus J satisfies (PS) condition. Without loss of generality, we may assume that

p(x) + 27 < %p*(w), and ¢(z) 4+ 27 < %q (x),Va € Q.
Denote
Bz#(x) = max{q(a:) + 27—7 ﬁl(x)}7V$ € ﬁvl = 17 e, M
We have
B, s, )] < (s + 77) 4 (P 4 17 )i =1,
Similar to the proof of Theorem 19, when ||(u,v)|| = § is small enough, we can get

J(u,v >Z Do, (u,v) 4<I>(uv)

Let 6 > 0 be small enough, then J(u,v) > ¢ > 0 for any (u,v) € X with ||(u,v)|| = 0.

For (M,t) € X and t > 1, we have

M a(@)
J(M,t) = / :U—i—/Qq( )da:—/QF(x,M,t)dx
]\/[p q(z)
= / £B+/t dx—Z/ athda:—/Maz( )| t7@q
q(z
Z/t dx + ZC’/ | Nia;(z)| 9@ dx—/ a1 (2)] 9@ dz) + O,
Q

1<i<m
1<i<m Q;

where €2;,7 = 1,--- ,ngp, are defined in Theorem 19.
Thus J(M,t) — —oo (t — +00). Obviously, J (0,0) = 0, then J satisfies the conditions of

Mountain Pass lemma (see [44]). So J admits at least one nontrivial critical point. [J

Theorem 24 If F satisfies (A), F(x,—s,—t) = F(x,s,t), and F satisfies the following con-
dition

(i) ar(x) > 0 and |a,(-)| P/ @ OPD) ¢ L1(Q),

(i1) fori=1,--- m, Fj(x,u,v) satisfies one of the following

(1°) (B,) is satisfied,

(2) ai(x) < p(z) and ri(z) > (p(x)/@i(2))’, q(x) < Bi(z) < ¢*(2)(ri(z) — 1) /ri(), ri(x) €
C(Q), and Fy(x,u,-) satisfies

0 < Fy(z,u,v) < —Fi(z,u,0),9(z,u) € A xR, [v] > M,
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where q(x) < O2(z) < Bi(x), and Fi(z,u,v) > 0 when |[u| > M, |v| > M,Vz € Q,

then (1) has a sequence of solutions.

Proof Denote A; = {i > 1 |(1°) is satisfied}, Ay = {i > 1|(2°) is satisfied}. Let {(un,v,)}

be a (PS) sequence. Similar to the proof of the Lemma 11, we have

140 [
¢+ 1+ [[vallyy = J(uns vn) = J'(un, 0a)(0, W—:;)vn) > é@(un,vn) as n — 00,

where [y is defined in (8).
Thus {(u,,v,)} is bounded, and then J satisfies (PS) condition. Let V," = Zj, it is a closed
linear subspace of X and V,' @ Y;_; = X.
Let h; € C3°(Q) satisfy
supph; N supph; = &, Vi # j.
Set V.7 = span{(0,hy),---,(0,hg)}. Similar to the proof of Theorem 21, it is easy to

see that for every pair of V" and V,~, J satisfies the conditions of Proposition 16 and the

corresponding critical value wy, := ing sup J(g(u,v)) = +oo when k — +o0. [
g€ -
(u,w)EV,
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