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Abstract. Let X and Y be independent identically distributed nondegenerate and
positive random variables with common absolutely continuous distribution function
F (x). Put Z = max(X,Y ) and W = min(X,Y ). In this paper, it is proved that
Z

Z +W

(
or

W

Z +W

)
and Z + W are independent if and only if X and Y have

gamma distributions. Also, we obtain that
(

Z

Z +W

)2 (
or

(
W

Z +W

)2)
and Z+W

are independent if and only if X and Y have gamma distributions.
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1. Introduction

Let X and Y be two independent identically distributed (i.i.d.) nondegenerate and
positive random variables with common absolutely continuous distribution function
F (x) and the corresponding density function f(x).

It is known that X/Y and X +Y are independently distributed if and only if both
X and Y have gamma distributions with the same scale parameter [see Lukacs(1955)].

The current investigation was induced by a characterization of exponentiality by
Kotz and Steutel(1988). Now, set Z = max(X,Y ) and W = min(X,Y ). Namely, if we

write U =
Z

(Z +W )
, one can ask whether the independence of U and Z+W = X +Y

characterizes exponentiality. Since U(X +Y ) = Z is distributed as X or Y in the case
of the exponential distribution, it would give a characterization similar to the result of
Kotz and Steutel(1988), without the additional assumptions of U being uniform and
U(X + Y ) having the same distribution as X. The answer in paper is that we do get
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a characterization, however, not the exponential distribution but the larger family of
gamma variables. In other words, we can see the need for additional assumptions if
we want the exponential distribution but not the full set of conditions of Kotz and
Steutel(1988). The details are as follows.

Note that
Z

Z +W
is a scale invariant statistic. So, by Lukacs and Laha (1964, P.

73),
Z

Z +W
is independent of Z +W = X + Y for gamma distributions. However, it

is generally not true that the independence of a scale invariant statistic and X + Y
characterizes the gamma family.

In this paper, we show that
Z

Z +W
and Z+W are independent if and only if X and

Y have gamma distributions. Also, we characterize that
(

Z

Z +W

)2 (
or

(
W

Z +W

)2)
and Z +W are independent if and only if X and Y have gamma distributions.

2. Main Results

Theorem 2.1. Let X and Y be i.i.d. nondegenerate and positive random vari-
ables with common absolutely continuous distribution function F (x) and pdf f(x) and

E(X2) < ∞. Then
Z

Z +W

(
or

W

Z +W

)
and (Z + W ) are independent if and only

if X and Y have gamma distributions.

Theorem 2.2. Let X and Y be i.i.d. nondegenerate and positive random vari-
ables with common absolutely continuous distribution function F (x) and pdf f(x) and

E(X2) < ∞. Then
(

Z

Z +W

)2 (
or

(
W

Z +W

)2)
and (Z + W ) are independent if

and only if X and Y have gamma distributions.

3. Proofs

Proof of Theorem 2.1. Write Z = max(X,Y ) and W = min(X,Y ). Since
Z

Z +W
and

W

Z +W
are scale invariant statistics, by Lukacs and Laha (1964),

Z

Z +W

(
or

W

Z +W

)
is independent of Z + W = X + Y for gamma variables. So, we have to prove the
converse.

Denote the characteristic functions of
Z

Z +W
, Z +W and

(
Z

Z +W
, Z +W

)
by

φ1(t), φ2(t) and φ(t, s) respectively.

The independence of
Z

Z +W
and Z +W is equivalent to

φ(t, s) = φ1(t)φ2(t). (3.1)
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By the lemma of Lukacs and Laha (1964),

φ(t, s) =
∫ ∫

0<x≤y<∞
e
it y
x+y

+is(x+y)
f(x)f(y)dxdy

+
∫ ∫

0<y<x<∞
e
it x
x+y

+is(x+y)
f(x)f(y)dxdy.

(3.2)

By interchanging x and y in the first integral, we get

φ(t, s) = 2
∫ ∞

0

∫ ∞
y

e
it x
x+y

+is(x+y)
f(x)f(y)dxdy.

By the same method with regard to φ1(t) and φ2(t), (3.1) becomes∫ ∞
0

∫ ∞
y

e
it x
x+y

+is(x+y)
f(x)f(y)dxdy

=
(∫ ∞

0

∫ ∞
y

e
it x
x+y f(x)f(y)dxdy

)(∫ ∞
0

∫ ∞
0

eis(x+y)f(x)f(y)dxdy
)
.

(3.3)

Since
W

Z +W
= 1− Z

Z +W
,

W

Z +W
and Z +W are also independent.

So an equation similar to (3.1) holds for
W

Z +W
and Z + W . That is, we obtain

the following equation∫ ∞
0

∫ y

0
e
it x
x+y

+is(x+y)
f(x)f(y)dxdy

=
(∫ ∞

0

∫ y

0
e
it x
x+y f(x)f(y)dxdy

)(∫ ∞
0

∫ ∞
0

eis(x+y)f(x)f(y)dxdy
)
.

(3.4)

Adding equations (3.3) and (3.4), we get∫ ∞
0

∫ ∞
0

e
it x
x+y

+is(x+y)
f(x)f(y)dxdy

=
(∫ ∞

0

∫ ∞
0

e
it x
x+y f(x)f(y)dxdy

)(∫ ∞
0

∫ ∞
0

eis(x+y)f(x)f(y)dxdy
)
.

(3.5)

The integrals in (3.5) exist not only for reals t and s but also for complex values
t = u + iv, s = u∗ + iv∗, where u and u∗ are reals, for which v = Im(t) ≥ 0,
v∗ = Im(s) ≥ 0 and they are analytic for all t, s for v = Im(t) > 0, v∗ = Im(s) > 0
[see Lukacs (1955)].

Differentiating (3.5) twice, first with respect to t and then with respect to s, and
setting t = 0, we get∫ ∞

0

∫ ∞
0

x2eis(x+y)f(x)f(y)dxdy = θ

∫ ∞
0

∫ ∞
0

(x+ y)2eis(x+y)f(x)f(y)dxdy (3.6)
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where θ = E

[(
X

X + Y

)2
]
, 0 < θ < 1.

Denote the characteristic function of X by

ϕ(s) =
∫ ∞

0
eisxf(x)dx. (3.7)

Then we know that

ϕ
′
(s) = i

∫ ∞
0

xeisxf(x)dx and ϕ
′′
(s) = −

∫ ∞
0

x2eisxf(x)dx. (3.8)

By using (3.7) and (3.8), we can express (3.6) as a differential equation

−ϕ′′(s)ϕ(s) = θ
[
−ϕ′′(s)ϕ(s)− 2ϕ

′
(s)ϕ

′
(s)− ϕ′′(s)ϕ(s)

]
that is,

ϕ
′′
(s)

ϕ′(s)
=

2θ
1− 2θ

ϕ
′
(s)

ϕ(s)
, 0 < θ < 1.

After integrating and taking the initial conditions ϕ(0) = 1, ϕ
′
(0) = iE(X), we

obtain
ϕ
′
(s) = iE(X)ϕ(s)

2θ
1−2θ . (3.9)

Note that θ = E

[(
X

X + Y

)2
]

= E

[(
Y

X + Y

)2
]

for i.i.d. random variables X

and Y . Then,

2θ = E

[
X2 + Y 2

(X + Y )2

]
= E

[
1

1 + 2XY
X2+Y 2

]
. (3.10)

Note that, for x > 0, y > 0, 0 < 2xy ≤ x2 + y2, and the equality on the right
hand side occurs only if x = y. By the assumed continuity of F (x), P (x = y) = 0, so

0 <
2xy

x2 + y2
< 1, that is, by (3.10),

1
4
< θ <

1
2
. (3.11)

Hence, from (3.9) and (3.11), by uniqueness theorem of the differential equation

for
2θ

1− 2θ
> 1, there exists a unique solution

ϕ(s) =
(

1− iE(X)
λ

s

)−λ
where λ =

1− 2θ
4θ − 1

> 0.

This completes the proof.
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Proof of Theorem 2.2. Since
(

Z

Z +W

)2

and
(

W

Z +W

)2

are scale invariant statistics,

by Lukacs and Laha (1964),
(

Z

Z +W

)2
(
or

(
W

Z +W

)2
)

is independent of Z +

W = X + Y for gamma variables. So, we have to prove the converse. Denote the

characteristic functions of
(

Z

Z +W

)2

, Z +W and

((
Z

Z +W

)2

, Z +W

)
by φ1(t),

φ2(t) and φ(t, s) respectively.

The independence of
(

Z

Z +W

)2

and Z +W is equivalent to

φ(t, s) = φ1(t)φ2(t). (3.12)

Then (3.12) gives∫ ∞
0

∫ ∞
y

e
it( x

x+y
)2+is(x+y)

f(x)f(y)dxdy

=
(∫ ∞

0

∫ ∞
y

e
it( x

x+y
)2
f(x)f(y)dxdy

)(∫ ∞
0

∫ ∞
0

eis(x+y)f(x)f(y)dxdy
)
.

(3.13)

Since
(

W

Z +W

)2

=
(

1− Z

Z +W

)2

,

(
W

Z +W

)2

and Z+W are also independent.

So an equation similar to (3.12) holds for
(

W

Z +W

)2

and Z +W .

Then we have

∫ ∞
0

∫ y

0
e
it( x

x+y
)2+is(x+y)

f(x)f(y)dxdy

=
(∫ ∞

0

∫ y

0
e
it( x

x+y
)2
f(x)f(y)dxdy

)(∫ ∞
0

∫ ∞
0

eis(x+y)f(x)f(y)dxdy
)
.

(3.14)

Adding equations (3.13) and (3.14), we have∫ ∞
0

∫ ∞
0

e
it( x

x+y
)2+is(x+y)

f(x)f(y)dxdy

=
(∫ ∞

0

∫ ∞
0

e
it( x

x+y
)2
f(x)f(y)dxdy

)(∫ ∞
0

∫ ∞
0

eis(x+y)f(x)f(y)dxdy
)
.

(3.15)

The integrals in (3.15) exist not only for reals t and s but also for complex values
t = u + iv, s = u∗ + iv∗, where u and u∗ are reals, for which v = Im(t) ≥ 0,
v∗ = Im(s) ≥ 0 and they are analytic for all t, s for v = Im(t) > 0, v∗ = Im(s) > 0
[see Lukacs (1955)].
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Differentiating (3.15) one time with respect to t and then two times with respect
to s, and setting t = 0, we get∫ ∞

0

∫ ∞
0

x2eis(x+y)f(x)f(y)dxdy = θ

∫ ∞
0

∫ ∞
0

(x+ y)2eis(x+y)f(x)f(y)dxdy (3.16)

where θ = E

[(
X

X + Y

)2
]
, 0 < θ < 1.

By the same method of proof of Theorem 2.1, there exists a unique solution

ϕ(s) =
(

1− iE(X)
λ

s

)−λ
where λ =

1− 2θ
4θ − 1

> 0.

This completes the proof.
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