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Abstract

In this paper, we deal with the existence of solutions for the following variable exponent
system Neumann boundary value problem with Hardy critical exponent and approximate
Sobolev critical growth condition

−div(|∇u|p(x)−2∇u) + a(x) |u|p(x)−2 u = Fu(x, u, v) in Ω,

−div(|∇v|q(x)−2∇v) + b(x) |v|q(x)−2 v = Fv(x, u, v) in Ω,
∂u
∂γ = 0 = ∂v

∂γ on ∂Ω.

We give several sufficient conditions for the existence of solutions, when F (x, ·, ·) satis-
fies sub-(p(x), q(x)) growth condition, or super-(p(x), q(x)) growth condition and approx-
imate Sobolev critical growth condition. Especially, we obtain the existence of infinitely
many solutions, when F (x, ·, v) satisfies sub-p(x) growth condition, and F (x, u, ·) satisfies
super-q(x) growth condition.

Key words: Variable exponent system; Variable exponent Sobolev spaces; Critical
points; Hardy critical exponent

1 Introduction

The study of differential equations and variational problems with variable exponent has at-

tracted intense research interests in recent years. Such problems arise from the study of elec-

trorheological fluids, image processing, and the theory of nonlinear elasticity (see [1,10,39,52]).

These problems are interesting in applications (see [25,26,28,32]). Many results have been ob-

tained on this kind of problems, for examples [1-7,11,12,14-22,25-42,45-53]. On the existence

of solutions for variable exponent elliptic systems with subcritical growth condition, we refer

to [4,27,45,48]. The results to the equations with critical exponent growth conditions are rare
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(see [21,22]). In this paper, we consider the existence of solutions for the following system with

Hardy critical exponent and approximate Sobolev critical growth condition
−div(|∇u|p(x)−2∇u) + a(x) |u|p(x)−2 u = Fu(x, u, v) in Ω,

−div(|∇v|q(x)−2∇v) + b(x) |v|q(x)−2 v = Fv(x, u, v) in Ω,
∂u
∂γ

= 0 = ∂v
∂γ

on ∂Ω,

(1)

where Ω ⊂ RN is a bounded domain and ∂Ω possesses cone property, p, q ∈ C(Ω) and

p(x), q(x) > 1, − △p(x) u := −div(|∇u|p(x)−2∇u) is called the p(x)-Laplacian, a, b ∈ L∞(Ω),

ess inf
x∈Ω

a(x) = a0 > 0, ess inf
x∈Ω

b(x) = b0 > 0, γ is the outward unit normal to ∂Ω. F satisfies

F (x, s, t) =
m∑
i=1

Fi(x, s, t) =
m∑
i=1

λiai(x)Gi(x, s, t),∀(x, s, t) ∈ Ω× R× R.

Throughout the paper, the following conditions are satisfied

(A) For every i = 1, · · · ,m, λi is a parameter, ai ∈ Lri(·)(Ω), we assume that Gi ∈

C1(Ω× R2 → R) (i = 1, · · · ,m) and satisfies

|Gi,u(x, u, v)| ≤ C(|u|αi(x)−1 + |v|βi(x)/α
0
i (x) + 1), i = 1, · · · ,m,

|Gi,v(x, u, v)| ≤ C(|v|βi(x)−1 + |u|αi(x)/β
0
i (x) + 1), i = 1, · · · ,m,

where Gi,u = ∂
∂u
Gi, Gi,v =

∂
∂v
Gi, ri(·) ≡ +∞ or ri(·) ∈ C(Ω) with ri(x) > 1, αi, βi ∈ C(Ω) with

αi(x), βi(x) > 1 and satisfy

1 ≤ r0i (x) ≤
1

αi(x)
p∗(x), 1 ≤ r0i (x) ≤

1

βi(x)
q∗(x), i = 1, · · · ,m,

where the notation µ0(x) means the conjugate function of µ(x), namely µ0(x) =

{
µ(x)

µ(x)−1
, µ ∈ C(Ω)

1, µ = +∞
,

and

p∗(x) =

{
Np(x)/(N − p(x)), p(x) < N,
∞ , p(x) ≥ N.

When p(x) ≡ p (a constant), p(x)-Laplacian becomes the usual p-Laplacian. The p(x)-

Laplacian is nonhomogeneity and possesses more complicated nonlinearities than the p-Laplacian

(see [18]). On the p-Laplacian problems with singular coefficients, we refer to [8,13,23,24]. But

the existence of solutions for p(x)-Laplacian equations with singular coefficients are rare (see

[19,50]). On the existence of solutions for variable exponent elliptic systems, if F (x, ·, ·) satisfies

the sub-(p−, q−) growth condition, i.e. the following condition

max
x∈Ω

αi(x) < min
x∈Ω

p(x),max
x∈Ω

βi(x) < min
x∈Ω

q(x), i = 1, · · · ,m,
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we can see that the corresponding functional is coercive, if F (x, ·, ·) satisfies the super-(p+, q+)

growth condition (subcritical), i.e. the following condition

0 < Gi(x, s, t) ≤
s

θ1

∂

∂s
Gi(x, s, t) +

t

θ2

∂

∂t
Gi(x, s, t), for x ∈ Ω and |s|θ1 + |t|θ2 ≥ 2M > 0,

where M is a positive constant, the positive constants θ1 and θ2 satisfy

max
x∈Ω

p(x) < θ1 < min
x∈Ω

p∗(x) and max
x∈Ω

q(x) < θ2 < min
x∈Ω

q∗(x),

we can see that the corresponding functional satisfies Palais-Smale conditions. On the variable

exponent equations, many results are focused on the case of F (x, ·, ·) satisfy sub-(p−, q−) growth

condition or super-(p+, q+) growth condition (see [4,27,45,47]). If F (x, ·, ·) satisfy subcritical

growth condition, but it does not satisfy the sub-(p−, q−) growth condition or super-(p+, q+)

growth condition, it is difficult to testify the corresponding functional be coercive or satisfying

Palais-Smale conditions, the results on this case are rare. This paper give the existence of

solutions for (1), when F (x, ·, v) satisfies sub-p(x) growth condition, and F (x, u, ·) satisfies

super-q(x) growth condition. This paper was motivated by [4,19,27].

Our aim is to give the existence of solutions and infinitely many solutions for (1), when

F (x, ·, ·) satisfies sub-(p(x), q(x)) growth condition i.e. the condition αi(x) < p(x), βi(x) <

q(x), x ∈ Ω, or super-(p(x), q(x)) growth condition (subcritical) i.e. the condition

0 < Gi(x, s, t) ≤
s

θ1(x)

∂

∂s
Gi(x, s, t) +

t

θ2(x)

∂

∂t
Gi(x, s, t), for x ∈ Ω and |s|θ1 + |t|θ2 ≥ 2M > 0,

where M is a positive constant, the positive functions θ1(x) and θ2(x) satisfy

p(x) < θ1(x) < p∗(x) and q(x) < θ2(x) < q∗(x), x ∈ Ω,

and our results permit some Gi satisfies the following approximate Sobolev critical growth

condition

Gi(x, s, t) = (|u|p
∗(x) + |v|q

∗(x))/ ln(1 + |u|+ |v|),

and the principle of concentration compactness should be used in the discussions. This paper

partly generalized the results of [4,17,19,21,27,45].

This paper is organized as four sections. In Section 2, we introduce some basic properties

of the variable exponent Lebesgue-Sobolev spaces. In Section 3, several important properties

of p(x)-Laplacian and variational principle are presented. In Section 4, we give the existence

of solutions for problem (1).
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2 Preliminary results and notations

Throughout this paper, the letters c, ci, Ci, i = 1, 2, · · · , denote positive constants which may

vary from line to line but are independent of the terms which will take part in any limit process.

In order to discuss problem (1), we need some theories on space W 1,p(·)(Ω) which we call

variable exponent Sobolev space. Firstly, we state some basic properties of spaces W 1,p(·)(Ω)

and p(x)-Laplacian which we will use later (for details, see [14,17,19-21]). Write

C+(Ω) =
{
h
∣∣h ∈ C(Ω), h(x) > 1 for x ∈ Ω

}
,

h+ = ess sup
x∈Ω

h(x), h− = ess inf
x∈Ω

h(x), for any h ∈ L∞(Ω),

S(Ω) = {u | u is a real-valued measurable function on Ω} ,

Lp(·)(Ω) =
{
u ∈ S(Ω) |

∫
Ω
|u(x)|p(x) dx <∞

}
.

We can introduce a norm on Lp(·)(Ω) by

|u|p(·) = inf

{
λ > 0

∣∣∣∣∣
∫
Ω

∣∣∣∣u(x)λ
∣∣∣∣p(x) dx ≤ 1

}
,

and (Lp(·)(Ω), |·|p(·)) becomes a Banach space, we call it variable exponent Lebesgue space.

Proposition 1 (see [14]) (i) The space (Lp(·)(Ω), |·|p(·)) is a separable, reflexive, uniform convex

Banach space, and its conjugate space is Lp0(·)(Ω), where 1/p(x) + 1/p0(x) ≡ 1. For any u ∈

Lp(·)(Ω) and v ∈ Lp0(·)(Ω), we have∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ (
1

p−
+

1

(p0)−
) |u|p(·) |v|p0(·) ;

(ii) If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for any x ∈ Ω, then Lp2(·)(Ω) ⊂ Lp1(·)(Ω), and the

imbedding is continuous.

Denote Y =
k∏

i=1

Lpi(·)(Ω) with the norm

∥ y ∥Y=
k∑

i=1

∣∣yi∣∣
pi(·)

, ∀y = (y1, · · · , yk) ∈ Y ,

where pi(x) ∈ C+(Ω), i = 1, · · · ,m, then Y is a Banach space.
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Proposition 2 (see [9,17]) Suppose f(x, y) : Ω × Rk → Rm is a Caratheodory function, i.e.,

f satisfies

(i) For a.e. x ∈ Ω, y → f(x, y) is a continuous function from Rk to Rm,

(ii) For any y ∈ Rk, x→ f(x, y) is measurable.

If there exist β(x), p1(x), · · · , pk(x) ∈ C+(Ω), ρ(x) ∈ Lβ(·)(Ω) and positive constant c > 0

such that

|f(x, y)| ≤ ρ(x) + c

k∑
i=1

|yi|pi(x)/β(x) for any x ∈ Ω, y ∈ Rk,

then the Nemytsky operator from Y to (Lβ(·)(Ω))m defined by (Nfu)(x) = f(x, u(x)) is contin-

uous and bounded.

The space W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) =
{
u ∈ Lp(·) (Ω)

∣∣|∇u| ∈ Lp(·) (Ω)
}
,

and it can be endowed with the norm

∥u∥p(·) = |u|p(·) + |∇u|p(·) ,∀u ∈ W 1,p(·) (Ω) .

Denote

∥u∥′p(·) = inf

{
λ > 0

∣∣∣∣∣
∫
Ω

∣∣∣∣∇uλ
∣∣∣∣p(x) dx+ ∫

Ω

a(x)

∣∣∣∣u(x)λ
∣∣∣∣p(x) dx ≤ 1

}
,

∥u∥′q(·) = inf

{
λ > 0

∣∣∣∣∣
∫
Ω

∣∣∣∣∇uλ
∣∣∣∣q(x) dx+ ∫

Ω

b(x)

∣∣∣∣u(x)λ
∣∣∣∣q(x) dx ≤ 1

}
.

Since a, b ∈ L∞(Ω), ess inf
x∈Ω

a(x) = a0 > 0, ess inf
x∈Ω

b(x) = b0 > 0, we can easily see that the

norm ∥·∥′p(·) is equivalent to ∥·∥p(·) onW 1,p(·)(Ω), and ∥·∥′q(·) is equivalent to ∥·∥q(·) onW 1,q(·)(Ω).

In the following, we will use ∥·∥′p(·) to replace ∥·∥p(·) on W 1,p(·)(Ω), and use ∥·∥′q(·) to replace

∥·∥q(·) on W 1,q(·)(Ω).

We denote by W
1,p(·)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(·)(Ω).

Proposition 3 (see [14]) (i) W 1,p(·)(Ω) is a separable reflexive Banach space;

(ii) If β ∈ C+

(
Ω
)
and β(x) < p∗(x) for any x ∈ Ω, then the imbedding from W 1,p(·)(Ω) to

Lβ(·) (Ω) is compact and continuous.
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Let β ∈ C+(Ω), µ ∈ S(Ω), and µ(x) > 0 for a.e. x ∈ Ω. Define

L
β(·)
µ(·)(Ω) =

{
u | u ∈ S(Ω),

∫
Ω

µ(x) |u(x)|β(x) dx <∞
}
,

with the norm

|u|
L
β(·)
µ(·)(Ω)

= |u|(β(·),µ(·)) = inf

{
λ > 0

∣∣∣∣∣
∫
Ω

µ(x)

∣∣∣∣u(x)λ
∣∣∣∣β(x) dx ≤ 1

}
,

then L
β(·)
µ(·)(Ω) is a Banach space.

Proposition 4 (see [19]) Assume that the boundary of Ω possesses the cone property and

1 < p ∈ C(Ω). Suppose that µ ∈ Lr(·)(Ω), a(x) > 0 for a.e.x ∈ Ω, r ∈ C+(Ω). If β ∈ C+(Ω)

and

1 ≤ β(x) <
r(x)− 1

r(x)
p∗(x), ∀x ∈ Ω,

then there is a compact continuously embedding W 1,p(·)(Ω) ↪→ L
β(·)
µ(·)(Ω).

Denote X = W 1,p(·)(Ω)×W 1,q(·)(Ω). Let us endow the norm ∥·∥ on X as

∥(u, v)∥ = max{∥u∥p(·) , ∥v∥q(·)}.

The dual space of X will be denoted as X∗, then for any H ∈ X∗, there exist f ∈

(W 1,p(·)(Ω))∗, g ∈ (W 1,q(·)(Ω))∗ such that H(u, v) = f(u)+ g(v). If we denote ∥·∥∗ , ∥·∥∗,p(·) and

∥·∥∗,q(·) the norms of X∗, (W 1,p(·)(Ω))∗ and (W 1,q(·)(Ω))∗, respectively, then

∥H∥∗ = ∥f∥∗,p(·) + ∥g∥∗,q(·) ,

and X∗ = (W 1,p(·)(Ω))∗ × (W 1,q(·)(Ω))∗. Therefore

∥J ′(u, v)∥∗ = ∥D1J(u, v)∥∗,p(·) + ∥D2J(u, v)∥∗,q(·) .

For every (u, v) and (φ, ψ) in X, set

Φ1(u) =

∫
Ω

1

p(x)
|∇u|p(x) dx+

∫
Ω

a(x)

p(x)
|u|p(x) dx,

Φ2(v) =

∫
Ω

1

q(x)
|∇v|q(x) dx+

∫
Ω

b(x)

q(x)
|v|q(x) dx,

Φ(u, v) = Φ1(u) + Φ2(v),Ψ(u, v) =

∫
Ω

F (x, u, v)dx,
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then

Φ′(u, v)(φ, ψ) = D1Φ(u, v)(φ) +D2Φ(u, v)(ψ),

Ψ′(u, v)(φ, ψ) = D1Ψ(u, v)(φ) +D2Ψ(u, v)(ψ),

where

D1Φ(u, v)(φ) =

∫
Ω

|∇u|p(x)−2 ∇u∇φdx+
∫
Ω

a(x) |u|p(x)−2 uφdx = Φ′
1(u)(φ),

D2Φ(u, v)(ψ) =

∫
Ω

|∇v|q(x)−2 ∇v∇ψdx+
∫
Ω

b(x) |v|q(x)−2 vψdx = Φ′
2(v)(ψ),

D1Ψ(u, v)(φ) =

∫
Ω

∂

∂u
F (x, u, v)φdx,D2Ψ(u, v)(ψ) =

∫
Ω

∂

∂v
F (x, u, v)ψdx.

The integral functional associated with the problem (1) is

J(u, v) = Φ(u, v)−Ψ(u, v).

It is easy to see that J ∈ C1(X,R) (see [9]). Without loss of generality, we may assume

that Gi(x, 0, 0) = 0, ∀x ∈ Ω, i = 1, · · · ,m. Obviously, we have

Gi(x, u, v) =

∫ 1

0

[u∂2Gi(x, tu, tv) + v∂3Gi(x, tu, tv)]dt, i = 1, · · · ,m,

where ∂j denotes the partial derivative of G w.r.t. its j-th variable, then the condition (A)

holds

|Gi(x, u, v)| ≤ c(|u|αi(x) + |v|βi(x) + 1),∀x ∈ Ω, i = 1, · · · ,m. (2)

From Proposition 2 and condition (A), it is easy to see that J ∈ C1(X,R) and satisfies

J ′(u, v)(φ, ψ) = D1J(u, v)(φ) +D2J(u, v)(ψ),

where

D1J(u, v)(φ) = D1Φ(u, v)(φ)−D1Ψ(u, v)(φ),

D2J(u, v)(ψ) = D2Φ(u, v)(ψ)−D2Ψ(u, v)(ψ).

(u, v) ∈ X is called a critical point of J if

J ′(u, v)(φ, ψ) = 0, ∀(φ, ψ) ∈ X.
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Proposition 5 (i) If G satisfies

G(x, s, t) ≥ 1

θ1
sGs(x, s, t) +

1

θ2
tGt(x, s, t) ≥ 0 for x ∈ Ω and |s|θ1 + |t|θ2 ≥ 2M,

then G(x, u, v) ≤ c1[(|u|θ1 + |v|θ2) + 1],∀(x, u, v) ∈ Ω× R× R,

(ii) If G satisfies

0 < G(x, s, t) ≤ 1

θ1
sGs(x, s, t) +

1

θ2
tGt(x, s, t) for x ∈ Ω and |s|θ1 + |t|θ2 ≥ 2M,

then G(x, u, v) ≥ c2[(|u|θ1 + |v|θ2)− 1],∀(x, u, v) ∈ Ω× R× R.

Proof (i) Similar to the proof of [27], we omit it here. �

Let M(Ω) denote the class of nonnegative Borel measures of finite total mass, and µε
∗
⇀ µ

in M(Ω) is defined by
∫
Ω
ηdµε →

∫
Ω
ηdµ for every test function η ∈ C(Ω) ∩ C∞(Ω).

Proposition 6 (see [21]) If Ω is an open bounded domain in RN , p is Lipschitz continuous on

Ω and satisfy 1 < p(x) < N . Let {ωε} is a sequence in W
1,p(·)
0 (Ω) of norm ∥∇ωε∥p(·) ≤ 1 such

that

ωε ⇀ ω in W
1,p(·)
0 (Ω), |∇ωε|p(x)

∗
⇀ µ in M(Ω), |ωε|p

∗(x) ∗
⇀ ν in M(Ω).

Set

C∗
p∗ = sup{

∫
Ω

|ωε|p
∗(x) dx

∣∣∣ωε ∈ W
1,p(·)
0 (Ω), |∇ωε|p(·) ≤ 1}

and 0 < C∗
p∗ < +∞. The limit measure are of the form

µ = |∇ω|p(x) +
∑
j∈J

µjδxj
+ µ̃, µ(Ω) ≤ 1,

ν = |ω|p
∗(x) +

∑
j∈J

νjδxj
, ν(Ω) ≤ C∗,

where xj ∈ Ω, J is a countable set, µ̃ ∈ M(Ω) is nonatomic positive measure. The atoms and

the regular part satisfy the generalized Sobolev inequality

ν(Ω) ≤ C∗max{µ(Ω)
p∗+

p− , µ(Ω)
p∗−

p+ },

νj ≤ C∗max{µ
p∗+

p−
j , µ

p∗−

p+

j }.
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3 Properties of operators and variational principle

In this section, we will discuss the properties of p(x)-Laplacian and Nemytsky operator, and

present several variational principles.

Proposition 7 (see [45]) (i) Φ is a convex functional;

(ii) Φ′ is strictly monotone, i.e., for any (u1, v1), (u2, v2) ∈ X with (u1, v1) ̸= (u2, v2), we

have

(Φ′(u1, v1)− Φ′(u2, v2))(u1 − u2, v1 − v2) > 0,

(iii) Φ′ is a mapping of type (S+), i.e. if (un, vn)⇀ (u, v) in X and

lim
n→∞

[Φ′(un, vn)− Φ′(u, v)](un − u, vn − v) ≤ 0,

then (un, vn) → (u, v) in X.

(iV) Φ′ : X → X∗ is a bounded homeomorphism.

Theorem 8 (i) Ψ ∈ C1(X,R);

(ii) If ri ∈ C+(Ω), and

1 ≤ αi(x) ≤
1

r0i (x)
p∗(x), 1 ≤ βi(x) ≤

1

r0i (x)
q∗(x), i = 1, · · · ,m,

then Ψi and Ψ′
i are weak-strong continuous, i.e., (un, vn)⇀ (u, v) (in X) implies Ψi(un, vn) →

Ψi(u, v) and Ψ′
i(un, vn) → Ψ′

i(u, v).

Proof (i) From the continuity of the Nemytsky operator, we can see that Ψ and Ψ′ are

continuous.

(ii) Since (un, vn)⇀ (u, v), we have |un − u|p(·) → 0 and |vn − v|q(·) → 0. Thus un → u and

vn → v a.e. on Ω. Therefore ai(x)Gi(x, un(x)) → ai(x)Gi(x, u(x)) a.e. on Ω. Obviously∫
U

|ai(x)Gi(x, un, vn)| dx

≤ C

∫
U

|ai(x)| (1 + |un|αi(x) + |vn|βi(x))dx

≤ C(

∫
U

|ai(x)|ri(x) dx)
1

ri(ξ1) (

∫
U

|un|p
∗(x) dx)

ri(ξ2)

ri(ξ2)−1

+C(

∫
U

|ai(x)|ri(x) dx)
1

ri(ξ3) (

∫
U

|vn|q
∗(x) dx)

ri(ξ4)

ri(ξ4)−1 + C

∫
U

|ai(x)| dx,
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where U ⊂ Ω, ξ1, ξ2, ξ3, ξ4 ∈ U , then {|ai(x)Gi(x, un, vn)|} is uniformly integrable.

Thus {|ai(x)Gi(x, un, vn)− ai(x)Gi(x, u, v)|} is uniformly integrable, and then

lim
n→∞

∫
e

|ai(x)Gi(x, un, vn)− ai(x)Gi(x, u, v)| dx

=

∫
e

lim
n→∞

|ai(x)Gi(x, un, vn)− ai(x)Gi(x, u, v)| dx = 0.

Similarly, we can get the weak-strong continuity of Ψ′
i.

Since X be a reflexive and separable Banach space, there are sequences {ej} ⊂ X and{
e∗j
}
⊂ X∗ such that

X = span{ej, j = 1, 2, · · · }, X∗ = spanw∗{e∗j , j = 1, 2, · · · },

and < e∗j , ej >=

{
1, i = j,
0, i ̸= j.

For convenience, we write

Xj = span{ej}, Yk =
k
⊕
j=1
Xj, Zk =

∞
⊕
j=k
Xj. (3)

Definition 9 (i) We say J satisfies (PS) condition in X, if any sequence {(un, vn)} ⊂ X such

that {J(un, vn)} is bounded and ∥J ′(un, vn)∥∗ → 0 as n→ ∞, has a convergent subsequence; (ii)

We say J satisfies (PS)∗c condition in X, if any sequence {(unj
, vnj

)}⊂ X such that nj → ∞,

(unj
, vnj

) ∈ Ynj
, J(unj

, vnj
) → c and (J |Ynj

)′(unj
, vnj

) → 0, contains a subsequence converging

to a critical point of J .

Lemma 10 If {(un, vn)} is a bounded (PS) sequence of J , then there exists a small enough

positive constant C0 < 1 such that, if

|sFs(x, s, t)|+ |tFt(x, s, t)| ≤ C(x) + C0(|s|p
∗(x) + |t|q

∗(x)), ∀(x, s, t) ∈ Ω× R2,

where C(·) ∈ L1(Ω), then {un} has a convergent subsequence in X.

Proof Let {(un, vn)} be a bounded (PS) sequence of J , i.e.

J(un, vn) → c, J ′(un, vn) → 0 as n −→ ∞.
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Since {(un, vn)} is bounded, there exists a (u, v) ∈ X, such that (un, vn)⇀ (u, v) in X. By

Proposition 6, we may assume that there exist µ, ν, µ#, ν# ∈ M(Ω) and sequence {xj}j∈J in Ω

such that

un ⇀ u in W
1,p(·)
0 (Ω),

|∇un|p(x)
∗
⇀ µ = |∇u|p(x) +

∑
j∈J

µjδxj
+ µ̃, in M(Ω),

|un|p
∗(x) ∗

⇀ ν = |u|p
∗(x) +

∑
j∈J

νjδxj
, in M(Ω),

νj ≤ C∗
p∗ max{µ

p+∗

p−
j , µ

p−∗

p+

j },

where C∗
p∗ = sup{|ω|p

∗+

p∗(·) + 1
∣∣∣ω ∈ W

1,p(·)
0 (Ω), |∇ω|p(·) ≤ 1} < +∞, and

vn ⇀ v in W
1,q(·)
0 (Ω),

|∇vn|p(x)
∗
⇀ µ# = |∇v|q(x) +

∑
j∈J

µ#jδxj
+ µ̃#, in M(Ω),

|vn|p
∗(x) ∗

⇀ ν# = |v|q
∗(x) +

∑
j∈J

ν#jδxj
, in M(Ω),

ν#j ≤ C∗
q∗ max{µ

q+∗

q−

#j , µ
q−∗

q+

#j },

where

C∗
q∗ = sup{|ω|q

∗+

q∗(·) + 1
∣∣∣ω ∈ W

1,q(·)
0 (Ω), |∇ω|p(·) ≤ 1} < +∞.

Next we will complete the proof of this Lemma in three steps.

Step 1. We will prove µ({xj}) = ν({xj}) = 0 and µ#({xj}) = ν#({xj}) = 0 for all

j = 1, 2, · · · .

Obviously, there exists rn > 0 such that

p−(xn) : = inf
y∈Br(xn)∩Ω

p(y) ≤ p+(xn) := sup
y∈Br(xn)∩Ω

p(y)

< p∗−(xn) := inf
y∈Br(xn)∩Ω

p∗(y) ≤ p∗+(xn) := sup
y∈Br(xn)∩Ω

p∗(y),∀r ∈ (0, rn],

q−(xn) : = inf
y∈Br(xn)∩Ω

q(y) ≤ q+(xn) := sup
y∈Br(xn)∩Ω

q(y)

< q∗−(xn) := inf
y∈Br(xn)∩Ω

q∗(y) ≤ q∗+(xn) := sup
y∈Br(xn)∩Ω

q∗(y),∀r ∈ (0, rn].
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For every ε > 0, we set ϕε(x) = ϕ((x−x1)/ε), x ∈ Ω, where ϕ ∈ C∞
0 (RN), 0 ≤ ϕ ≤ 1, ϕ ≡ 1

in B1{0} and ϕ ≡ 0 in RN\B2{0} and |∇ϕ| ≤ 2. Since J ′(un, vn) → 0 in X∗ as n −→ ∞ and

{(un, vn)} is bounded, we have∫
Ω

|∇un|p(x)−2∇un · ∇(ϕεun)dx+

∫
Ω

|un|p(x)−2 unϕεundx

=

∫
Ω

∂2F (x, un, vn)ϕεundx+ o(1)

≤
∫
Ω

[C(x) + C0(|un|p
∗(x) + |vn|q

∗(x))]ϕεdx+ o(1),

which implies that∫
Ω

ϕε |∇un|p(x) dx+
∫
Ω

|un|p(x) ϕεdx+

∫
Ω

un |∇un|p(x)−2∇un∇ϕεdx (4)

≤
∫
Ω

[C(x) + C0(|un|p
∗(x) + |vn|q

∗(x))]ϕεdx+ o(1).

Since {(un, vn)} is bounded in X, we may assume

|∇un|p(x)−2∇un ⇀ T ∈ (Lp0(·)(Ω))N ,

∂2F (x, un, vn) ⇀ g(x) ∈ L(p∗(·))0(Ω).

Since J ′(un, vn) → 0 in X∗ as n −→ ∞, we also have∫
Ω

|∇un|p(x)−2 ∇un · ∇(ϕεu)dx+

∫
Ω

|un|p(x)−2 unϕεudx =

∫
Ω

∂2F (x, un, vn)ϕεudx+ o(1).

then ∫
Ω

T · ∇(ϕεu)dx+

∫
Ω

|u|p(x) ϕεdx =

∫
Ω

∂2F (x, u, v)uϕεdx. (5)

We claim ∫
Ω

un |∇un|p(x)−2 ∇un∇ϕεdx→
∫
Ω

uT∇ϕεdx as n→ ∞. (6)

In fact∫
Ω

{un |∇un|p(x)−2∇un∇ϕε − uT∇ϕε}dx

=

∫
Ω

(un − u) |∇un|p(x)−2∇un∇ϕεdx+

∫
Ω

u∇ϕε{|∇un|p(x)−2∇un − T}dx→ 0 as n→ ∞.

It follows from (4), (5) and (6) that∫
Ω

ϕεdµ+

∫
Ω

|u|p(x) ϕεdx ≤
∫
Ω

C(x)ϕεdx+

∫
Ω

C0ϕεdν +

∫
Ω

C0ϕεdν# −
∫
Ω

uT∇ϕεdx
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=

∫
Ω

C(x)ϕεdx+

∫
Ω

C0ϕεdν +

∫
Ω

C0ϕεdν#

−{
∫
Ω

∂2F (x, u, v)uϕεdx−
∫
Ω

|u|p(x) ϕεdx−
∫
Ω

ϕεT · ∇udx}.

Letting ε→ 0, we have

µ({x1}) ≤ C0(ν({x1}) + ν#({x1})).

Similarly, we have

µ#({x1}) ≤ C0(ν({x1}) + ν#({x1})),

µ({xj}) ≤ C0(ν({xj}) + ν#({x1})), j = 2, 3, · · · ,

µ#({xj}) ≤ C0(ν({xj}) + ν#({x1})), j = 2, 3, · · · .

Suppose that µ({xj}) + µ#({xj}) > 0 for some j, then ν({xj}) + ν#({xj}) > 0. Let M∗ be

a constant such that ∫
Ω

[|un|p
∗(x) + |vn|q

∗(x)]dx ≤M∗ < 0 for all n. (7)

If νj + ν#j ≥ 1, then we have

νj ≤ C∗
p∗ max{µ

p∗+(xj)

p−(xj)

j , µ

p∗−(xj)

p+(xj)

j } ≤ C∗
p∗ max{[C0(νj + ν#j)]

p∗+(xj)

p−(xj) , [C0(νj + ν#j)]
p∗−(xj)

p+(xj) }

≤ C∗
p∗ [C0]

p∗−(xj)

p+(xj) (νj + ν#j)
p∗+(xj)

p−(xj) ,

ν#j ≤ C∗
q∗ max{µ

q∗+(xj)

q−(xj)

#j , µ

q∗−(xj)

q+(xj)

#j } ≤ C∗
q∗ max{[C0(νj + ν#j)]

q∗+(xj)

q−(xj) , [C0(νj + ν#j)]
q∗−(xj)

q+(xj) }

≤ C∗
q∗ [C0]

q∗−(xj)

q+(xj) (νj + ν#j)
q
∗+(xj)

q−(xj) ,

which implies that

νj + ν#j ≥

∣∣∣∣∣∣∣
1

C∗
p∗ [C0]

p∗−(xj)

p+(xj) + C∗
q∗ [C0]

q∗−(xj)

q+(xj)

∣∣∣∣∣∣∣
1

max{
p∗+(xj)

p−(xj)
,
q∗+(xj)

q−(xj)
}−1

.

Similarly, if νj + ν#j ≤ 1, then we have

νj + ν#j ≥

∣∣∣∣∣∣∣
1

C∗
p∗ [C0]

p∗−(xj)

p+(xj) + C∗
q∗ [C0]

q∗−(xj)

q+(xj)

∣∣∣∣∣∣∣
1

min{
p∗−(xj)

p+(xj)
,
q∗−(xj)

q+(xj)
}−1

.
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When C0 is small enough, it is a contradiction to (7). Now we completed the step 1.

Step 2. We will show (un, vn) → (u, v) strong in Lp∗(·)(Ω)× Lq∗(·)(Ω) as n→ ∞.

Since |un|p
∗(x) ∗

⇀ ν = |u|p
∗(x), we have

lim
n→∞

∫
Ω

|un|p
∗(x) dx =

∫
Ω

|u|p
∗(x) dx,

notice that |un|p
∗(x) → |u|p

∗(x) in measure, then we can see {|un|p
∗(x)} is uniformly integrable.

Since

|un − u|p
∗(x) ≤ 2p

∗(x)(|un|p
∗(x) + |u|p

∗(x)),

we can see that {|un − u|p
∗(x)} is uniformly integrable. Thus

lim
n→∞

∫
Ω

|un − u|p
∗(x) dx =

∫
Ω

lim
n→∞

|un − u|p
∗(x) dx = 0.

Similarly, we have vn → v strong in Lq∗(·)(Ω) as n→ ∞.

Step 3. We will show (un, vn) → (u, v) strong in X as n→ ∞.

Since J ′(un, vn) = Φ′(un, vn) − Ψ′(un, vn) → 0 and (un, vn) → (u, v) strong in Lp∗(·)(Ω) ×

Lq∗(·)(Ω) as n→ ∞, then we can see Ψ′(un, vn) → Ψ′(u, v) and

Φ′(un, vn) → Ψ′(u, v) as n→ ∞.

As L = Φ′ is a homeomorphism, then we can see (un, vn) → L−1(Ψ′(u, v)) in X as n→ ∞.

�

For each i = 1, · · · ,m, we assume λi, ai and Gi satisfy one of the following conditions

(B1) αi(x) < p(x), βi(x) < q(x) and ri(x) ≥ (p(x)/αi(x))
0 and ri(x) ≥ (q(x)/βi(x))

0, ∀x ∈

Ω.

(B2) λiai > 0, ri(·) ∈ C+(Ω), and there exist functions θ1(·), θ2(·) ∈ C1(Ω) (which are

independent on i) satisfy

p(x) < θ1(x) ≤
1

r0i (x)
p∗(x), q(x) ≤ θ2(x) ≤

1

r0i (x)
q∗(x),∀x ∈ Ω,

such that Gi satisfies

0 < Gi(x, s, t) ≤
s

θ1

∂

∂s
Gi(x, s, t) +

t

θ2

∂

∂t
Gi(x, s, t), ∀x ∈ Ω, |s|θ1 + |t|θ2 ≥ 2M > 0.

(B′
2) λiai ∈ L∞

+ (Ω), and for the functions θ1(·) and θ2(·) in (B2), Gi satisfies

0 < Gi(x, s, t) ≤
s

θ1

∂

∂s
Gi(x, s, t) +

t

θ2

∂

∂t
Gi(x, s, t), ∀x ∈ Ω, |s|θ1 + |t|θ2 ≥ 2M > 0,
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and ∣∣∣ s
θ1

∂
∂s
Gi(x, s, t)

∣∣∣+ ∣∣∣ t
θ2

∂
∂t
Gi(x, s, t)

∣∣∣
|s|p∗(x) + |t|q∗(x)

→ 0 uniformly as |s|+ |t| → +∞.

(B3) λiai < 0, and for the functions θ1(·) and θ2(·) in (B2), there exists a small positive

constant δ such that Gi satisfies

Gi(x, s, t) ≥
1 + δ

θ1
s
∂

∂s
Gi(x, s, t) +

1 + δ

θ2
t
∂

∂t
Gi(x, s, t) > 0, ∀x ∈ Ω, |s|θ1 + |t|θ2 ≥ 2M > 0.

Denote Λ = {1, · · · ,m}, and

U1 = {i ∈ Λ | λi, ai and Gi satisfies (B1)},

U2 = {i ∈ Λ\U1 | λi, ai and Gi satisfies (B2) or (B
′
2)},

U3 = {i ∈ Λ\(U1 ∪ U2) | λi, ai and Gi satisfies (B3)}.

Lemma 11 If U1 ∪ U3 = Λ, or U2 is nonempty and there are some i1, i2 ∈ U2 such that

|ai1(·)|
−p(·)/(θ1(·)−p(·)) , |ai2(·)|

−q(·)/(θ2(·)−q(·)) ∈ L1(Ω) then J satisfies (PS) conditions in X.

Proof For any ε > 0, it is easy to see that

|sFs(x, s, t)|+ |tFt(x, s, t)| ≤ Cε(x) + ε(|s|p
∗(x) + |t|q

∗(x)), ∀x ∈ Ω,

where Cε(·) ∈ L1(Ω) is dependent on ε.

According to Lemma 10, we only need to prove that every (PS) sequence of J are bounded

in X.

(i) If U1 ∪ U3 = Λ. Let {(un, vn)} be a (PS) sequence, then it is easy to see that

c ≥ J(un, vn) ≥ Φ(un, vn)−
∑
i∈U1

∫
Ω

|λiai(x)| (|un|αi(x) + |vn|βi(x))dx− C1.

For any i ∈ U1, since ri(x) ≥ (p(x)/αi(x))
0 and ri(x) ≥ (q(x)/βi(x))

0, from Yang inequality,

we have

|λiai(x)| |un|αi(x) ≤ p(x)− αi(x)

p(x)
(
1

ε
|λiai(x)|)(

p(x)
αi(x)

)0
+
αi(x)

p(x)
(ε |un|αi(x))

p(x)
αi(x) , ε > 0, i = 1, · · · ,m,

|λiai(x)| |vn|βi(x) ≤ q(x)− βi(x)

q(x)
(
1

ε
|λiai(x)|)(

q(x)
βi(x)

)0
+
βi(x)

q(x)
(ε |vn|βi(x))

q(x)
βi(x) , ε > 0, i = 1, · · · ,m.

Suppose the positive number ε is small enough, we can see that∑
i∈U1

αi(x)

p(x)
ε

p(x)
αi(x) <

a0
2

and
∑
i∈U1

βi(x)

q(x)
ε

q(x)
βi(x) <

b0
2
,∀x ∈ Ω.
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Thus

c ≥ J(un, vn) ≥ Φ(un, vn)−
1

2
Φ(un, vn)− C2 ≥

1

2
Φ(un, vn)− C2.

It means that {(un, vn)}⊂ X is bounded.

(ii) If U2 is nonempty. The conditions (B2), (B
′
2) and (A) imply that, for any (x, s, t) ∈

Ω× R2, we have

Fi(x, s, t) ≤
1

θ1
sFi,s(x, s, t) +

1

θ2
tFi,t(x, s, t) + |λiai(x)| ci, ∀x ∈ Ω, i ∈ U2,

Fi(x, s, t) ≤
1 + δ

θ1
sFi,s(x, s, t) +

1 + δ

θ2
tFi,t(x, s, t) + |λiai(x)| ci,∀x ∈ Ω, i ∈ U3.

Thus

F (x, s, t)− (
1 + δ

θ1
sFs(x, s, t) +

1 + δ

θ2
tFt(x, s, t))

≤
∑
i∈U1

[Fi(x, s, t)− (
1 + δ

θ1
sFi,s(x, s, t) +

1 + δ

θ2
tFi,t(x, s, t))]−

∑
i∈U2

δFi(x, s, t) +
∑

i∈U2∪U3

|λiai(x)| ci

≤
∑

i∈U2∪U3

|λiai(x)| ci + C1

∑
i∈U1

|λiai(x)| (1 + |s|αi + |t|βi)−
∑
i∈U2

δ |λiai(x)| (|s|θ1 + |t|θ2).

Denote

l1 = min
x∈Ω

(
1

p(x)
− 1 + δ

θ1(x)
), l2 = min

x∈Ω
(

1

q(x)
− 1 + δ

θ2(x)
), (8)

where the positive constant δ is small enough such that l1, l2 > 0.

Let {(un, vn)} be a (PS) sequence, then we have

c+ 1 + (∥un∥p(·) + ∥vn∥q(·))

≥ J(un, vn)− J ′(un, vn)(
1 + δ

θ1(x)
un,

1 + δ

θ2(x)
vn)

=

∫
Ω

1

p(x)
(|∇un|p(x) + a(x) |un|p(x))dx+

∫
Ω

1

q(x)
(|∇vn|q(x) + b(x) |vn|q(x))dx−

∫
Ω

F (x, un, vn)dx

−
∫
Ω

1 + δ

θ1(x)
(|∇un|p(x) + a(x) |un|p(x))dx+

∫
Ω

1 + δ

θ1(x)
unFu(x, un, vn)dx

+

∫
Ω

1 + δ

θ21(x)
un |∇un|p(x)−2∇un∇θ1(x)dx−

∫
Ω

1 + δ

θ2(x)
(|∇vn|q(x) + b(x) |vn|q(x))dx

+

∫
Ω

1 + δ

θ2(x)
vnFv(x, un, vn)dx+

∫
Ω

1 + δ

θ22(x)
vn |∇vn|q(x)−2 ∇vn∇θ2(x)dx

≥
∫
Ω

(
1

p(x)
− 1 + δ

θ1(x)
)(|∇un|p(x) + a(x) |un|p(x))dx+

∫
Ω

(
1

q(x)
− 1 + δ

θ2(x)
)(|∇vn|p(x) + b(x) |vn|p(x))dx

+δ
∑
i∈U2

∫
Ω

Fi(x, un, vn)dx−
∫
Ω

(1 + δ) |∇θ1(x)|
θ21(x)

|un| |∇un|p(x)−1 dx
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−
∫
Ω

(1 + δ) |∇θ2(x)|
θ22(x)

|vn| |∇vn|q(x)−1 dx− C1

∑
i∈U1

∫
Ω

|λiai(x)| (|un|αi(x) +

∫
Ω

|vn|βi(x))dx− C2

≥ l1

∫
Ω

(|∇un|p(x) + a(x) |un|p(x))dx+ l2

∫
Ω

(|∇vn|p(x) + b(x) |vn|p(x))dx

+δ

∫
Ω

(|λi1ai1(x)| |un|
θ1(x) + |λi2ai2(x)| |vn|

θ2(x))dx−
∫
Ω

(1 + δ) |∇θ1(x)|
θ21(x)

|un| |∇un|p(x)−1 dx

−
∫
Ω

(1 + δ) |∇θ2(x)|
θ22(x)

|vn| |∇vn|q(x)−1 dx− C3 − C1

∑
i∈U1

∫
Ω

|λiai(x)| (|un|αi(x) + |vn|βi(x))dx.

Note that |ai1(·)|
−p(·)/(θ1(·)−p(·)) ∈ L1(Ω), we have

(1 + δ) |∇θ1(x)|
θ21(x)

|un| |∇un|p(x)−1

≤ C4
1

p(x)

1

ε
p(x)
1

|un|p(x) + C4
p(x)− 1

p(x)
ε

p(x)
p(x)−1

1 |∇un|p(x)

≤ C4
1

p(x)

1

ε
p(x)
1

{θ1(x)− p(x)

θ1(x)
[

1

ε
p(x)
1

a
− p(x)

θ1(x)

i1
(x)]

θ1(x)
θ1(x)−p(x) +

p(x)

θ1(x)
[ε

p(x)
1 a

p(x)
θ1(x)

i1
(x) |un|p(x)]

θ1(x)
p(x) }

+C4
p(x)− 1

p(x)
ε

p(x)
p(x)−1

1 |∇un|p(x)

= C4
1

p(x)
{θ1(x)− p(x)

θ1(x)
ε

−θ1(x)p(x)
θ1(x)−p(x)

−p(x)

1 a
−p(x)

θ1(x)−p(x)

i1
(x) +

p(x)

θ1(x)
ε
θ1(x)−p(x)
1 ai1(x) |un|

θ1(x)}

+C4
p(x)− 1

p(x)
ε

p(x)
p(x)−1

1 |∇un|p(x) .

Similarly, since |ai2(·)|
−q(·)/(θ2(·)−q(·)) ∈ L1(Ω), we have

(1 + s) |∇θ2(x)|
θ22(x)

|vn| |∇vn|q(x)−1 ≤ C5
q(x)− 1

q(x)
ε

q(x)
q(x)−1

2 |∇vn|q(x)

+C5
1

q(x)
{θ2(x)− q(x)

θ2(x)
ε

−θ2(x)q(x)
θ2(x)−q(x)

−q(x)

2 a
−q(x)

θ2(x)−q(x)

i2
(x) +

q(x)

θ2(x)
ε
θ2(x)−q(x)
2 ai2(x) |vn|

θ2(x)}.

Suppose positive constants ε1 and ε2 are small enough. It follows from the definitions of

θ1(·) and θ2(·) that

c+ 1 + (∥un∥p(·) + ∥vn∥q(·))

≥ J(un, vn)− J ′(un, vn)(
1 + δ

θ1(x)
un,

1 + δ

θ2(x)
vn)

≥ 2l1
3

∫
Ω

(|∇un|p(x) + a(x) |un|p(x))dx+
2l2
3

∫
Ω

(|∇vn|p(x) + b(x) |vn|p(x))dx− C6

−c3
∑
i∈U1

∫
Ω

|λiai(x)| (|un|αi(x) dx+

∫
Ω

|vn|βi(x))dx.

Similar to the proof of (i), we have

c+ (∥un∥p(·) + ∥vn∥q(·))
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≥ J(un, vn)− J ′(un, vn)(
1 + δ

θ1(x)
un,

1 + δ

θ2(x)
vn)

≥ l1
3

∫
Ω

(|∇un|p(x) + a(x) |un|p(x))dx+
l2
3

∫
Ω

(|∇vn|p(x) + b(x) |vn|p(x))dx− C7.

Thus {∥un∥p(·)} and {∥vn∥q(·)} are bounded. �

Lemma 12 (see [17]) Assume that Θ : X → R is weakly-strongly continuous and Θ(0, 0) = 0,

γ > 0 is a given number. Let

ϕk = ϕk(γ) = sup {Θ(u, v) | ∥(u, v)∥ ≤ γ, u ∈ Zk} ,

then ϕk → 0 as k → ∞.

Lemma 13 (see [19]) If |u|ς(·) ∈ Ls(·)/ς(·)(Ω), where s(x), ς(x) ∈ L∞
+ (Ω), and 1 ≤ ς(x) ≤ s(x),

then u ∈ Ls(·)(Ω) and there is a number ς ∈ [ς−, ς+] such that ||u|ς |s(·)/ς(·) = (|u|s(·))ς .

Proposition 14 (Fountain theorem, see [43,44]) Assume X is a Banach space, J ∈ C1(X,R)

is an even functional and satisfies (PS) condition, the subspace Xk, Yk and Zk are defined by

(3). If for each k = 1, 2, · · · , there exist γk > ρk > 0 such that

(F1) ηk := inf {J(u, v) | (u, v) ∈ Zk, ∥(u, v)∥ = ρk} → +∞ (k → ∞);

(F2) ζk := max {J(u, v)| (u, v) ∈ Yk, ∥(u, v)∥ = γk} ≤ 0.

then J has a sequence of critical values tending to +∞.

Proposition 15 (Dual Fountain theorem, see [44]) Assume X is a Banach space, J ∈ C1(X,R)

is an even functional, the subspace Xk, Yk and Zk are defined by (3), and there is a k0 > 0 such

that, for each k ≥ k0, there exists ρk > γk > 0 such that

(D1) inf {J(u, v) | (u, v) ∈ Zk, ∥(u, v)∥ = ρk} ≥ 0,

(D2) ζk := max {J(u, v)| (u, v) ∈ Yk, ∥(u, v)∥ = γk} < 0,

(D3) ηk := inf {J(u, v) | (u, v) ∈ Zk, ∥(u, v)∥ ≤ ρk} → 0 (k → ∞),

(D4) J satisfies (PS)∗c condition for every c ∈ [ηk0 , 0),

then J has a sequence of critical values tending to 0.

Proposition 16 (see [43,Theorem 6.3]) Suppose J ∈ C1(X,R) is even, and satisfies (PS)

condition. Let V +, V − ⊂ X be closed subspaces of X with codimV + +1=dim V −, and suppose

there holds

18



(10) J(0, 0) = 0.

(20) ∃τ > 0, ρ > 0 such that ∀(u, v) ∈ V + : ∥(u, v)∥ = ρ⇒ J(u, v) ≥ τ.

(30) ∃R > 0 such that ∀(u, v) ∈ V − : ∥(u, v)∥ ≥ R ⇒ J(u, v) ≤ 0.

Consider the following set:

Γ = {g ∈ C0(X,X) | g is odd, g(u, v) = (u, v) if (u, v) ∈ V − and ∥(u, v)∥ ≥ R},

then

(a) ∀δ > 0, g ∈ Γ, S+
δ ∩ g(V −) ̸= ∅, here S+

δ = {(u, v) ∈ V + | ∥(u, v)∥ = δ};

(b) the number ϖ := inf
g∈Γ

sup
(u,v)∈V −

J(g(u, v)) ≥ τ > 0 is a critical value for J .

4 Existence of solutions

In this section, using the critical point theory, we give the existence of solutions for problem

(1).

Definition 17 We say that (u, v) ∈ X is a weak solution for (1), if{ ∫
Ω
|∇u|p(x)−2 ∇u · ∇φdx+

∫
Ω
a(x) |u|p(x)−2 u · φdx =

∫
Ω
Fu(x, u, v)φdx, ∀φ ∈ W 1,p(·)(Ω),∫

Ω
|∇v|q(x)−2 ∇v · ∇ψdx+

∫
Ω
b(x) |v|q(x)−2 v · ψdx =

∫
Ω
Fv(x, u, v)ψdx, ∀ψ ∈ W 1,q(·)(Ω).

It is easy to see that the critical point of J is a solution for (1).

Theorem 18 If (A) is satisfied, and (B1) is satisfied for i = 1, · · · ,m, then problem (1) has

a solution. Furthermore, if F satisfies the following properties

(i) F (x,−s,−t) = F (x, s, t), ∀(x, s, t) ∈ Ω× R2,

(ii) There exist constants σ, δ > 0, an open bounded subset Ω0 of Ω, such that

F (x, s, t) ≥ σ(sϵ1(x) + tϵ2(x)), ∀(x, s, t) ∈ Ω0 × (0, δ)× (0, δ),

where 1 < ϵ1(x) < p(x), 1 < ϵ2(x) < q(x) on Ω0,

then the problem (1) has a sequence of solutions {±(uk, vk) | k = 1, 2, · · · } such that

J(±(uk, vk)) < 0 and J(±(uk, vk)) → 0 as k → ∞.

Proof At first, let’s prove that J is coercive on X. According to (2), similar to the proof

of Lemma 11, we have ∫
Ω

|Ψ(u, v)| dx ≤ 1

2
Φ(u, v) + c0.
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Therefore

J(u, v) ≥ 1

2
Φ(u, v)− c0 ≥

1

2p+
∥u∥p

−

p(·) +
1

2q+
∥u∥q

−

q(·) − c0 → +∞, as ∥(u, v)∥ → +∞.

From Theorem 8, it is easy to see that J is weak lower semi-continuous. Then J can achieve

its infimum in X, this provides a solution for (1).

From Lemma 11, we know that J satisfies (PS) condition on X. From condition (i), J is

an even functional. Denote by γ(A) the genus of A (see [9]). Set

ℜ = {A ⊂ X\{0} | A is compact and A = −A},

ℜk = {A ∈ ℜ | γ(A) ≥ k},

bk = inf
A∈ℜk

sup
(u,v)∈A

J(u, v), k = 1, 2, · · · ,

we have

−∞ < b1 ≤ b2 ≤ · · · ≤ bk ≤ bk+1 ≤ · · · .

Now, let’s prove that bk < 0 for every k.

Obviously, W
1,p(·)
0 (Ω0) × W

1,q(·)
0 (Ω0) is a subspace of X. For any k, we can choose a k-

dimensional linear subspace Ek of W
1,p(·)
0 (Ω0)×W

1,q(·)
0 (Ω0) such that

Ek = span{(u1, v1), · · · , (uk, vk)} ⊂ C∞
0 (Ω0)× C∞

0 (Ω0)

satisfy suppui, suppvi b Ω0, suppui ∩ suppuj = ∅ and suppvi ∩ suppvj = ∅ when i ̸= j, and

∥ui∥p(·) = ∥vi∥q(·) , i = 1, · · · , k. As the norms on Ek are equivalent each other, there exists

ρk ∈ (0, 1) such that (u, v) ∈ Ek with ∥(u, v)∥ ≤ ρk implies |u|L∞ + |v|L∞ ≤ δ. Set

S(k)
ρk

= {(u, v) ∈ Ek | ∥(u, v)∥ = ρk}.

Obviously, there are real numbers c1, · · · , ck, such that

(u, v) =
k∑

i=1

ci(ui, vi) =
k∑

i=1

(ciui, civi),∀(u, v) ∈ S(k)
ρk
.

For any (u, v) ∈ S
(k)
ρk , from the definition of S

(k)
ρk and the norm ∥·∥, without loss of generality,

we may assume that ∥(u, v)∥ = ∥u∥p(·), and we have

max
1≤i≤k

∥ciui∥p(·) ≤ ∥u∥p(·) = ρk ≤
k∑

i=1

∥ciui∥p(·) ≤ kmax
1≤i≤k

∥ciui∥p(·) ,
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then

ρk
k

≤ max
1≤i≤k

∥ciui∥p(·) ≤ ρk.

Obviously, we have

max
1≤i≤k

∥civi∥q(·) ≤ ∥v∥q(·) ≤
k∑

i=1

∥civi∥q(·) ≤ kmax
1≤i≤k

∥civi∥q(·) .

Since ∥civi∥q(·) = ∥ciui∥p(·) , i = 1, · · · , k, we have

ρk
k

≤ ∥v∥q(·) ≤ ρk.

Thus we have

ρk
k

≤ ∥u∥p(·) ≤ ρk,
ρk
k

≤ ∥v∥q(·) ≤ ρk, ∀(u, v) ∈ S(k)
ρk
.

It follows from the compactness of S
(k)
ρk and the definition of the norm ∥·∥ that there exists

constant θ#k > 0 such that∫
Ω0

σ |u|ϵ1(x) dx ≥ θ#k ,

∫
Ω0

σ |v|ϵ2(x) dx ≥ θ#k , ∀(u, v) ∈ S(k)
ρk

.

Without loss of generality, we may assume that max
x∈Ω0

ϵ1(x) < min
x∈Ω0

p(x),max
x∈Ω0

ϵ2(x) < min
x∈Ω0

q(x).

For any (u, v) ∈ S
(k)
ρk and t ∈ (0, 1), combining the definition of Ek and condition (ii), we have

J (tu, tv) ≤ Φ (tu, tv)−
∫
Ω0

σ(tϵ1(x) |u|ϵ1(x) + tϵ2(x) |v|ϵ2(x))dx

≤ −1

2

∫
Ω0

σ(tϵ1(x) |u|ϵ1(x) + tϵ2(x) |v|ϵ2(x))dx

≤ −1

2
tp

++q+θ#k as t→ 0+.

We can find tk ∈ (0, 1) and εk > 0 such that

J (tku, tkv) ≤ −εk < 0, ∀(u, v) ∈ S(k)
ρk
,

that is

J (u, v) ≤ −εk < 0, ∀(u, v) ∈ S
(k)
tkρk

.

Obviously, γ(S
(k)
tkρk

) = k, so bk ≤ −εk < 0.

By the genus theory (see [9], page 219 Theorem 3.3), each bk is a critical value of J , hence

there is a sequence of solutions {±(uk, vk) | k = 1, 2, · · · } such that J(±(uk, vk)) < 0.

It only remains to prove bk → 0 as k → ∞.
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Since J is coercive, there exists a constant R > 1 such that J(u, v) > 0 when ∥(u, v)∥ ≥ R.

Taking arbitrarily A ∈ ℜk, then γ(A) ≥ k. Let Yk and Zk be the subspaces of X as mentioned

in (3), according to the properties of genus we know that A ∩ Zk ̸= ∅. Let

ϕk = sup {|Ψ(u, v)|| (u, v) ∈ Zk, ∥(u, v)∥ ≤ R}.

By Lemma 3.6, we have ϕk → 0 as k → ∞. Thus

J(u, v) = Φ(u, v)−Ψ(u, v) ≥ −Ψ(u, v) ≥ −ϕk, when (u, v) ∈ Zk and ∥(u, v)∥ ≤ R.

Hence sup
(u,v)∈A

J(u, v) ≥ −ϕk, and then bk ≥ −ϕk, this concludes bk → 0 as k → ∞. �

Theorem 19 If F satisfies (A), for every i = 1, · · · ,m, Gi(x, s, t) = o(|s|p(x)+τ + |t|q(x)+τ ) for

x ∈ Ω uniformly, as (s, t) → (0, 0), where τ is a positive constant, and Gi satisfies one of the

following conditions

(i) λiai > 0 and (B2) or (B′
2) is satisfied;

(ii) λiai ≤ 0 and (B3) is satisfied;

and Λ1 = {i ∈ Λ |(i) is satisfied} is nonempty, and there exist some i1, i2 ∈ Λ1 such that

|ai1(·)|
−p(·)/(θ1(·)−p(·)) , |ai2(·)|

−q(·)/(θ2(·)−q(·)) ∈ L1(Ω), then (1) has a nontrivial solution.

Proof We will prove J satisfies the conditions of Mountain Pass lemma (see [44]).

Since F satisfies (A), then F (x, u(x), v(x)) is integrable on Ω for any (u, v) ∈ X. According

to Lemma 11, J satisfies (PS) condition.

Denote Λ = {i = 1, · · · ,m}, Λ1 = {i ∈ Λ |(i) is satisfied}, Λ2 = {i ∈ Λ |(ii) is satisfied},

then Λ1 ∪ Λ2 = Λ.

We divided Ω into small disjoint measurable subsets Ω1, · · · ,Ωn0 , such that

min
x∈Ωj

p(x) + τ > max
x∈Ωj

p(x),min
x∈Ωj

q(x) + τ > max
x∈Ωj

q(x), j = 1, · · · , n0,

and

α−
i,j := min

x∈Ωj

αi(x) > p+j := max
x∈Ωj

p(x), and β−
i,j := min

x∈Ωj

βi(x) > q+j := max
x∈Ωj

qi(x), i ∈ Λ1, j = 1, · · · , n0.

In the following, for any f ∈ C(Ω), we denote

f−
j = min

x∈Ωj

f(x), f+
j = max

x∈Ωj

f(x), j = 1, · · · , n0,
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and

ΦΩj
(u, v) =

∫
Ωj

1

p(x)
(|∇u|p(x) + a(x) |u|p(x))dx+

∫
Ωj

1

q(x)
(|∇v|q(x) + b(x) |v|q(x))dx.

Hence, when ∥(u, v)∥ = δ is small enough, we have

J(u, v) ≥
n0∑
j=1

{ΦΩj
(u, v)−

∑
i∈Λ1

∫
Ωj

|λiai(x)| [ε(|u|p
−
j +τ + |v|q

−
j +τ ) + C(ε)(|u|αi(x) + |v|βi(x))]dx

−
∑
i∈Λ2

∫
Ωj

|λiai(x)| [ε(|u|p
−
j +τ + |v|q

−
j +τ ) + C(ε)(|u|θ

+
1,j + |v|θ

+
2,j)]dx

≥
n0∑
j=1

{ΦΩj
(u, v)− C(∥uj∥

p−j +τ

p(·) + ∥uj∥
α−
i,j

p(·) + ∥uj∥
θ+1,j
p(·) + ∥vj∥

q−j +τ

q(·) + ∥vj∥
β−
i,j

q(·) + ∥vj∥
θ+2,j
q(·))},

where uj = u|Ωj
, vj = v|Ωj

.

Since p−j + τ, α−
i,j, θ

+
1,j > p+j , and q

−
j + τ, β−

i,j, θ
+
2,j > q+j , we can get

J(u, v) ≥
n∑

j=1

1

4
ΦΩj

(u, v) =
1

4
Φ(u, v), ∀(u, v) ∈ X with ∥(u, v)∥ = δ is small enough.

Let δ > 0 is small enough, then J(u, v) ≥ c > 0 for any (u, v) ∈ X with ∥(u, v)∥ = δ.

From (i) and Proposition 5, we have

Gi(x, s, t) ≥ c1[(|s|θ1 + |t|θ2)− 1],∀(x, s, t) ∈ Ω× R2, ∀i ∈ Λ1,

Gi(x, s, t) ≤ c2[(|s|
θ1
1+δ + |t|

θ2
1+δ ) + 1], ∀(x, s, t) ∈ Ω× R2,∀i ∈ Λ2.

For fixed (u0, v0) ∈ X\ {0} with suppu0, suppv0 ⊂ Ω1 and t > 1, we have

J(tu0, tv0) ≤ ΦΩ1(tu0, tv0)−
∑
i∈Λ2

∫
Ω1

Fi(x, tu0, tv0)dx

−C1

∑
i∈Λ1

∫
Ω1

|λiai(x)| (tθ1 |u0|θ1 + tθ2 |u0|θ2)dx+ C2

≤ Φ1(tu0) + Φ2(tv0) +
∑
i∈Λ2

∫
Ω

|λiai(x)| (|t|
θ1
1+δ |u0|

θ1
1+δ + |t|

θ2
1+δ |v0|

θ2
1+δ )dx

−C1

∑
i∈Λ1

∫
Ω

|λiai(x)| (tθ1 |u0|θ1 + tθ2 |v0|θ2)dx+ C2.

Without loss of generality, we may assume that p+1 , θ
+
1,1/(1+ δ) < θ−1,1 and q

+
1 , θ

+
2,1/(1+ δ) <

θ−2,1. Since p+1 , θ
+
1,1/(1 + δ) < θ−1,1 and q+1 , θ

+
2,1/(1 + δ) < θ−2,1 on Ω1, we have J(tu0, tv0) → −∞

(t → +∞). Obviously, J (0, 0) = 0, then J satisfies the conditions of Mountain Pass Lemma.

So J admits at least one nontrivial critical point. �
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Theorem 20 If F satisfies (A), and Gi(x, u) satisfy one of the following conditions

(i) λiai > 0 and (B2) or (B′
2) is satisfied, Gi(x, s, t) = o(|s|p(x)+τ + |t|q(x)+τ ) for x ∈ Ω

uniformly as (s, t) → (0, 0),

(ii) λiai ≤ 0 and (B3) is satisfied, Gi(x, s, t) = o(|s|p(x)+τ + |t|q(x)+τ ) for x ∈ Ω uniformly

as (s, t) → (0, 0),

(iii) |λi| is small enough, and (B1) is satisfied,

and Λ1 = {i ∈ Λ |(i) is satisfied} ̸= ∅, and there exist some i1, i2 ∈ Λ2 such that

|ai1(·)|
−p(·)/(θ1(·)−p(·)) , |ai2(·)|

−q(·)/(θ2(·)−q(·)) ∈ L1(Ω), then (1) has a nontrivial solution.

Proof We will prove J satisfies the conditions of Mountain Pass lemma (see [44]). Since F

satisfies (A), F (x, u(x), v(x)) is integrable on Ω for any u ∈ X.

According to Lemma 11, J satisfies (PS) condition. Denote Λ = {1, · · · ,m}, Λ1 = {i |(i)

is satisfied}, Λ2 = {i ∈ Λ |(ii) is satisfied}, Λ3 = Λ\(Λ1 ∪ Λ2). When ∥(u, v)∥ ≤ 1, we have

J(u, v) ≥ Φ(u, v)−
∑
i∈Λ3

∫
Ω

Fi(x, u, v)dx

−
∑
i∈Λ1

∫
Ω

|λiai(x)| [ε(|u|p(x)+τ + |v|q(x)+τ ) + C(ε)(|u|αi + |v|βi)]dx

−
∑
i∈Λ2

∫
Ω

|λiai(x)| [ε(|u|p(x)+τ + |v|q(x)+τ ) + C(ε)(|u|θ1 + |v|θ2)]dx.

Similar to the proof of Theorem 19, there exists an positive constant δ < 1, such that

Φ(u, v)−
∑
i∈Λ1

∫
Ω

λiai(x)[ε(|u|p(x)+τ + |v|q(x)+τ ) + C(ε)(|u|αi + |v|βi)]dx

−
∑
i∈Λ2

∫
Ω

|λiai(x)| [ε(|u|p(x)+τ + |v|q(x)+τ ) + C(ε)(|u|θ1 + |v|θ2)]dx

≥ 1

2p+
∥u∥p

+

p(·) +
1

2q+
∥v∥q

+

q(·) , when ∥(u, v)∥ = δ.

Let

|λi| ≤ [
1

4p+
∥u∥p

+

p(·) +
1

4q+
∥v∥q

+

q(·)]
1∑

i∈Λ3
max

∥(u,v)∥≤1

∫
Ω
|ai(x)Gi(x, u, v)| dx+ 1

,

then we have

J(u, v) ≥ 1

4p+
∥u∥p

+

p(·) +
1

4q+
∥v∥q

+

q(·) > C > 0, when ∥(u, v)∥ = δ.

Similar to the proof Theorem 19, we get the existence of solutions for (1). �
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Theorem 21 If F satisfies (A), F (x,−s,−t) = F (x, s, t), and we assume for each i =

1, · · · ,m, Fi satisfy one of the following

(10) (B1) is satisfied,

(20) λiai > 0 and (B2) or (B′
2) is satisfied,

(30) λiai ≤ 0 and (B3) is satisfied,

and Λ2 = {i |(20) is satisfied} ̸= ∅, and there exist some i1, i2 ∈ Λ2 such that |ai1(·)|
−p(·)/(θ1(·)−p(·)),

|ai2(x)|
−q(·)/(θ2(·)−q(·)) ∈ L1(Ω), then problem (1) has solutions {±(uk, vk) | k = 1, 2, · · · } such

that J(±(uk, vk)) → +∞ as k → +∞.

Proof It is easy to see that (PS) condition is satisfied.

Let

ϕi,k(R) = sup

{∫
Ω

|λiai(x)| |Gi(x, u, v)|dx
∣∣∣∣ (u, v) ∈ Zk, ∥(u, v)∥ ≤ R}.

If Gi doesn’t satisfy (B′
2), from Theorem 8 and Lemma 12, we have lim

k→∞
ϕi,k(R) = 0.

If Gi satisfies (B
′
2), since Gi ∈ C1(Ω× R2), we have

|Gi(x, u, v)| ≤ Cε(|u|+ |v|) + ε

2(C∗
p∗ + C∗

q∗)
(|u|p

∗(x) + |v|q
∗(x)),∀ε > 0,

from Lemma 12 we can see that ϕi,k(R) ≤ ε when k is large enough. Therefore lim
k→∞

ϕi,k(R) = 0.

Thus, for any i = 1, · · · ,m, we have lim
k→∞

ϕi,k(R) = 0. Denote ϕk(R) = max
1≤i≤m

ϕi,k(R), then

lim
k→∞

ϕk(R) = 0.

For fixed R ≥ 1, and (u, v) ∈ Zk with ∥(u, v)∥ = R, we have

J(u, v) ≥ Φ(u, v)−
∑
i∈Λ

∫
Ω

|λiai(x)| |Gi(x, u, v)|dx

≥ min(
1

p+
,
1

q+
)R−mϕk(R)

≥ 1

2
min(

1

p+
,
1

q+
)R, as k → +∞.

Let R1 = 1, then there exists a constant k1 is large enough such that

J(u, v) ≥ 1

2
min(

1

p+
,
1

q+
)R1, ∀(u, v) ∈ Zk with ∥(u, v)∥ = R1 and k ≥ k1.

Let Rn = 2n, then there exists a constant kn > kn−1 is large enough such that

J(u, v) ≥ 1

2
min(

1

p+
,
1

q+
)Rn, ∀(u, v) ∈ Zk with ∥(u, v)∥ = Rn and k ≥ kn.
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For fixed (u0, v0) ∈ X\ {0} with suppu0, suppv0 ⊂ Ω1 and t > 1, where Ω1 is defined in

Theorem 19, we have

J(tu0, tv0) ≤ ΦΩ1(tu0, tv0) +
∑
i∈Λ1

∫
Ω1

|λiai(x)| (tαi(x) |u0|αi(x) + tβi(x) |u0|βi(x))dx

+
∑
i∈Λ3

∫
Ω1

|λiai(x)| (t
θ1
1+δ |u0|

θ1
1+δ + t

θ2
1+δ |u0|

θ2
1+δ )dx

−
∑
i∈Λ2

∫
Ω1

|λiai(x)| (tθ1 |u0|θ1 + tθ2 |v0|θ2)dx+ C6,

where ΦΩ1(tu0, tv0) is defined in Theorem 19. Without loss of generality, we may assume that

max{max
x∈Ω1

p(x),max
x∈Ω1

θ1(x)

1 + δ
} < min

x∈Ω1

θ1(x), max{max
x∈Ω1

q(x),max
x∈Ω1

θ2(x)

1 + δ
} < min

x∈Ω1

θ2(x),

then the definitions of Ω1 implies J(tu0, tv0) → −∞ (t → +∞). Since J(0, 0) = 0, J satisfies

the conditions of Fountain theorem. �

Theorem 22 If F (x,−s,−t) = F (x, s, t), and for each i = 1, · · · ,m, Gi satisfies one of the

following

(10) λiai(x) > 0, Gi(x, u, v) = |u|αi(x) + |v|βi(x), and (B1) is satisfied,

(20) λiai > 0 and (B2) or (B′
2) is satisfied, Gi(x, s, t) = o(|s|p(x)+τ + |t|q(x)+τ ) for x ∈ Ω

uniformly as (s, t) → (0, 0), and |ai(·)|−p(·)/(θ1−p(·)) , |ai(·)|−q(·)/(θ2−q(·)) ∈ L1(Ω), where θ1 and θ2

are constants,

(30) λiai ≤ 0 and (B3) is satisfied, Gi(x, s, t) = o(|s|p(x)+τ + |t|q(x)+τ ) for x ∈ Ω uniformly

as (s, t) → (0, 0),

and Λ1 = {i |(10) is satisfied} ̸= ∅, then problem (1) has solutions {±(uk, vk) | k = 1, 2, · · · }

such that J(±(uk, vk)) < 0 and J(±(uk, vk)) → 0 as k → ∞.

Proof Let’s verify the conditions of Proposition 15 item by item.

Let

ϕk(γ) = sup {Ψ(u, v) | ∥(u, v)∥ ≤ γ, (u, v) ∈ Zk} .

Similar to the proof of Theorem 21, we have ϕk(γ) → 0 as k → ∞. Thus there exists a

positive integer k0 such that ϕk(1) ≤ 1
2
min{ 1

p+
, 1
q+
} for all k ≥ k0. Setting ρk = 1, then for

k ≥ k0 and u ∈ Zk ∩ S1, we have

J(u, v) ≥ min{ 1

p+
,
1

q+
} − ϕk(1) ≥

1

2
min{ 1

p+
,
1

q+
},
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which shows that the condition (D1) of Proposition 15 is satisfied.

Denote Λ2 ={i |(20) is satisfied}, Λ3 ={i |(30) is satisfied}. We may choose {Yk | k =

1, 2, · · · }, a sequence of finite dimensional vector subspaces of X defined by (3). For each Yk,

because all the norms on Yk are equivalent, there exists ϵ ∈ (0, 1) such that for every (u, v) ∈

Yk ∩ Bϵ, ∥(u, v)∥ and |u|(αi(·),|ai(·)|) + |v|(βi(·),|ai(·)|) are small enough. For every (u, v) ∈ Yk ∩ Bϵ,

similar to the proof of Theorem 19, we have

J(u, v) ≤
n0∑
j=1

{ΦΩj
(u, v) + c1

∑
i∈Λ2

∫
Ωj

|λiai(x)| (|u|p(x)+τ + |v|q(x)+τ + |u|αi(x) + |v|βi(x))dx

+c2
∑
i∈Λ3

∫
Ωj

|λiai(x)| (|u|p(x)+τ + |v|q(x)+τ + |u|θ1 + |v|θ2)dx

−
∑
i∈Λ1

∫
Ωj

|λiai(x)| (|u|αi(x) + |v|βi(x))dx}

≤ −
n0∑
j=1

{1
2

∑
i∈Λ1

∫
Ωj

|λiai(x)| (|u|αi(x) + |v|βi(x))dx}

= −1

2

∑
i∈Λ1

∫
Ω

|λiai(x)| (|u|αi(x) + |v|βi(x))dx.

According to the definition of Λ1,Λ2 and Λ3, there exists γk ∈ (0, ϵ) which is small enough,

such that

ζk := max {J(u, v)| (u, v) ∈ Yk, ∥(u, v)∥ = γk} < 0.

Thus the condition (D2) of Proposition 15 is satisfied.

Because Yk ∩ Zk ̸= ∅ and γk < ρk, we have ηk ≤ ζk < 0.

On the other hand, for any (u, v) ∈ Zk with ∥(u, v)∥ ≤ 1 = ρk, we have J(u, v) = Φ(u, v)−

Ψ(u, v) ≥ −Ψ(u, v) ≥ −ϕk(1). Noting that ϕk(1) → 0 as k → ∞, we obtain ηk → 0, i.e., (D3)

of Proposition 15 is satisfied.

At last, let’s prove that J satisfies (PS)∗c condition for every c ∈ R on X.

Suppose that {(unj
, vnj

)}⊂ X such that nj → ∞, (unj
, vnj

) ∈ Ynj
, J(unj

, vnj
) → c and

(J |Ynj
)′(unj

, vnj
) → 0. Similar to the process of verifying the (PS) condition in the proof of

Lemma 11, we can get the boundedness of {(unj
, vnj

)}. Going if necessary to a subsequence,

we can assume that (unj
, vnj

)⇀ (u, v) in X. As X = ∪
nj

Ynj
, we can choose (ũnj

, ṽnj
) ∈ Ynj

such

that (ũnj
, ṽnj

) → (u, v). Since {(unj
, vnj

)} is bounded and J is C1 and bounded on X, we have

lim
nj→∞

J ′(unj
, vnj

)(unj
− u, vnj

− v)
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= lim
nj→∞

J ′(unj
, vnj

)(unj
− ũnj

, vnj
− ṽnj

) + lim
nj→∞

J ′(unj
, vnj

)(ũnj
− u, ṽnj

− v)

= lim
nj→∞

(J |Ynj
)′(unj

, vnj
)(unj

− ũnj
, vnj

− ṽnj
) = 0.

As J is of (S+) type, we can conclude (unj
, vnj

) → (u, v) in X. Furthermore, we have

J ′(unj
, vnj

) → J ′(u, v). It only remains to prove J ′(u, v) = 0. Taking arbitrarily (u#k , v
#
k ) ∈ Yk,

notice that when nj ≥ k we have

J ′(u, v)(u#k , v
#
k ) = (J ′(u, v)− J ′(unj

, vnj
))(u#k , v

#
k ) + J ′(unj

, vnj
)(u#k , v

#
k )

= (J ′(u, v)− J ′(unj
, vnj

))(u#k , v
#
k ) + (J |Ynj

)′(unj
, vnj

)(u#k , v
#
k ).

Going to limit in the right side of above equation, yields

J ′(u, v)(u#k , v
#
k ) = 0, ∀(u#k , v

#
k ) ∈ Yk.

So J ′(u, v) = 0, which shows that J satisfies the (PS)∗c condition for every c ∈ R. Then

(D4) of Proposition 15 is satisfied. �

In the following, we will consider the existence of solutions for (1), when F (x, ·, v) satisfies

sub-p(x) growth condition, and F (x, u, ·) satisfies super-q(x) growth condition.

Theorem 23 If F satisfies (A), and F satisfies the following condition

(i) a1(x) > 0 and |a1(·)|−p(·)/(θ1(·)−p(·)) ∈ L1(Ω),

(ii) for i = 1, · · · ,m, Gi(x, s, t) = o(|s|p(x)+τ + |t|q(x)+τ ) for x ∈ Ω uniformly as (s, t) →

(0, 0), where τ is a positive constant, and Fi(x, u, v) satisfies one of the following

(10) (B1) is satisfied,

(20) αi(x) < p(x), q(x) < βi(x) ≤ q∗(x)(ri(x) − 1)/ri(x), ri(·) ∈ C+(Ω), and Fi(x, u, ·)

satisfies

0 ≤ Fi(x, u, v) ≤
v

θ2(x)

∂

∂v
Fi(x, u, v),∀(x, u) ∈ Ω× R, |v| ≥M,

where q(x) < θ2(x) < βi(x), and Fi(x, u, v) > 0 when |u| ≥M, |v| ≥M, ∀x ∈ Ω,

then (1) has a nontrivial solution.

Proof Without loss of generality, we may assume that θ2(x) ≤ β1(x). Let {(un, vn)} be a

(PS) sequence. Similar to the proof of the Lemma 11, we have

c+ 1 + ∥vn∥q(·) ≥ J(un, vn)− J ′(un, vn)(0,
1 + δ

θ2(x)
vn) ≥

l2
3
Φ(un, vn) as n→ ∞,
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where l2 is defined in (8).

Thus J satisfies (PS) condition. Without loss of generality, we may assume that

p(x) + 2τ <
ri(x)− 1

ri(x)
p∗(x), and q(x) + 2τ <

ri(x)− 1

ri(x)
q∗(x), ∀x ∈ Ω.

Denote

β#
i (x) = max{q(x) + 2τ, βi(x)},∀x ∈ Ω, i = 1, · · · ,m.

We have

|Fi(x, s, t)| ≤ ε(|s|p(x)+τ + |t|q(x)+τ ) + C(ε)(|s|p(x)+2τ + |t|β
#
i (x)), i = 1, · · · ,m.

Similar to the proof of Theorem 19, when ∥(u, v)∥ = δ is small enough, we can get

J(u, v) ≥
n∑

j=1

1

4
ΦΩj

(u, v) =
1

4
Φ(u, v).

Let δ > 0 be small enough, then J(u, v) ≥ c > 0 for any (u, v) ∈ X with ∥(u, v)∥ = δ.

For (M, t) ∈ X and t > 1, we have

J(M, t) =

∫
Ω

Mp(x)

p(x)
dx+

∫
Ω

tq(x)

q(x)
dx−

∫
Ω

F (x,M, t)dx

=

∫
Ω

Mp(x)

p(x)
dx+

∫
Ω

tq(x)

q(x)
dx−

∑
1≤i≤m

∫
Ω

Fi(x,M, t)dx−
∫
Ω

|λiai(x)| tβ1(x)dx

≤
n0∑
j=1

{
∫
Ωj

tq(x)

q(x)
dx+

∑
1≤i≤m

C

∫
Ωj

|λiai(x)| tq(x)dx−
∫
Ωj

|a1(x)| tβ1(x)dx}+ C,

where Ωj, j = 1, · · · , n0, are defined in Theorem 19.

Thus J(M, t) → −∞ (t → +∞). Obviously, J (0, 0) = 0, then J satisfies the conditions of

Mountain Pass lemma (see [44]). So J admits at least one nontrivial critical point. �

Theorem 24 If F satisfies (A), F (x,−s,−t) = F (x, s, t), and F satisfies the following con-

dition

(i) a1(x) > 0 and |a1(·)|−p(·)/(θ1(·)−p(·)) ∈ L1(Ω),

(ii) for i = 1, · · · ,m, Fi(x, u, v) satisfies one of the following

(10) (B1) is satisfied,

(20) αi(x) < p(x) and ri(x) ≥ (p(x)/αi(x))
0, q(x) < βi(x) ≤ q∗(x)(ri(x)− 1)/ri(x), ri(x) ∈

C(Ω), and Fi(x, u, ·) satisfies

0 ≤ Fi(x, u, v) ≤
v

θ2(x)

∂

∂v
Fi(x, u, v),∀(x, u) ∈ Ω× R, |v| ≥M,
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where q(x) < θ2(x) < βi(x), and Fi(x, u, v) > 0 when |u| ≥M, |v| ≥M, ∀x ∈ Ω,

then (1) has a sequence of solutions.

Proof Denote Λ1 = {i ≥ 1 |(10) is satisfied}, Λ2 = {i ≥ 1 |(20) is satisfied}. Let {(un, vn)}

be a (PS) sequence. Similar to the proof of the Lemma 11, we have

c+ 1 + ∥vn∥q(·) ≥ J(un, vn)− J ′(un, vn)(0,
1 + δ

θ2(x)
vn) ≥

l2
3
Φ(un, vn) as n→ ∞,

where l2 is defined in (8).

Thus {(un, vn)} is bounded, and then J satisfies (PS) condition. Let V +
k = Zk, it is a closed

linear subspace of X and V +
k ⊕ Yk−1 = X.

Let hi ∈ C∞
0 (Ω) satisfy

supphi ∩ supphj = ∅, ∀i ̸= j.

Set V −
k = span{(0, h1), · · · , (0, hk)}. Similar to the proof of Theorem 21, it is easy to

see that for every pair of V +
k and V −

k , J satisfies the conditions of Proposition 16 and the

corresponding critical value ϖk := inf
g∈Γ

sup
(u,v)∈V −

k

J(g(u, v)) → +∞ when k → +∞. �

References

[1] E. Acerbi, G. Mingione, Regularity results for a class of functionals with nonstandard

growth, Arch. Ration. Mech. Anal., 156 (2001), 121–140.

[2] E. Acerbi, G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew.

Math., 584 (2005), 117-148.

[3] S. Ala, G. Afrouzi, Q. Zhang and A. Niknam, Existence of positive solutions for variable

exponent elliptic systems, Boundary Value Problems, 2012, 2012:37, pp 1-12.

[4] Ghasem A. Afrouzi, Nguyen Thanh Chung, Somayeh Mahdavi, Existence and multiplicity

of solutions for anisotropic elliptic systems with non-standard growth conditions, 2012

(2012), No. 32, pp. 1-15.

[5] C.O. Alves, Existence of solution for a degenerate p(x)-Laplacian equation in RN , J. Math.

Anal. Appl. 345 (2008), 731–742.

30
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