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ABSTRACT. We present a new subclass SL¥ of starlike functions which is related to a shell-like
curve. The coefficients of such functions are connected with k-Fibonacci numbers Fj, ,, defined
recurrently by Fro = 0,F, 1 = 1 and Fy,, = kFyp, + Fin—1 for n > 1, where £ is a given
positive real number. We investigate some basic properties for the class Sck.

1. Introduction

Let D = {z: |z|] < 1} denote the unit disc. Let A be the class of all analytic functions f in
the open unit disc D with normalization f(0) =0, f/(0) = 1 and let S denote the subset of A
which is composed of univalent functions. We say that f is subordinate to F' in D, written as
f =< F,if and only if f(2) = F(w(2)) for some analytic function w, w(0) =0, |w(2)| < 1, z € D.
The idea of subordination was used for defining many classes of functions studied in geometric
function theory. Let us recall

5] = {f ca: )

) < p(z), z € ]D)} ) (1.1)

Klg] := {f cA: {1 + ZJ{C(f))] <o), z € D} , (1.2)

where ¢ is analytic in D with ¢(0) = 1. For ¢(2) = (1 + 2)/(1 — z) we obtain the well known

classes §*, IC of starlike and convex functions, respectively. A lot of classes of functions have
been defined by exchanging the function ¢ in (1.1) or in (1.2) by other functions giving very
often an interesting image of the unit circle. If p(z) = (14 (1 —2a)z2)/(1—2), o < 1, then (D)
is the half plane Re(w) > «, and the sets (1.1), (1.2) become the classes S*(«) of starlike or
K () of convex functions of order «, respectively, introduced in [14]. If p(z) = (1+ Az)(1+ Bz),
—1 < B < A <1, then ¢(D) is a disc, and the classes (1.1), (1.2) become the classes considered
in [6, 7]. The class of strongly starlike functions of order 8, 0 < 8 < 1, see [20], we obtain from
(1.1) with p(2) = ((1 4 2)/(1 — 2))”. Then ¢(D) is an angle. If
2 1+ 2\
o) =14 2 (e V)

then (D) is a parabolic region, and the set (1.2) is a class of so called uniformly convex function

introduced [5, 11, 15]. Close related classes, connected with a hyperbola or with an ellipse were
considered in [8, 9, 10]. If ¢(z) = /1 + z, where the branch of the square root is chosen in
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order that v/1 = 1, then (D) is interior of the right loop of the Lemniscate of Bernoulli and
the class (1.1) becomes a class considered in [17, 19]. The function

plz) = (1 n (11J:Zb)/bz)1/a

n (1.1) forms a class considered in [13]. In the above and in other not cited here cases the

function ¢ is a convex univalent function. In [12] Ma and Minda proved some general results
for classes (1.1) and (1.2), where ¢ is assumed to be univalent, ¢(ID) is assumed to be symmetric
with respect to real axis and starlike with respect to ¢(0) = 1. The problems in the classes
defined by (1.1) and by (1.2) become much more difficult if the function ¢ is not univalent. In
[18] the second author defined the class SL of shell-like functions as the set of functions f € A
satisfying the condition that

2f'(z) <
) < p(z),z €D,
where
~ 14 7222 1 V5

= 7 i = ~ —0.61 D.
PR =15 7 0.618, z €

The class SL is a subclass of the class of starlike functions S*. The name attributed to the
class SL is motivated by the shape of the curve

C={p(e"):te0,2m)\{r}},

which is a shell-like curve. Furthermore the coefficients of shell-like functions are connected

with well-known Fibonacci numbers F), defined as
Fob=0,Ff=1and F,,,; = F,+ F,_; forn > 1. (1.3)

More recently, a lot of new studies have been done about several classes of functions related
to shell-like curves connected with Fibonacci numbers (see [1], [2] and [16]).

Motivated by the above studies, we define new subclasses SL* of the class S* where k is
any positive real number. The coefficients of such functions are connected with k-Fibonacci
numbers. For £ = 1, we obtain the class SL of shell-like functions.

For any positive real number k, the k-Fibonacci numbers F},, are defined recurrently by
Fro=0,F;1 =1and Fy41,, = kFyp + Finy forn > 1. (1.4)

The Fibonacci numbers defined in (1.3) we obtain from (1.4) for £ = 1. It is known that the
n'® k-Fibonacci number is given by
(k —m)" — 7

NEEw

(see [3] and [4] for more details about k-Fibonacci numbers).

(1.5)

Fk:,n:

k—vVk24+4

where 7, = 5
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2. The Class SCF

Definition 2.1. Let k be any positive real number. The function f € S belongs to the class
SL" if satisfies the condition that
2f'(2)
f(z)

< pr(2), z €D,

where

1+ 7722 1+ 722 k—+Vk*+4
_ o=
2

5 (2) = _ , L zeD. (21
Pr(2) 1 —kmpz — 7222 1— (1 — 1)z — 1222 : (2.1)

Theorem 2.1. The image of the unit circle of the function py(z) defined in (2.1) is the curve
Ci. with equation

kvk? 44 (4cosf — k*)sin 6

e 2[k%+2—2cosb]’ V= 2[k2+2—2cosO][1 + cosb]’ o€ l0,2m\ {r} (22)

Proof. The proof follows by some straightforward calculations. OJ

Recall that the curve which is called conchoid of Sluze has the following equation

a(z —a) (2* +y*) + N2 =0, (2.3)
where @ > 0 and A > 0. For A = 2a/k, the conchoid of Sluze (2.3) becomes the curve:
4 — k?
2?4+ (v —a)y® + ( 2 ) azr® = 0. (2.4)

For k = 1, this curve is the trisectrix of Maclaurin.

We can find the corresponding Cartesian equation of the curve C;, with equation (2.2) as

[(8 + 2z — k\/W] )2 = (—]‘62];4 - 2a;> (\/Mx - k)2 . (2.5)

If we rewrite (2.5) in the following form

3 2
k\/k2+4_x +4—k2 EvVk? +4 k\/k2+4_m
k% +4 k2 "2(k2+4) \ k244

[(k:\/k2+4 ) i +4|
+i{|—— 2 y =0,

k2 + 4 - 2(k2 4 4)

then the image of the unit circle under the function py is translated into a curve with equation

(2.4) where

27, (1-kVE?+4)
kR4 Lo

Tk 14 2(k2 + 4)
Therefore the curve Cy has a shell-like shape and symmetric with respect to the real axis, see

Figure 1.
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FIGURE 1. The curve Ci, for k = %

For k < 2, note that we have
~ +i arccos(ﬁ> k V k2 + 4
p\e * = T75 4
k2+4
kVE2+4

and so the curve C, intersects itself on the real axis at the point . Thus C;, has a loop

k244
intersecting the real axis at the points e = £ kvfij[‘l and f = Y&+ k -+ For k > 2, the curve C, has

no loops and it is like a conchoid.

Corollary 2.1. For each k > 0, SL* C S*(ay) where o = k(vk’;iz) = 2(5#?& that is, f € SLF

is starlike of order ay.

The function py deﬁned in (2.1) is not univalent in D. For example, we have p;(0) = p(52) =

1 and p(1) = p(7}) = YE2H2. We can give the following theorem.

Theorem 2.2. For each k > 0 the function py, is univalent in the disc D, = {z:|z| < ry},

—VE2+4 K -2k+44+ (k-2)VEk2 +4

where

_ 2.6
& ki 2k (2:6)
and it is not univalent in the disc D, for each r > ry.
Proof. Suppose that pg(z) = pr(w) for some z,w € D . After some calculations we have
2Tk2’ + k
— —— ] =0. 2.7
e (2 = w) (w kriz — 27’k) 27)
We see that the function
21,2 + k
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2k(1+27772)

maps a circle |z| = r < 2/(k7;) onto a circle centered at m = (k) and of radius
Tk - Tk7'
p = 4T(22+f)2 with the diameter from gi(—7r) to gg(r). Therefore g, maps the circle |z| = 7y

onto a mrcle with the diameter from the point gx(ry) = 7, to the point gp(—rg). We have
gk(—7%) > gr(ry) = ri for all k£ because the function gi(x), x € R has negative derivative for
all real x. Therefore, if |w| < ry and |z| < 7, then the third factor in (2.7) is equal to 0 for
w = z — 1, only. Consequently, we see that (2.7) is not satisfied when |w| < 7 and |z| < 7,
which proves that in the disc (2.6) the function py(z) is univalent.

On the other hand, the derivative of the function py(z) is

(z — 1) <z - —2+‘/m>

kTy

ﬁ
z g
Pr(2) (1 — kmpz — 7,322)2

The function pj,(z) vanishes at the point z = 7, and hence we see that the function py(z) fails
to be univalent for |z| > 7. O

Theorem 2.3. Let (Fj,) be the sequence of k-Fibonacci numbers defined in (1.4). If

1+7’,§
=1 n<
Pr(z) = 1 — kmpz — 7222 —i—Zp

then we have

Pn = (Fk,n71+Fk,n+1)T]?; n = 1,2,3,... . (28)
Proof. Let us denote u = 72, |u| < |7%|. Using the equations 74 (k — 7)) = —1 and 27, — k =
—V k% + 4, we have
Bu(2) 1+ 7222 1+ u? +1 U
z ey = = u — _—
Pk 1 —kmz — 7222 1—ku—u? w) 1—ku—u?

_ (m%)@(li— 1+1k )
- (D) (8- (2]

- () S

n=1

Now by the equation (1.5), we find

u(z) = (u + %) iFku

n=1

=1 + Z (Fk,n—l + Fk,n+1) u

n=1

= 1+ Z (Frn—1 + Fingr) 702",

n=1
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and hence we obtain (2.8). O

Theorem 2.4. A function f € S belongs to the class SLF if and only if there exists a function

1+TkZ

q, g < 5k(2> = [ such that

f(z) = zexp/q(C)T_ldC, z € D. (2.9)

0

Proof. Let f € SC*. Then by definition

2f'2) _ -
=p(w(2)), |lw(z)| <1, z€D. 2.10
e (w(2)), |w(2)] (2.10)
If we take ¢(z) = p(w(z)), we see that the equation (2.10) is equivalent to (2.9). O
For pi(z) = % the formula (2.9) gives fo(z) = ===z Hence the function f,
k

belongs to the class Sﬁk and it is extremal function for several problems in this class.

Theorem 2.5. If f(2) = 2+ > a,2" belongs to the class SL*, then we have
n=2

|an| < |7 Fo, (2.11)

where (Fy.,,) is the sequence of k-Fibonacci numbers and 7, = *=VF+1 V2k2+4. Equality holds in (2.11)
for the function fo(z) = ——2——

1—krpz—Tp2%"

Proof. Let f € SCF, f(2) = Z amz™, ag = 0, a; = 1. By the definition of the class SL*, there

exists a function w, |w(z)| < 1 for z € D such that

zf'(2) 14 72w(2)
f(z)  1—=knw(z) — tRw(2)
We get
2f'(2) = [(2) = knw(2)2f'(2) + 7iw?(2) [2f'(2) + f(2)],
i —1)ay,2" = kaw(z)imamzm + 1w (2 i (m + 1Day,z™
m=1 m=1 m—1
and so

n 00 n—2

Z(m — Damz" + Z 2™ = kmpw(z Zmamz + TP (2 )Z(m + Damz™.

m=1 m=n-+1 m=1
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For n > 2, we find

2

Z(m — Da,z™ + i 2™

m=1 m=n+1

2

[\

n—1 n—
= krkw(z)Zmamzm + 720 (2)Y  (m A+ 1Day,z"
1

m=1

3
I

n—1 2

n—1
kT, g My 2™ + Tw(z) E Mayy_12™ !
m=1

m=1

IN

n—1
12
g | kTimam 2™ + Tpw(2)mam, 12"

m=1
n—1

IN

IN

2 12 _
E (\kamamzm\ + }T,fmam,lzm 1} +2|k7',§m2amam,122m 1|)

m=1

Integrating the both sides of this inequality around z = e and taking limit r — 1~ we

obtain

Yo m=1an + > lenl
m=1 m=n+1

n—1 n—1 n—1
< ]{?27']?27712 lam|® + T,meQ |am1|* + 2k |72 ZmQ || |@m—1]
m=1 m=1 m=1
and hence we find

(n—1)*|an |

n—1 n—1 n—1
< > {RPm? = (m =12} aw? + > nim? |amo |+ ) D 2kmPm? |am] |am-1](2.12)
m=1

m=1 m=1
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The inequality (2.11) holds for n = 1. Assume that the estimation (2.11) holds for all natural
numbers less or equal to n. Then from (2.12) and from (2.11) we have

TL2 ’an-&-l’Q
< YR = (m = 0P} anl® + 7D m? fan o+ 28 Y m? Ja lan-|
m=1 m=1 m=1
—_— 2 . - 2
< Z {K2r2m? — (m = 1)} {ml " P} + 7> m? {7 2 Frn1 }
m=1
+2k |7 ZWQ {I7™ P } {176 Frm1 }
m=1
- m m— 2
= > [ (kP + Fon )Y = (m = 1 {7l " Fi )|
m=1
- m m— 2
= > [ Fimsa} = (m = 1 {7l B}
m=1
= 0¥ {Fnin ) (2.13)
In this way we have proved by induction the inequality (2.11) for all n € N. O
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