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Abstract. This paper presents a new cryptomorphic mathematical structure

of the Moore system, called Moore convergence class of families of nets. It is

proved that, for a given set X, appropriate order relation ≤ can be defined on
MCCFN(X) (the set of all Moore convergence classes of families of nets on X)

and a one-to-one correspondence τ : (MCCFN(X),≤) −→ (MS(X),⊇) (the set

of all Moore systems on the set X) can be defined such that (MCCFN(X),≤)
is a complete lattice and τ is a complete lattice isomorphism. This means

that Moore systems and Moore convergence classes of families of nets are

cryptomorphic mathematical structures. It is also proved (by considering the
restrictions of τ) that pre-cotopologies and pre-convergence classes of families

of nets are cryptomorphic mathematical structures and that cotopologies and

convergence classes of nets are cryptomorphic mathematical structures (a clas-
sical result). This naturally gives a new approach to a Moore system and a

pre-cotopology.

1. Introduction and preliminaries

Let X be a set. By a cotopology on X we mean a family F of subsets (called
closed sets) of X with F ′ = {V | X − V ∈ F} a topology on X. By a topological
closure operator (or Kuratowski closure operator) on X we mean a mapping c :
2X −→ 2X (the set of all subsets of X) which satisfies the following conditions
(CO1)–(CO4):

(CO1) c(∅) = ∅.
(CO2) A ⊆ c(A) (∀A ∈ 2X).
(CO3) c(A ∪B) = c(A) ∪ c(B) (∀A,B ∈ 2X).
(CO4) c(c(A)) = c(A) (∀A ∈ 2X).

Denote the set of all cotopologies on X by CT(X), and the set of all topologi-
cal closure operators on X by TCL(X). Define a binary relation ≤ on TCL(X)
by putting c1 ≤ c2 iff c1(A) ⊆ c2(A) (∀A ∈ 2X). Then both (CT(X),⊇) and
(TCL(X),≤) are complete lattices, and there exists a one-to-one correspondence
φ0 : (TCL(X),≤) −→ (CT(X),⊇) such that both φ0 and its inverse mapping φ−1
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preserve orders (and thus both preserve infimum and supremum, [9]), i.e. φ0 is a
complete lattice isomorphism. In this case, we say that cotopologies and topological
closure operators are cryptomorphic mathematical structures (or there is a cryp-
tomorphic relationship between cotopologies and topological closure operators).
Finding a cryptomorphic version of a mathematical structure A or establishing a
cryptomorphic relationship between A and another mathematical structure B is of
much importance. For example, tools and results developed in A can be translated
to B, and vice versa. There is a cryptomorphic relationship between cotopologies
and interior operators (resp., exterior operators, boundary operators, derived oper-
ators, difference derived operators, neighborhood operators, remote neighborhood
operators and convergence class operators) ([9, 12, 23, 27, 30]). There is also a
cryptomorphic relationship between systems of matroid independent sets and sys-
tems of matroid minimal circuits (resp., matroid bases, matroid rank functions,
matroid closure operators, systems of matroid closed sets, matroid derived opera-
tors and matroid difference derived operators) ([26]). Encouraged by applications
of Moore systems in some non-mathematics areas ([1, 21, 22]), this paper will
study cryptomorphic mathematical structures of Moore systems (see the following
Definition 1.1, which is a kind generalization of cotopologies).

Definition 1.1. [4, 11, 20] Let X be a set. If F ⊆ 2X is closed under the
operations of arbitrary intersection (here we make an agreement that

∧
∅ = X),

then we call F a Moore system on X, and (X,F ) a Moore space. Any element
in F is called a closed set. A Moore space (X,F ) satisfying ∅ ∈ F is called a
pre-cotopological space (in this case, F is called a pre-cotopology). The set of
all Moore systems (resp., all pre-cotopologies) on X is denoted by MS(X) (resp.,
PCT(X)).

Definition 1.2. [3, 6] A Moore closure operator on a given set X is a mapping
c : 2X −→ 2X which satisfies the following conditions:

(C1) A ⊆ B implies c(A) ⊆ c(B) (∀A,B ∈ 2X).
(C2) A ⊆ c(A) (∀A ∈ 2X).
(C3) c(c(A)) = c(A) (∀A ∈ 2X).

A Moore closure operator c on X satisfying c(∅) = ∅ is called a pre-closure operator.
The set of all Moore closure operators (resp., all pre-closure operators) on X is
denoted by MCL(X) (resp., PCL(X)).

Moore closure operator is a cryptomorphic mathematical structure (see [25])
of Moore system, and both occur in a quantity of domains: algebra, topology, ge-
ometry (see [6, 24]), lattice theory, logic (see [2, 3, 17]), combinatorics, computer
science (see [4]), relational data bases (see [5]), data analysis (see [8, 10]), knowl-
edge structures (see [7]), mathematical social sciences (see [13, 14, 18]), artificial
life (see [1]), evolutionary theory (see [22]), combinatorial chemistry (see [22]),
evolutionary biology (see [21]), etc. This paper will present a new cryptomorphic
version of Moore systems, called Moore convergence classes of families of nets. We
also prove that pre-cotopologies and pre-convergence classes of families of nets are
cryptomorphic mathematical structures, and this generalizes the main result in [29]
from a finite set to an arbitrary set.

Now we introduce some preliminary notions and results needed in this paper.
It is well-known that net is a very useful tool for the convergence theory in topology
[12]. But it is not in a Moore system and in a pre-cotopology since the intersection
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of two closed sets may be not a closed set. Thus we give a new notion — a family
of nets in place of net.

Definition 1.3. [29] Let X be a set. A family S = {Si | i ∈ T} of nets (i.e.
Si is a net for each i ∈ T ) in X is said to be a family of subnets of another family
S = {Si | i ∈ T} of nets in X if Si is a subnet of Si for each i ∈ T .

Remark 1.4. The empty family of nets will be regarded as a family of subnets
of any family of nets.

Definition 1.5. Suppose that F is a Moore system on X, x ∈ X, and S is a
family of nets in X.

(1) U ∈ 2X is called a closed remote neighborhood of x related to F iff it
satisfies U ∈ F and x /∈ U . The set of all closed remote neighborhoods of x related
to F is denoted by F (x).

(2) S is said to converge to x with respect to F iff there exists a net S ∈ S
which is eventually not in U for all U ∈ F (x) (that is, there exists m ∈ D such that
S(n) /∈ U when m ≤ n). Clearly, any family S of nets (particularly, empty family
of nets) converges to x if F (x) = ∅ and empty family of nets does not converge to
x whenever F (x) 6= ∅.

Surprisingly, empty family of nets (which is written as ∅) is of much importance
in a Moore system, that is why we give an emphasis on empty family of nets in
Remark 1.4 and Definition 1.5.

Convergence is an important and commonly used definition in general topology
and fuzzy topology (see [12, 15]). A convergence theory, which is different from
the others, is introduced in the following.

Definition 1.6. A space of Moore convergence class of families of nets is a
pair (X, (Φ, F )), where X is a set, F ⊆ X such that the following conditions are
satisfied (the pair (Φ, F ) is called a Moore convergence class of families of nets):

(S1) {(S , x) | S is a family of nets in X, x ∈ F} ⊆ Φ.
(S2) For each x ∈ X − F , (∅, x) /∈ Φ.
(S3) If S is a family of nets in X which contains a net S taking a constant

value x ∈ X, then (S , x) ∈ Φ.
(S4) If (S , x) ∈ Φ and S is a nonempty family of subnets of S , then (S , x) ∈

Φ.
(S5) If S is a nonempty family of nets and (S , x) 6∈ Φ, then there exists a

nonempty family S of subnets of S such that (S , x) 6∈ Φ for any family S of
nets in Img(S ) =

⋃
{Img(S) | S ∈ S )}, where Img(S) denotes the range of S

(S ∈ S ).
(S6) Let (S , x) ∈ Φ. If, for each member S = {S(m) | m ∈ D} of S and each

m ∈ D, there exists a nonempty family S(S,m) = {{S(m,n) | n ∈ E} | E ∈ TS(m)}
of nets in X (here TS(m) is a family of directed sets) such that (S(S,m), S(m)) ∈ Φ,
then (S ∗, x) ∈ Φ for some IS ∈

∏
m∈D TS(m), where

S ∗ = {{S ◦RIS
(m, f) | (m, f) ∈ D ×

∏
m∈D

IS(m)} | S = {S(m) | m ∈ D}, S ∈ S },

RIS
(m, f) = (m, f(m)) and D ×

∏
m∈D IS(m) is a directed set with point-wise

order.
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A Moore convergence class (Φ, F ) of families of nets satisfying F = ∅ is called a
pre-convergence class of families of nets. The set of all Moore convergence classes of
families of nets (resp., all pre-convergence classes of families of nets) on X is denoted
by MCCFN(X) (resp., PCCFN(X)). In this paper, we will make no distinction
between a special family S = {S} of nets and its unique member S. In this way,
we may verify that the notions defined in Definitions 1.5 and 1.6 is a generalization
of the corresponding notions defined for nets. We will use CCN(X) to denote the
set of all convergence classes of nets on X.

Remark 1.7. For each c ∈ MCL(X), let F (c) = Fc = {A ∈ 2X | c(A) = A}.
Then we obtain a mapping φ : MCL(X) −→ MS(X). It can be shown that
φ|TCL(X) = φ0, φ|PCL(X) : PCL(X) −→ PCT(X) and φ are one-to-one corre-
spondences, and its inverse mapping is defined as c(A) = {x ∈ X | (X−V )∩A 6= ∅
for each V ∈ F (x)} ∪ c(∅) (see [25]). One can also define a one-to-one correspon-
dence ϕ0 : CCN(X) −→ TCL(X) (cf. [12]). In this paper we will define an order
relation ≤ on MCCFN(X) such that (MCCFN(X),≤) is a complete lattice, and
define a complete lattice isomorphism ϕ : (MCCFN(X),≤) −→ (MCL(X),≤) such
that φ ◦ ϕ|CCN(X) = φ0 ◦ ϕ0 : (CCN(X),≤) −→ (CT(X),⊇), φ ◦ ϕ|PCCFN(X) :
(PCCFN(X),≤) −→ (PCT(X),⊇), and φ ◦ϕ : (MCCFN(X),≤) −→ (MS(X),⊇)
are all complete lattice isomorphisms.

Lemma 1.8. [4] Let X be a complete lattice, and Y a poset. If there is an
order-isomorphism f : X −→ Y (i.e. f is a one-to-one correspondence, and both
f and its inverse mapping f−1 are order-preserving), then Y is a complete lattice
too.

2. Main results

For a given set X, let ≤ be a relation on MCCFN(X) defined by (Φ1, F1) ≤
(Φ2, F2) if and only if F1 ⊆ F2 and Φ1 ⊆ Φ2, and define the relation ≤ on MCL(X)
by c1 ≤ c2 if and only if c1(A) ⊆ c2(A) (∀A ∈ 2X).

Theorem 2.1. For any set X, (MCCFN(X),≤) and (MCL(X),≤) are com-
plete lattices and they are isomorphic.

Proof. Step 1 For each (Φ, F ) ∈ MCCFN(X), let ϕ(Φ, F )(A) = {x ∈ X |
(S , x) ∈ Φ for some family of nets S in A} (∀A ∈ 2X). Then ϕ(Φ, F ) is a Moore
closure operator on X, and thus ϕ : (MCCFN(X),≤) −→ (MCL(X),≤) is a map-
ping. Obviously, ϕ(Φ, F ) satisfies (C1). For each A ∈ X, we have A ⊆ ϕ(Φ, F )(A)
by (S3), thus (C2) holds. It remains to show ϕ(Φ, F )(A) = ϕ(Φ, F )(ϕ(Φ, F )(A)).
By (C2), it suffices to show ϕ(Φ, F )(ϕ(Φ, F )(A)) ⊆ ϕ(Φ, F )(A). For each x ∈
ϕ(Φ, F )(ϕ(Φ, F )(A)), if x ∈ F , then, by (S1), there exists a family of nets S in
A such that (S , x) ∈ Φ, and thus x ∈ ϕ(Φ, F )(A). If x /∈ F , then, by (S2), there
exists a nonempty family of nets S in ϕ(Φ, F )(A) such that (S , x) ∈ Φ. That is,
for each member S = {S(m) | m ∈ D} of S , S(m) ∈ ϕ(Φ, F )(A) (∀m ∈ D). It
follows from definition of ϕ(Φ, F )(A) that there exists a family of nets S(S,m) in A
such that (S(S,m), S(m)) ∈ Φ. If S(S,m) is an empty family of nets for some m ∈ D,
then S(m) ∈ F by (S2). Replace S(S,m) by any nonempty family of nets T(S,m)

in A, then, by (S1), (T(S,m), S(m)) ∈ Φ. In this process, we obtain a nonempty
family of nets S(S,m) in A such that (S(S,m), S(m)) ∈ Φ for each S and m ∈ D.
By (S6), there exists a family of nets S ∗ in A such that (S ∗, x) ∈ Φ, which means
x ∈ ϕ(Φ, F )(A). Therefore, ϕ(Φ, F )(ϕ(Φ, F )(A)) ⊆ ϕ(Φ, F )(A).
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Step 2 For each c ∈MCL(X), let ψ(c) = (Φ, c(∅)), where Φ = {(S , x) | x ∈ X,
S is a family of nets in X which converges to x with respect to Fc },Fc is the
Moore system on X induced by c. Then ψ(c) = (Φ, c(∅)) is a Moore convergence
class of families of nets on X, and thus ψ : (MCL(X),≤) −→ (MCCFN(X),≤) is a
mapping. Let F = c(∅). Obviously, Φ satisfies (S1)–(S4). It remains to verify that
Φ satisfies (S5) and (S6).

Suppose that S is a nonempty family of nets and (S , x) 6∈ Φ. Then x /∈ F ,
and thus Fc(x) 6= ∅. Since S does not converge to x with respect to Fc (i.e. there
exists a closed remote neighborhood U of x related to Fc such that each member S
of S has a subnet S which is in U), we obtain a family S = {S | S ∈ S } of subnets
of S , where S = {S(m) | m ∈ D} (S ∈ S ). Let AS =

⋃
S∈S {S(m) | m ∈ D},

and S be a family of nets in AS . If S is a nonempty family of nets, then S is in
U , and thus does not converge to x with respect to Fc, that is (S , x) /∈ Φ. If S

is an empty family of nets, then (S , x) /∈ Φ by (S2) and the fact x /∈ F . Therefore
Φ satisfies (S5).

We now prove that Φ satisfies (S6). Let S be a nonempty family of nets and
(S , x) ∈ Φ. If x ∈ F , then any family of nets converges to x with respect to Fc.
Suppose x /∈ F and for each member S = {S(m) | m ∈ D} of S and each m ∈ D,
there exists a nonempty family S(S,m) = {{S(m,n) | n ∈ E} | E ∈ TS(m)} of
nets in X such that (S(S,m), S(m)) ∈ Φ. For each member S = {S(m) | m ∈ D}
of S , we need to find an IS ∈

∏
m∈D TS(m) such that (S ∗, x) ∈ Φ, where

S ∗ = {{S ◦RIS
(m, f) | (m, f) ∈ D ×

∏
m∈D

IS(m)} | S = {S(m) | m ∈ D}, S ∈ S }.

Since x /∈ F , F ∈ Fc(x), which implies Fc(x) 6= ∅. Take an arbitrary member
U of Fc(x). As (S , x) ∈ Φ, there exists a member S = {S(m) | m ∈ D} of S
which is eventually not in U (i.e. there exists an mU ∈ D such that S(m) /∈ U
whenever m ≥ mU ). Consequently, U ∈ Fc(S(m)) (m ≥ mU ). For such a member
S of S and each m ≥ mU , as the corresponding nonempty family S(S,m) of nets
satisfies (S(S,m), S(m)) ∈ Φ, there exists a member S(S,m,U) = {S(m,n) | n ∈ Em

U }
of S(S,m) which is eventually not in U (i.e. there exists an nU ∈ Em

U such that
S(m,n) /∈ U whenever n ≥ nU ). For such a net S, first fix Em ∈ TS(m) for each
m ∈ D satisfying m 6≥ mU , and then define an IS ∈

∏
m∈D TS(m) as follows:

IS(m) =
{
Em

U , m ≥ mU ,
Em, m 6≥ mU .

We will show that IS is the required one. First fix nm ∈ Em for each m ∈ D
satisfying m 6≥ mU , and then define an fS ∈

∏
m∈D IS(m) as follows:

fS(m) =
{
nU , m ≥ mU ,
nm, m 6≥ mU .

We obtain a member S ◦ RIS
of S ∗ which is eventually not in U because S ◦

RIS
(m, f) = S(m, f(m)) /∈ U whenever (m, f) ≥ (mU , fS). As U ∈ Fc(x) is

arbitrary, S ∗ converges to x with respect to Fc, i.e. (S ∗, x) ∈ Φ.
Step 3 ψ ◦ ϕ(Φ, F ) = (Φ, F ) (∀(Φ, F ) ∈ MCCFN(X)), i.e. F1 = F and

Φ1 = Φ hold, where F1 = ϕ(Φ, F )(∅) and Φ1 = {(S , x) | S is a family of nets
which converges to x with respect to Fϕ(Φ,F )}. It can be easily seen from (S1),
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(S2) and definition of ϕ(Φ, F )(∅) that ϕ(Φ, F )(∅) = F . Therefore we only need to
show Φ1 = Φ.

First, we show Φ1 ⊆ Φ. For each (S , x) ∈ Φ1, if x ∈ F , then, by (S1),
(S , x) ∈ Φ. If x 6∈ F = ϕ(Φ, F )(∅), then Fϕ(Φ,F )(x) 6= ∅, and thus S is a
nonempty family of nets. Assume that (S , x) 6∈ Φ. By (S5), there exists a S

(a nonempty family of subnets of S ) such that (S , x) 6∈ Φ for any family S of
nets in Img(S ). On the other hand, S converges to x with respect to Fϕ(Φ,F )

because S does. Since (S , x) 6∈ Φ, x /∈ F . Then Fϕ(Φ,F )(x) 6= ∅. By Definition
1.5, (X − U) ∩ Img(S ) 6= ∅ for each closed remote neighborhood U of x related
to Fϕ(Φ,F ). By Remark 1.7, x ∈ ϕ(Φ, F )(Img(S )). It follows form definition

ϕ(Φ, F )(Img(S )) that (S , x) ∈ Φ for some family S in Img(S ) of nets. This
contradicts (S5).

Next, we show Φ ⊆ Φ1. For each (S , x) ∈ Φ, if x ∈ F , then x ∈ ϕ(Φ, F )(∅),
and thus S converges to x with respect to Fϕ(Φ,F ), which means (S , x) ∈ Φ1.
Otherwise, x /∈ F and (S , x) ∈ Φ. By (S2), S is a nonempty family of nets.
Suppose that (S , x) 6∈ Φ1 (i.e. S does not converge to x with respect to Fϕ(Φ,F )).
Then no net in S is eventually in X − U for some closed remote neighborhood
U of x related to Fϕ(Φ,F ) (notice that Fϕ(Φ,F )(x) 6= ∅). In other words, for each
member S = {S(m) | m ∈ D} of S , there exists a subnet S = {S(m) | m ∈ D} of
S which is in U . We obtain a family of subnets S = {S | S ∈ S } of S in U. By
(S4), (S , x) ∈ Φ. By definition of ϕ, x ∈ ϕ(Φ, F )(U) = U . This is a contradiction
because x /∈ U .

Step 4 ϕ ◦ ψ(c) = c for each c ∈ MCL(X), i.e. ϕ ◦ ψ(c)(A) = c(A) for
each c ∈ MCL(X) and each A ∈ 2X . First, we show ϕ ◦ ψ(c)(A) ⊆ c(A), where
ϕ ◦ψ(c)(A) = {x ∈ X | there exists a family S of nets in A such that S converges
to x with respect to Fc}. For each x ∈ ϕ ◦ ψ(c)(A), if x ∈ c(∅), then x ∈ c(A) by
(C1). If x 6∈ c(∅), there exists a family S of nets in A such that S converges to x
with respect to Fc. Clearly S is a nonempty family of nets and Fc(x) 6= ∅. For
each U ∈ Fc(x), there exists a member S of S such that S is eventually in X −U ,
thus A ∩ (X − U) 6= ∅. By remark 1.7, x ∈ c(A). Therefore ϕ ◦ ψ(c)(A) ⊆ c(A).

Next, we show c(A) ⊆ ϕ ◦ ψ(c)(A). It can be easily seen from definition of
ϕ ◦ψ(c)(A) that c(∅) ⊆ ϕ ◦ψ(c)(A). Assume that x ∈ c(A)− c(∅) (i.e. Fc(x) 6= ∅).
Then for each U ∈ Fc(x), there exists an aU ∈ X such that aU ∈ A ∩ (X − U).
Let SU be the sequence taking a constant value aU . Then the nonempty family
S ={SU | U ∈ F (x)} of nets in A converges to x with respect to Fc, which means
x ∈ ϕ ◦ ψ(c)(A). Therefore c(A) ⊆ ϕ ◦ ψ(c)(A).

Step 5 From the above, ϕ is a one-to-one correspondence whose inverse map-
ping is ψ. We will prove that both ϕ and ψ are order-preserving mappings.

First, we show that ϕ(Φ1, F1)(A) ⊆ ϕ(Φ2, F2)(A) for any A ∈ 2X , any (Φ1, F1),
and any (Φ2, F2) ∈MCCFN(X) satisfying (Φ1, F1) ≤ (Φ2, F2) (which means ϕ is an
order-preserving mapping). Suppose x ∈ ϕ(Φ1, F1)(A), then there exists a family
of nets S in A such that (S , x) ∈ Φ1. Since Φ1 ⊆ Φ1, (S , x) ∈ Φ2, which means
x ∈ ϕ(Φ2, F2)(A).

Next, assume that c1, c2 are Moore closure operators and c1 ≤ c2, we prove
that F1 ⊆ F2 and Φ1 ⊆ Φ2 (which means ψ is an order-preserving mapping), where
Fi = ci(∅), Φi = {(S , x) | x ∈ X, S is a family of nets in X which converges to
x with respect to Fci}, and Fci is a Moore system on X induced by ci (i = 1, 2).



MOORE SYSTEMS AND MOORE CONVERGENCE CLASSES OF FAMILIES OF NETS 7

Obviously, F1 = c1(∅) ⊆ c2(∅) = F2 since c1 ≤ c2. Suppose that (S , x) ∈ Φ1. If
x ∈ F2, then (S , x) ∈ Φ2. If x /∈ F2, then Fc2(x) 6= ∅. As c1 ≤ c2 and Remark
1.7, we have Fc1 ⊇ Fc2 , and thus Fc1(x) ⊇ Fc2(x). Since (S , x) ∈ Φ1, for each
U ∈ Fc2(x) ⊆ Fc1(x), there exists a member S of S such that S is eventually not
in U , which means that S converges to x with respect to Fc2 . Hence (S , x) ∈ Φ2.

Step 6 As in the case of topological spaces, there exists an order-isomorphism
φ : (MCL(X),≤) −→ (MS(X)(X),⊇) (cf. [25]). By Step 5, φ◦ϕ : (MCCFN(X),≤) −→
(MS(X),⊇) is an order-isomorphism. Clearly (MS(X),⊇) is a complete lattice, and
so is (MCCFN(X),≤) by Lemma 1.8. Therefore (MCCFN(X),≤) is isomorphic to
(MS(X),⊇). �

Corollary 2.2. ϕ(PCCFN(X)) = PCL(X) and ϕ(CCN(X)) = TCL(X), thus
PCCFN(X) is isomorphic to PCL(X) and CCN(X) is isomorphic to TCL(X).

Proof. We only show ϕ(PCCFN(X)) = PCL(X). Suppose that c ∈ PCL(X).
By Step 2 above, ψ(c) = (Φ, c(∅)) is a Moore convergence class of families of
nets. Since c is a pre-closure operator, c(∅) = ∅, and thus ψ(c) ∈ PCCFN(X). It
follows that c = ϕ ◦ ψ(c) ∈ ϕ(PCCFN(X)). Therefore PCL(X) ⊆ ϕ(PCCFN(X).
Conversely, assume that (Φ, F ) ∈ PCCFN(X), then ϕ(Φ, F ) is a Moore closure
operator by Step 1 above. Since (Φ, F ) is a pre-convergence class of families of
nets, F = ∅. By (S2), (∅, x) /∈ Φ for any x in X. Hence ϕ(Φ, F )(∅) = ∅, which
means ϕ(Φ, F ) is a pre-closure operator. Therefore ϕ(PCCFN(X)) ⊆ PCL(X) is
also true. �

Remark 2.3. (1) Corollary 2.2 improves the main result in [29] which says
ϕ(PCCFN(X)) = PCL(X) when X is a finite set.

(2) For a given set X, let CT(X) be the set of all cotopologies on X. If
we use J v L to denote that J is a complete sublattice of the complete lat-
tice L, then we may show CCN(X) v PCCFN(X) v MCCFN(X), TCL(X) v
PCL(X) v MCL(X), and CT(X) v PCT(X) v MS(X). By Theorem 2.1, φ ◦
ϕ : (MCCFN(X),≤) −→ (MS(X),⊇) is an isomorphism; by Corollary 2.2, φ ◦
ϕ|PCCFN(X) : (PCCFN(X),≤) −→ (PCT(X),⊇) and φ ◦ ϕ|CCN(X) = φ0 ◦ ϕ0 :
(CCN(X),≤) −→ (CT(X),⊇) are also isomorphisms.

3. Concluding remarks

Moore system is a useful mathematical structure which occurs in a quantity of
domains, including algebra, topology, geometry, lattice theory, logic, combinatorics,
computer science, relational data base, data analysis, knowledge structure, mathe-
matical social science, etc. Finding a cryptomorphic version of a Moore system is of
much importance. It is well known that Moore closure operator is a cryptomorphic
mathematical structure of Moore system. In this paper we construct a new crypto-
morphic mathematical structure of Moore system, called Moore convergence class
of families of nets, which allows us to study Moore system and related or analogous
system in a different way (we will demonstrate this point in the appendix section).
In addition, there may be some connections between the notion of Moore conver-
gence class of families of nets and multi-agent or multi-source approximation space
(or its generalization, called dynamic space, see [19]). We will discuss this topic in
the subsequent paper.
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4. Appendix

The notion of continuity is an important concept in mathematics (see [16, 28]).
In this appendix we will show an application of Moore convergence classes of families
of nets by using this notion to characterize continuous mappings in Moore spaces.

Theorem 4.1. For a mapping f from one Moore space (X,FX) to another
Moore space (Y,FY ), the following statements are equivalent:

(1) f is continuous, i.e. f−1(B) ∈ FX (∀B ∈ FY ).
(2) If S converges to x, then f ◦S converges to f(x), where f ◦S = {f ◦ S |

S ∈ S }.

Proof. (1) =⇒ (2). Suppose that S is a family of nets which converges to x.
If f(x) ∈ FY (FY is the smallest element in FY ), then f ◦S converges to f(x). If
f(x) /∈ FY , then FY (f(x)) 6= ∅. For each U ∈ FY (f(x)), we have f−1(U) ∈ FX(x)
. Since S converges to x, there exists a member S of S such that S is eventually
not in f−1(U), and thus f ◦ S is eventually not in U . Hence f ◦S converges to
f(x).

(2) =⇒ (1). Assume that B ∈ FY and S is a family of nets in f−1(B) which
converges to x. We show that x ∈ f−1(B), so that f−1(B) ∈ FX . Since S is a
family of nets in f−1(B), f ◦S is a family of nets in B. Further, it follows that
f ◦S converges to f(x). Thus f(x) ∈ B, which implies x ∈ f−1(B). �

Remark 4.2. The notion of Moore convergence class of families of nets can
also be used to define or characterize compact subsets of a Moore space and to
study dynamical systems on a Moore space.
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