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In this paper, the inconsistent linear system of m  equations in n  unknowns is 
formulated as a quadratic programming problem, and the best approximate 
solution with the minimum norm for the inconsistent system of the linear 
equations is investigated using the optimality conditions of the quadratic penalty 
function (QPF). In addition, several algebraic characterizations of the equivalent 
cases of the QPF are given using the orthogonal decompositions of the coefficient 
matrices obtained from optimality conditions, and analytic results we obtained are 
satisfied with numerical examples.  
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1. Introduction  

In this paper, the solutions of the system of the linear equations bx =A  are considered, where A is an 

nm×  matrix and b  is an 1×m  vector. It is assumed that the elements of A  and b  are real. We 

consider the general case of a rectangular matrix with rank nr ≤ , where the system bx =A  is 
inconsistent and therefore there is no solution of the system of the linear equations [ 2, 11, 22 ]. 
 It has been known for many years that the best approximate solution with minimum norm of the 
inconsistent system of the linear equations bx ≈A  is obtained by various methods using singular 
value decomposition of a matrix and the generalized inverses, especially the least squares and the 
regularization methods [ 2, 3, 5, 8, 9, 11, 12, 13, 15, 16, 22, 23 ]. Tikhonov regularization, which is 
the most popular regularization method, in its simplest form replaces the linear system of bx =A  by 
the minimization problem  
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where 0>µ  is a regularization parameter [ 9, 14, 16 ]. The least squares solution of the inconsistent 

system of the linear equations is computed by use of the method of the normal equations and also the 
least solution of the system is found via QR decomposition and Householder algorithm [ 10, 13 ]. The 
best approximate solution problem of the singular system is one of the most interest topics of active 
researchers in the computational mathematics and mathematical programming and has been widely 
applied in various areas such as engineering problems and other related areas [ 2, 11, 22 ]. The paper 
by Penrose [18] describes the generalized inverse of a matrix, as the unique solution of a certain set of 
equations. The best approximate solution of the system of linear equations is found by the method of 
least squares and a further relevant application is depicted in [19]. Rosen [23] gives minimum and 
basic solutions to singular linear systems and has developed an algorithm for computation. 



  The least squares method is commonly used in the linear, quadratic and mathematical 
programming problems [ 5, 8, 9, 24 ]. The least squares method is applied to the best approximate 
solution for the inconsistent system of the linear equations [ 9, 12, 16 ]. The analytical and 
approximate methods for consistent and inconsistent systems of linear equations are developed by 
using the methods of the singular value decomposition and generalized inverse of a matrix [ 2, 8, 11, 
15, 16, 18, 19, 23 ]. Moreover, the optimal solutions of the linear, nonlinear and quadratic 
programming problems are found and investigated by applying the penalty method [ 1, 7, 20, 21 ].  
 In this paper, the inconsistent linear system of linear equations in n  unknowns is considered. Let 

an inconsistent system of m  equations in n  unknowns be bx =A .  The least squares solution (LSS) 

to the inconsistent linear system bx =A  satisfies  

bx TT AAA =                                                            (1) 

which is known as the normal equation [ 2, 3, 11, 22 ].  If the rank of A  is n , then the unique LSS is 

( ) .AAA TT bx
1−

=                                                      (2) 

 The projection of b onto the column space of A  is therefore  

( ) bbxp +−
=== AAAAAAA TT 1

,                                          (3) 

where     

( ) TT AAAA
1−+ =                                                           (4)                           

is the generalized inverse of A  and TA  is the transpose of A  [ 2, 11, 18, 22 ]. 
 If the columns of A  are not linearly independent, the null space of A  does not contain the zero 

vector, the rank of A  is less then n , the matrix AAT
 is not invertible and x is not uniquely 

determined by px =A . Then, we have to choose one of those many vectors that satisfy px =A .  

 The optimal solution, among all solutions of px =A , is the one that has the minimum length of 

errors bx −A .  This solution is also called the best approximate solution with minimum norm [ 2- 

5, 8, 9, 11, 12, 14-16 ].  
 Note that the best approximate solution is the optimal LSS of any inconsistent linear 

system bx =A . If px =A  and ( ),TAℜ∈x then bx += A is the optimal least squares solution, where 

( )TAℜ  is the row space of A [ 2, 8, 11, 22 ].  

 In this study, we first express an inconsistent linear system of m equations in n  unknowns as a 
quadratic programming problem using the least squares method and we formulate the QPF as an 
unconstrained optimization problem  
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where q  is a positive large number which is a penalty parameter. Note that the relationship this 

optimization problem and the minimization problem given by Tikhonov regularization method is of 
great interest. Then we investigate the equivalent solutions of the problem using the optimality 
conditions of the QPF. In addition, several algebraic characterizations of the equivalent cases of the 
QPF are given using the orthogonal decompositions of the coefficient matrices obtained from 
optimality conditions.  
 
2.  The inconsistent linear system and its formulation as a quadratic programming 
problem 

We now consider the linear system bx =A  for any nm×  matrix A  of rank r . A necessary and 

sufficient condition for the equation bx =A  to have a solution is  

bb =+AA ,                                                                   (5) 

in this case, the general solution is 



( ) ybx AAIA ++ −+= ,                                                      (6) 

where y  is arbitrary vector [ 2, 11, 22 ]. 

 If bx =A  is an inconsistent linear system and  nr <  , then the solution of the normal equation 

bx TT AAA =  defined in (1) is  

( ) bbx ++
== AAAA TT .                                                    (7)                      

 Note that the following equations are consistent and equivalent. 

bx TT AAA = , bx ++ = AAA   and  bx += AAA ,                                   (8) 

where the mn×  matrix +A satisfies four conditions below [ 2, 11, 22 ] 

++ = AAAA T)( , AAAA T ++ =)( ,  AAAA =+  and +++ = AAAA .                      (9) 

 
++ == AAAAAAP TT

A )(  is the matrix that projects a vector b  onto the space spanned by the 

columns of A . If b  is not in the column space of A , then the linear system bx =A  is inconsistent. 

Using the projection matrix AP  and the properties of the generalized inverse of A , the following 

results are obtained as 

bx AA PAP = , bx ++ = AAAAA  and pbx == +AAA , 

where p is the projection of b onto the column space of A . As mentioned in Introduction section, 

the optimal solution, among all solutions of px =A , is the one that has the minimum length one of 

errors bx −A . This solution with minimum norm is also the best approximate LSS of any 

inconsistent linear system bx =A  and the linear systems pA =x  and bx TT AAA =  are consistent 

and equivalent [ 2, 8, 11, 13, 18, 19, 22 ]. Furthermore, the minimum norm solution problem of the 
inconsistent linear system bx =A  can be expressed as the following quadratic problem: 

{ }pxxx
x

=AMin T

.                                                 (10) 

 Using the system of the linear equations defined in (8), the minimum norm problem can be 
investigated with the following quadratic programming problems  

{ }bxxx
x

TTT AAAMin = ,                                               (11) 

{ }bxxx
x

+= AAAMin T                                                 (12) 

and 

{ }bxxx
x

++ = AAAMin T ,                                               (13) 

where xxx T= . 

 
DEFINITION 2.1 (Penalty Function Method): Consider the equality constrained optimization 
problem as  

( ) ( ){ }nizMin i ...,,2,1,0 ==xx
x

φ . 

Methods using penalty functions transform a constrained problem into a single unconstrained 
problem. The most simple and straightforward approach to the constrained problems of the above 
form is to apply a suitable unconstrained optimization algorithm. The formulation of the penalty 
function of the constrained problem is 

( ) ( ) ( )xxx
2

1

, i

n

i

iqzqP φ∑
=

+=  

where iq  are the penalty parameters and 0>>iq . The solution to this unconstrained minimization 

problem is denoted by ( )qx , where q denotes the respective parameters. Often qqi =  for all  i  

where q  is constant. Thus the penalty function is denoted by ( )qP ,x  and the corresponding 

minimum by ( )qox . It can be shown that under normal continuity conditions ( ) oo
q

qLim xx =
∞→

. 



Typically, the overall penalty parameter q  is the set at 410=q  if the constraints functions are 

normalized in some sense [ 1, 6, 7, 17 ]. 

 In section 3, we present the QPF of the problem defined in (10) and give the main results using its 
optimality conditions. A numerical example is given in the forthcoming sections of the study and 
calculated with the use of the results obtained. 
 

3. The best approximate solution via a quadratic penalty function 

Many efficient methods have been developed for solving the quadratic programming problems [ 1, 4, 
7, 14, 17, 24 ], one of which is the penalty method. In this class of methods we replace the original 
constrained problem with unconstrained problem that minimizes the penalty function [ 1, 6, 7, 17 ].  
 We assume that the quadratic programming problems (10), (11) and (12) have feasible solutions 
and their constraint regions are bounded. 
 The penalty function of the problem (10) can be defined as 

( ) 2

2

1

2

1
pxxxx −+= AqP T , 

where the scalar quantity q is the penalty parameter. It is clear that quadratic programming problems 

defined in (10)-(13) have the same optimal solution because px =A  and the equations defined in (8) 

are consistent and equivalent. Since AxbbAAbpbpx −=−=−=− +A  for the optimal solution 

of the inconsistent linear system bx =A  , we can formulate the QPF as 

( ) 2

2

1

2

1
bxxxx −+= Aqf T                                           (14) 

 
to find  the best approximate solution with the minimum norm for the inconsistent system of the 
linear equations.                     
 From the first order necessary conditions for the unconstrained minimum of the QPF (14), we 
obtain 

( ) 0=−+=∇ bxxx TT qAAqAf .                                          (15) 

 We also obtain the Hessian matrix of (14), which represents the sufficient condition as 

( ) AqAIH T+=x ,                                               (16) 

where ( )
T
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   for n,,,j,i K21= . 

COROLLARY 3.1 The Hessian matrix ( ) AqAIH T+=x  of the QPF defined in (14) is positive 

definite. 

Proof Let eigenvalues be nλλλ ,...,, 21  of the nn ×  matrix AAT . It is clear that eigenvalues of the 

matrix AAT  are 0≥iλ . The eigenvalues of the Hessian matrix ( )xH are 01 >+ iqλ , where the 

penalty parameter 0>q .  So the Hessian matrix is positive definite.  

 Now we can establish the following theorem for the best approximate solution of the inconsistent 
linear system bx =A . 
 
THEOREM 3.1 Let the system of the linear equations bx =A  be inconsistent. Then the best 

approximate solution of bx =A  is 



bx TT

q
AAAI

q
Lim

1

1
−

∞→ 







+= ,                                                  (17) 

where 0
1

det ≠







+ AAI

q
T

 for large number 0>q   and nArank ≤)( . 

Proof  From (15), we obtain 

bx TT AAAI
q

=







+

1
.                                                        (18) 

Using 0
1

det ≠







+ AAI

q
T

 
for 0≠q and applying (6), we get  

bx TT AAAI
q

1

1
−









+= . 

This solution is the best approximate solution with minimum norm of the QPF (14) and its Hessian 

matrix H is positive definite. Using (2) and (7) we see that 

( ) bbx ++
== AAAA TT                                                          (19) 

and 

( )+

−

∞→
=








+ AAAAI

q
Lim TT

q

1

1
. 

Then the proof is completed.  

 We now consider the characteristic equations defined in (20) and (21) of the matrices AAT  and 









+ AAI

q
T1

, respectively 

( ) ( )( ) ( ) 0det 21 =−−−=− n
T IAA λλλλλλλ L                                      (20) 

and 

0
111

)
1

det 21 =







−−
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−−=−+

qqq
IAAI

q
n

T λµλµλµµ L( ,                (21) 

where 0
1

>+=
q

ii λµ  for n,,,i K21= .  

 Let iv  be eigenvectors corresponding to eigenvalues iλ  of the matrix AAT
 and let iu  be 

eigenvectors corresponding to eigenvalues 
q

i

1
+λ  of the matrix AAI

q
T+

1
, where 1=iv  and 

0=j

T

i vv  for ji ≠  .  From 
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111
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we see that 

ii vu =  for  .n,,,i K21=  

 Let the orthogonal decomposition of the matrix AAT   be 

1−=VDVAAT ,                                                               (22) 



 

where [ ]n,,,V vvv K21= , { }n,,,diagD λλλ K21=
 
and 









+++=+
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q
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1
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11
21 λλλ K . 

Using (22), we also express the matrix  AAI
q

T+
1

 as  

111 −









+=+ VDI

q
VAAI

q
T .                                                 (23) 

 This leads to the following theorem. 

THEOREM 3.2 Let be the eigenvectors n,,, vvv K21 corresponding to the eigenvalues n,,, λλλ K21  

of the matrix AAT , respectively. The best approximate solution of the inconsistent system bx =A  is 

(i)   If nArank =)( , ( ) bbx TTT AAAAVVD
111 −−− == , 

(ii)  If nArank <)( , ( ) bbx TTT AAAAVVD
+−+ == 1 , 

where 1−D is the inverse of the diagonal matrix { }n,,,diagD λλλ K21=  and +D is the generalized 

inverse of { }0021 ,,,,,,diagD r KK λλλ= . 

Proof Applying Theorem 3.1 and using (23), we get 

bx T

q
AVDI

q
VLim 1

1

1 −

−

∞→ 
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Thus the proof is completed.  



Here we establish the following corollary which is proved easily using the optimality conditions of 
the QPF defined in (14) and results on the generalized inverses of matrices. 

COROLLARY 3.2 Let iλ  be eigenvalues of the matrix AAT
 and let 

q
ii

1
+= λµ  be eigenvalues of 

the matrix AAI
q

T+
1

.  A necessary and sufficient condition for the QPF defined in (14) to have a 

best approximate solution with minimum norm
 
is 0

1
>+=

q
ii λµ  , in which case the optimal solution 

is bx += A . 

Proof Since the Hessian matrix given in Corollary 3.1 is a positive definite matrix and eigenvalues of 

the matrix )(xH  are 01 >+ iqλ ,
  

0
1

>+=
q

ii λµ
 

and the QPF defined in (14) has a best 

approximate solution with minimum norm. Using (22) and (23), we find the solution bx += A . This 
completes the proof. 
 

4. Numerical Example 

We can also calculate the approximate solution with the minimum norm of the inconsistent linear 

system bx =A  using  

bx TT

k

k AAAI
q

1

1

1
−

+ 









+=                                                       (24) 

or 

bx T

k

k AVDI
q

V 1

1

1

1 −

−

+ 









+= ,                                                    (25)                                                                                                          

where 
k

kq 10=  for K,,,k 210= .

 
 Let bx =A  be an inconsistent system computed by Rosen in [23], where A  of rank 3 and b  are  
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 Table 1 and 2 represent the best approximate solution for optimal solution of the inconsistent 

linear equation bx =A . The following solution, which is obtained using (19), is the exact solution of 

bx TT AAA = . This solution is the optimal solution with minimum norm of bx =A : 
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28525640

38461530

49358970
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04807690464743500929487050961530

06730760016025600032051008653840

03846150038461501923076019230760

05769230224358900448717021153840

)( bx . 

In addition, the generalized inverse of the matrix A  is computed approximately by taking 610=kq in 

(24) as follows:  





















=







+

−

0.0480768-0.46474330.0929486-0.5096150

0.06730760.0160256 0.0032051-0.0865384

0.0384615-0.0384615 0.19230760.1923076-

0.0576922-0.22435880.0448717 -0.2115383

10

1
1

6

TT AAAI . 



Using this matrix, we can compute the approximate solution correct to six decimal places of the given 
inconsistent system as 

[ ]1.27243510.28525630.38461550.4935894- =Tx . 

It is obvious that the exact solution justifies being extremely close to approximate solution. 

In Table 1, some values for the approximate solution using (24) are listed with seven decimals 
for 7,,2,1,0 K=k . 

k  
1x  2x  3x  4x  

0 -0.2942274 0.4464388 0.2449741 0.8334291 

1 -0.4635347 0.3954889 0.2789696 1.2060391 
2 -0.4904223 0.3857787 0.2845914 1.2654362 
3 -0.4932712 0.3847325 0.2851895 1.2717321 
4 -0.4935578 0.3846271 0.2852497 1.2723654 
5 -0.4935865 0.3846165 0.2852557 1.2724288 
6 -0.4935894 0.3846155 0.2852563 1.2724351 
7 -0.4935897 0.3846153 0.2852564 1.2724358 
8 -0.4935898 0.3846153 0.2852562 1.2724359 

Table 1: The best approximate solution correct to desired decimal places of the problem 

 In Table 2, some values for the approximate solution using (25) are listed with seven decimals 
for 6210 ,,,,k K= . 

k  1x  2x  3x  4x  

0 -0.2942274 0.4464388 0.2449741 0.8334291 
1 -0.4635347 0.3954889 0.2789696 1.2060390 
2 -0.4904223 0.3857787 0.2845914 1.2654362 
3 -0.4932712 0.3847325 0.2851895 1.2717321 
4 -0.4935578 0.3846271 0.2852497 1.2723654 
5 -0.4935865 0.3846165 0.2852557 1.2724288 
6 -0.4935894 0.3846155 0.2852563 1.2724351 
7 -0.4935901 0.3846153 0.2852566 1.2724356 

Table 2: The best approximate solution of the example   

 From Table 1 and Table 2, we see that the approximate solution correct to six decimal places of 
the given system is computed directly for 710=kq . Should the penalty parameter q  is taken big 

enough, the approximate solution correct to desired decimal places of the system can be calculated 
using  (24) and (25).       

 
5. Conclusions 

In this study, the inconsistent linear system of m equations in n unknowns is formulated as a 
quadratic programming problem, and the best approximate solution with the minimum norm for the 
inconsistent system of the linear equations is investigated using the optimality conditions of the QPF. 
Additionally, several algebraic characterizations of the equivalent cases of the QPF are given using 
the orthogonal decomposition of the coefficient matrices obtained from optimality conditions, and 
analytic results are compared with numerical examples.  Numerical results in this paper show that the 
inconsistent system bx =A  can be solved using (24) or (25) when nArank <)( . It is shown that, 

with minimum norm, the approximate solution correct to desired decimal places of the inconsistent 
system can be computed by the penalty method. 

References 

 
[1] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and 

Algorithms, Second Edition, John Wiley and Sons, New York, 1993. 



[2] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, McGraw-
Hill, New York, 1974. 

[3] J. A. Cadzow, Minimum 1l , 2l and ∞l norm approximate solutions to an overdetermined system 

of linear equations, Digital Signal Proc., 12(2002) 524-560. 
[4] Z.-H. Cao, On the converge of iterative methods for solving singular linear systems, J. Comput. 

Appl. Math., 145(2002) 1-9.  
[5] A. K. Cline, An elimination method for the solution of linear least squares problems, SIAM J. 

Numer. Anal., 10(1973) 283-289. 
[6] G. Di Pillo, G. Liuzzi and S. Lucidi, An exact penalty-Lagrangian approach for large-scale 

nonlinear programming, Optimization, Vol.60, No1-2(2011) 223-252. 
[7] Z. Dostal, On penalty approximation of quadratic programming problem, Kybernetika, 

27(1991) 151-154. 
[8] T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Numer. 

Math., 35(1980) 1-12. 
[9] G. H. Golub, C. Per Hansen and D. O’leary, Tikhonov regularization and total least squares, 

SIAM J. on Matr. Anal. and  Appl., 21(1999) 1-10. 
[10] G. H. Golub and C. F. V. Loan, Matrix computations, Third Edition, J. Hopkins Univ. Press, 

London, 1996.    
[11] A. Graybill, Introduction to Matrices with Applications in Statistics, Calif, Wadsworth, 

Belmont, 1969. 
[12] S.-J. Kim, K. Koh, M. Lustig, S. Boyd and D. Gorinevsky, An interior- point method for large-

scale 1l - regularized least squares, IEEE Journal on Selected Topics in Signal Processing, 

1(4)(2007) 606-617. 
[13] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice Hall, Inc. Englewood 

Cliffs, N.J., 1974. 
[14] B. Lewis and R. Lothar, Arnoldi-Tikhonov regularization methods, J. Comput. Appl. Math., 

226(2009) 92-102. 
[15] J. Miao and A. Ben-Israel, On pl – approximate solutions of linear equations, Lin. Algeb. and 

its Appl., 199(1994) 305-327. 
[16] A. Neumair, Solving ill-conditioned and singular linear systems: A tutorial on regularization, 

SIAM Rev., 40(1998) 636-666. 
[17] N. Özdemir and F. Evirgen, A dynamic system approach to quadratic programming problems 

with penalty method, Bull. Malays. Math. Sci. Soc., (2) 33(1) (2010) 79-91. 
[18] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51(1955) 406-

413. 
[19] R. Penrose, On the best approximate solutions of linear matrix equations, Proc. Cambridge 

Philos. Soc., 52(1956) 17-19. 
[20] M.Ç. Pınar, Linear programming via a quadratic penalty function, Math. Method of Ope. Res., 

44(1996) 345-370. 
[21] M.Ç. Pınar and S. Elhedhli, A penalty continuation method for the ∞l solution of the 

overdetermined linear systems, BIT, 38(1)(1998) 127-150.  
[22] C. R. Rao and S.K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New 

York, 1971. 
[23] J. B. Rosen, Minimum and basic solutions to singular linear systems, J. Soc. Indust. Appl. 

Math., 12(1964) 156-162. 
[24] E. Übi, A numerically stable least squares solution to the quadratic programming problem, 

Cent. Eur. J. Math., 6(2008) 171-178. 
  


