ON STARLIKE FUNCTIONS CONNECTED WITH k-FIBONACCI NUMBERS

NİHAL YILMAZ ÖZGÜR, JANUSZ SOKÓŁ

Abstract

We present a new subclass $\mathcal{S} \mathcal{L}^{k}$ of starlike functions which is related to a shell-like curve. The coefficients of such functions are connected with k-Fibonacci numbers $F_{k, n}$ defined recurrently by $F_{k, 0}=0, F_{k, 1}=1$ and $F_{k, n}=k F_{k, n}+F_{k, n-1}$ for $n \geq 1$, where k is a given positive real number. We investigate some basic properties for the class $\mathcal{S} \mathcal{L}^{k}$.

1. Introduction

Let $\mathbb{D}=\{z:|z|<1\}$ denote the unit disc. Let \mathcal{A} be the class of all analytic functions f in the open unit disc \mathbb{D} with normalization $f(0)=0, f^{\prime}(0)=1$ and let \mathcal{S} denote the subset of \mathcal{A} which is composed of univalent functions. We say that f is subordinate to F in \mathbb{D}, written as $f \prec F$, if and only if $f(z)=F(\omega(z))$ for some analytic function $\omega, \omega(0)=0,|\omega(z)|<1, z \in \mathbb{D}$. The idea of subordination was used for defining many classes of functions studied in geometric function theory. Let us recall

$$
\begin{gather*}
\mathcal{S}^{*}[\varphi]:=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z), z \in \mathbb{D}\right\}, \tag{1.1}\\
\mathcal{K}[\varphi]:=\left\{f \in \mathcal{A}:\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \prec \varphi(z), z \in \mathbb{D}\right\}, \tag{1.2}
\end{gather*}
$$

where φ is analytic in \mathbb{D} with $\varphi(0)=1$. For $\varphi(z)=(1+z) /(1-z)$ we obtain the well known classes $\mathcal{S}^{*}, \mathcal{K}$ of starlike and convex functions, respectively. A lot of classes of functions have been defined by exchanging the function φ in (1.1) or in (1.2) by other functions giving very often an interesting image of the unit circle. If $\varphi(z)=(1+(1-2 \alpha) z) /(1-z), \alpha<1$, then $\varphi(\mathbb{D})$ is the half plane $\mathfrak{R e}(w)>\alpha$, and the sets (1.1), (1.2) become the classes $\mathcal{S}^{*}(\alpha)$ of starlike or $\mathcal{K}(\alpha)$ of convex functions of order α, respectively, introduced in [14]. If $\varphi(z)=(1+A z)(1+B z)$, $-1<B<A \leq 1$, then $\varphi(\mathbb{D})$ is a disc, and the classes (1.1), (1.2) become the classes considered in [6, 7]. The class of strongly starlike functions of order $\beta, 0<\beta \leq 1$, see [20], we obtain from (1.1) with $\varphi(z)=((1+z) /(1-z))^{\beta}$. Then $\varphi(\mathbb{D})$ is an angle. If

$$
\varphi(z)=1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}
$$

then $\varphi(\mathbb{D})$ is a parabolic region, and the set (1.2) is a class of so called uniformly convex function introduced $[5,11,15]$. Close related classes, connected with a hyperbola or with an ellipse were considered in $[8,9,10]$. If $\varphi(z)=\sqrt{1+z}$, where the branch of the square root is chosen in

[^0]order that $\sqrt{1}=1$, then $\varphi(\mathbb{D})$ is interior of the right loop of the Lemniscate of Bernoulli and the class (1.1) becomes a class considered in [17, 19]. The function
$$
\varphi(z)=\left(\frac{1+z}{1+(1-b) / b z}\right)^{1 / \alpha}
$$
in (1.1) forms a class considered in [13]. In the above and in other not cited here cases the function φ is a convex univalent function. In [12] Ma and Minda proved some general results for classes (1.1) and (1.2), where φ is assumed to be univalent, $\varphi(\mathbb{D})$ is assumed to be symmetric with respect to real axis and starlike with respect to $\varphi(0)=1$. The problems in the classes defined by (1.1) and by (1.2) become much more difficult if the function φ is not univalent. In [18] the second author defined the class $\mathcal{S} \mathcal{L}$ of shell-like functions as the set of functions $f \in \mathcal{A}$ satisfying the condition that
$$
\frac{z f^{\prime}(z)}{f(z)} \prec \widetilde{p}(z), z \in \mathbb{D}
$$
where
$$
\widetilde{p}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}, \tau=\frac{1-\sqrt{5}}{2} \approx-0.618, z \in \mathbb{D}
$$

The class $\mathcal{S L}$ is a subclass of the class of starlike functions \mathcal{S}^{\star}. The name attributed to the class $\mathcal{S L}$ is motivated by the shape of the curve

$$
\mathcal{C}=\left\{\widetilde{p}\left(e^{i t}\right): t \in[0,2 \pi) \backslash\{\pi\}\right\}
$$

which is a shell-like curve. Furthermore the coefficients of shell-like functions are connected with well-known Fibonacci numbers F_{n} defined as

$$
\begin{equation*}
F_{0}=0, F_{1}=1 \text { and } F_{n+1}=F_{n}+F_{n-1} \text { for } n \geq 1 \tag{1.3}
\end{equation*}
$$

More recently, a lot of new studies have been done about several classes of functions related to shell-like curves connected with Fibonacci numbers (see [1], [2] and [16]).

Motivated by the above studies, we define new subclasses $\mathcal{S} \mathcal{L}^{k}$ of the class \mathcal{S}^{\star} where k is any positive real number. The coefficients of such functions are connected with k-Fibonacci numbers. For $k=1$, we obtain the class $\mathcal{S} \mathcal{L}$ of shell-like functions.

For any positive real number k, the k-Fibonacci numbers $F_{k, n}$ are defined recurrently by

$$
\begin{equation*}
F_{k, 0}=0, F_{k, 1}=1 \text { and } F_{k+1, n}=k F_{k, n}+F_{k, n-1} \text { for } n \geq 1 . \tag{1.4}
\end{equation*}
$$

The Fibonacci numbers defined in (1.3) we obtain from (1.4) for $k=1$. It is known that the $\mathrm{n}^{t h} k$-Fibonacci number is given by

$$
\begin{equation*}
F_{k, n}=\frac{\left(k-\tau_{k}\right)^{n}-\tau_{k}^{n}}{\sqrt{k^{2}+4}} \tag{1.5}
\end{equation*}
$$

where $\tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2}$ (see [3] and [4] for more details about k-Fibonacci numbers).

2. The Class $\mathcal{S} \mathcal{L}^{k}$

Definition 2.1. Let k be any positive real number. The function $f \in \mathcal{S}$ belongs to the class $\mathcal{S} \mathcal{L}^{k}$ if satisfies the condition that

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \widetilde{p}_{k}(z), z \in \mathbb{D}
$$

where

$$
\begin{equation*}
\widetilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}=\frac{1+\tau_{k}^{2} z^{2}}{1-\left(\tau_{k}^{2}-1\right) z-\tau_{k}^{2} z^{2}}, \tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2}, z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

Theorem 2.1. The image of the unit circle of the function $\widetilde{p}_{k}(z)$ defined in (2.1) is the curve \mathcal{C}_{k} with equation

$$
\begin{equation*}
x=\frac{k \sqrt{k^{2}+4}}{2\left[k^{2}+2-2 \cos \theta\right]}, y=\frac{\left(4 \cos \theta-k^{2}\right) \sin \theta}{2\left[k^{2}+2-2 \cos \theta\right][1+\cos \theta]}, \theta \in[0,2 \pi) \backslash\{\pi\} \tag{2.2}
\end{equation*}
$$

Proof. The proof follows by some straightforward calculations.
Recall that the curve which is called conchoid of Sluze has the following equation

$$
\begin{equation*}
a(x-a)\left(x^{2}+y^{2}\right)+\lambda^{2} x^{2}=0 \tag{2.3}
\end{equation*}
$$

where $a>0$ and $\lambda>0$. For $\lambda=2 a / k$, the conchoid of Sluze (2.3) becomes the curve:

$$
\begin{equation*}
x^{3}+(x-a) y^{2}+\left(\frac{4-k^{2}}{k^{2}}\right) a x^{2}=0 \tag{2.4}
\end{equation*}
$$

For $k=1$, this curve is the trisectrix of Maclaurin.
We can find the corresponding Cartesian equation of the curve \mathcal{C}_{k} with equation (2.2) as

$$
\begin{equation*}
\left[\left(8+2 k^{2}\right) x-k \sqrt{k^{2}+4}\right] y^{2}=\left(\frac{\sqrt{k^{2}+4}}{k}-2 x\right)\left(\sqrt{k^{2}+4} x-k\right)^{2} \tag{2.5}
\end{equation*}
$$

If we rewrite (2.5) in the following form

$$
\begin{gathered}
\left(\frac{k \sqrt{k^{2}+4}}{k^{2}+4}-x\right)^{3}+\frac{4-k^{2}}{k^{2}} \cdot \frac{k \sqrt{k^{2}+4}}{2\left(k^{2}+4\right)}\left(\frac{k \sqrt{k^{2}+4}}{k^{2}+4}-x\right)^{2} \\
+\left[\left(\frac{k \sqrt{k^{2}+4}}{k^{2}+4}-x\right)-\frac{k \sqrt{k^{2}+4}}{2\left(k^{2}+4\right)}\right] y^{2}=0
\end{gathered}
$$

then the image of the unit circle under the function \widetilde{p}_{k} is translated into a curve with equation (2.4) where

$$
a=\frac{k \sqrt{k^{2}+4}}{2\left(k^{2}+4\right)}=\frac{1-\frac{2 \tau_{k}\left(1-k \sqrt{k^{2}+4}\right)}{k-\sqrt{k^{2}+4}}}{2\left(k^{2}+4\right)} .
$$

Therefore the curve \mathcal{C}_{k} has a shell-like shape and symmetric with respect to the real axis, see Figure 1.

Figure 1. The curve \mathcal{C}_{k} for $k=\frac{1}{2}$.
For $k<2$, note that we have

$$
\widetilde{p}\left(e^{ \pm i \arccos \left(\frac{k^{2}}{4}\right)}\right)=\frac{k \sqrt{k^{2}+4}}{k^{2}+4}
$$

and so the curve \mathcal{C}_{k} intersects itself on the real axis at the point $\frac{k \sqrt{k^{2}+4}}{k^{2}+4}$. Thus \mathcal{C}_{k} has a loop intersecting the real axis at the points $e=\frac{k \sqrt{k^{2}+4}}{k^{2}+4}$ and $f=\frac{\sqrt{k^{2}+4}}{2 k}$. For $k \geq 2$, the curve \mathcal{C}_{k} has no loops and it is like a conchoid.

Corollary 2.1. For each $k>0, \mathcal{S} \mathcal{L}^{k} \subset \mathcal{S}^{*}\left(\alpha_{k}\right)$ where $\alpha_{k}=\frac{k \sqrt{k^{2}+4}}{2\left(k^{2}+4\right)}=\frac{k\left(k-2 \tau_{k}\right)}{2\left(k^{2}+4\right)}$, that is, $f \in \mathcal{S} \mathcal{L}^{k}$ is starlike of order α_{k}.

The function \widetilde{p}_{k} defined in (2.1) is not univalent in \mathbb{D}. For example, we have $\widetilde{p}_{k}(0)=\widetilde{p}\left(\frac{-k}{2 \tau_{k}}\right)=$ 1 and $\widetilde{p}(1)=\widetilde{p}\left(\tau_{k}^{4}\right)=\frac{\sqrt{k^{2}+4}}{2 k}$. We can give the following theorem.

Theorem 2.2. For each $k>0$ the function \widetilde{p}_{k} is univalent in the disc $\mathbb{D}_{r_{k}}=\left\{z:|z|<r_{k}\right\}$, where

$$
\begin{equation*}
r_{k}=\frac{2-\sqrt{k^{2}+4}}{k \tau_{k}}=\frac{k^{2}-2 k+4+(k-2) \sqrt{k^{2}+4}}{2 k} \tag{2.6}
\end{equation*}
$$

and it is not univalent in the disc $\mathbb{D}_{r_{k}}$ for each $r \geq r_{k}$.
Proof. Suppose that $\widetilde{p}_{k}(z)=\widetilde{p}_{k}(w)$ for some $z, w \in \mathbb{D}$. After some calculations we have

$$
\begin{equation*}
\tau_{k}(z-w)\left(w-\frac{2 \tau_{k} z+k}{k \tau_{k}^{2} z-2 \tau_{k}}\right)=0 \tag{2.7}
\end{equation*}
$$

We see that the function

$$
g_{k}(z)=\frac{2 \tau_{k} z+k}{k \tau_{k}^{2} z-2 \tau_{k}}
$$

maps a circle $|z|=r<2 /\left(k \tau_{k}\right)$ onto a circle centered at $m=-\frac{2 k\left(1+2 \tau_{k}^{2} r^{2}\right)}{\tau_{k}\left(4-k^{2} \tau_{k}^{2} r^{2}\right)}$ and of radius $\rho=\frac{r\left(k^{2}+4\right)}{4-k^{2} \tau_{k}^{2} r^{2}}$ with the diameter from $g_{k}(-r)$ to $g_{k}(r)$. Therefore g_{k} maps the circle $|z|=r_{k}$ onto a circle with the diameter from the point $g_{k}\left(r_{k}\right)=r_{k}$ to the point $g_{k}\left(-r_{k}\right)$. We have $g_{k}\left(-r_{k}\right)>g_{k}\left(r_{k}\right)=r_{k}$ for all k because the function $g_{k}(x), x \in \mathbb{R}$ has negative derivative for all real x. Therefore, if $|w| \leq r_{k}$ and $|z| \leq r_{k}$, then the third factor in (2.7) is equal to 0 for $w=z-r_{k}$ only. Consequently, we see that (2.7) is not satisfied when $|w|<r_{k}$ and $|z|<r_{k}$, which proves that in the disc (2.6) the function $\widetilde{p}_{k}(z)$ is univalent.

On the other hand, the derivative of the function $\widetilde{p}_{k}(z)$ is

$$
\widetilde{p}_{k}(z)=\frac{\left(z-r_{k}\right)\left(z-\frac{2+\sqrt{k^{2}+4}}{k \tau_{k}}\right)}{\left(1-k \tau_{k} z-\tau_{k}^{2} z^{2}\right)^{2}}
$$

The function $\widetilde{p}_{k}(z)$ vanishes at the point $z=r_{k}$ and hence we see that the function $\widetilde{p}_{k}(z)$ fails to be univalent for $|z| \geq r_{k}$.

Theorem 2.3. Let $\left(F_{k, n}\right)$ be the sequence of k-Fibonacci numbers defined in (1.4). If

$$
\widetilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

then we have

$$
\begin{equation*}
p_{n}=\left(F_{k, n-1}+F_{k, n+1}\right) \tau_{k}^{n}, n=1,2,3, \ldots \tag{2.8}
\end{equation*}
$$

Proof. Let us denote $u=\tau_{k} z,|u|<\left|\tau_{k}\right|$. Using the equations $\tau_{k}\left(k-\tau_{k}\right)=-1$ and $2 \tau_{k}-k=$ $-\sqrt{k^{2}+4}$, we have

$$
\begin{aligned}
\widetilde{p}_{k}(z) & =\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}=\frac{1+u^{2}}{1-k u-u^{2}}=\left(u+\frac{1}{u}\right) \frac{u}{1-k u-u^{2}} \\
& =\left(u+\frac{1}{u}\right) \frac{1}{\sqrt{k^{2}+4}}\left(\frac{1}{1+\frac{u}{\tau_{k}}}-\frac{1}{1+\frac{u}{k-\tau_{k}}}\right) \\
& =\left(u+\frac{1}{u}\right) \frac{1}{\sqrt{k^{2}+4}} \sum_{n=1}^{\infty}(-1)^{n}\left[\left(\frac{u}{\tau_{k}}\right)^{n}-\left(\frac{u}{k-\tau_{k}}\right)^{n}\right] \\
& =\left(u+\frac{1}{u}\right) \sum_{n=1}^{\infty} \frac{\left(k-\tau_{k}\right)^{n}-\tau_{k}^{n}}{\sqrt{k^{2}+4}} u^{n} .
\end{aligned}
$$

Now by the equation (1.5), we find

$$
\begin{aligned}
\widetilde{p}_{k}(z) & =\left(u+\frac{1}{u}\right) \sum_{n=1}^{\infty} F_{k, n} u^{n} \\
& =1+\sum_{n=1}^{\infty}\left(F_{k, n-1}+F_{k, n+1}\right) u^{n} \\
& =1+\sum_{n=1}^{\infty}\left(F_{k, n-1}+F_{k, n+1}\right) \tau_{k}^{n} z^{n}
\end{aligned}
$$

and hence we obtain (2.8).
Theorem 2.4. A function $f \in \mathcal{S}$ belongs to the class $\mathcal{S} \mathcal{L}^{k}$ if and only if there exists a function $q, q \prec \widetilde{p}_{k}(z)=\frac{1+\tau_{k}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}$ such that

$$
\begin{equation*}
f(z)=z \exp \int_{0}^{z} \frac{q(\zeta)-1}{\zeta} d \zeta, z \in \mathbb{D} \tag{2.9}
\end{equation*}
$$

Proof. Let $f \in \mathcal{S} \mathcal{L}^{k}$. Then by definition

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\widetilde{p}_{k}(\omega(z)),|\omega(z)|<1, z \in \mathbb{D} \tag{2.10}
\end{equation*}
$$

If we take $q(z)=\widetilde{p}(\omega(z))$, we see that the equation (2.10) is equivalent to (2.9).
For $\widetilde{p}_{k}(z)=\frac{1+\tau_{z^{2}}^{2} z^{2}}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}$ the formula (2.9) gives $f_{0}(z)=\frac{z}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}$. Hence the function f_{0} belongs to the class $\mathcal{S} \mathcal{L}^{k}$ and it is extremal function for several problems in this class.

Theorem 2.5. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ belongs to the class $\mathcal{S L}^{k}$, then we have

$$
\begin{equation*}
\left|a_{n}\right| \leq\left|\tau_{k}\right|^{n-1} F_{k, n} \tag{2.11}
\end{equation*}
$$

where $\left(F_{k, n}\right)$ is the sequence of k-Fibonacci numbers and $\tau_{k}=\frac{k-\sqrt{k^{2}+4}}{2}$. Equality holds in (2.11) for the function $f_{0}(z)=\frac{z}{1-k \tau_{k} z-\tau_{k}^{2} z^{2}}$.

Proof. Let $f \in \mathcal{S} \mathcal{L}^{k}, f(z)=\sum_{m=0}^{\infty} a_{m} z^{m}, a_{0}=0, a_{1}=1$. By the definition of the class $\mathcal{S} \mathcal{L}^{k}$, there exists a function $\omega,|\omega(z)|<1$ for $z \in \mathbb{D}$ such that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+\tau_{k}^{2} \omega^{2}(z)}{1-k \tau_{k} \omega(z)-\tau_{k}^{2} \omega^{2}(z)}
$$

We get

$$
\begin{aligned}
z f^{\prime}(z)-f(z) & =k \tau_{k} \omega(z) z f^{\prime}(z)+\tau_{k}^{2} \omega^{2}(z)\left[z f^{\prime}(z)+f(z)\right] \\
\sum_{m=1}^{\infty}(m-1) a_{m} z^{m} & =k \tau_{k} \omega(z) \sum_{m=1}^{\infty} m a_{m} z^{m}+\tau_{k}^{2} \omega^{2}(z) \sum_{m=1}^{\infty}(m+1) a_{m} z^{m}
\end{aligned}
$$

and so

$$
\sum_{m=1}^{n}(m-1) a_{m} z^{m}+\sum_{m=n+1}^{\infty} c_{m} z^{m}=k \tau_{k} \omega(z) \sum_{m=1}^{n-1} m a_{m} z^{m}+\tau_{k}^{2} \omega^{2}(z) \sum_{m=1}^{n-2}(m+1) a_{m} z^{m}
$$

For $n \geq 2$, we find

$$
\begin{aligned}
& \left|\sum_{m=1}^{n}(m-1) a_{m} z^{m}+\sum_{m=n+1}^{\infty} c_{m} z^{m}\right|^{2} \\
= & \left|k \tau_{k} \omega(z) \sum_{m=1}^{n-1} m a_{m} z^{m}+\tau_{k}^{2} \omega^{2}(z) \sum_{m=1}^{n-2}(m+1) a_{m} z^{m}\right|^{2} \\
\leq & \left|k \tau_{k} \sum_{m=1}^{n-1} m a_{m} z^{m}+\tau_{k}^{2} \omega(z) \sum_{m=1}^{n-1} m a_{m-1} z^{m-1}\right|^{2} \\
\leq & \sum_{m=1}^{n-1}\left|k \tau_{k} m a_{m} z^{m}+\tau_{k}^{2} \omega(z) m a_{m-1} z^{m-1}\right|^{2} \\
\leq & \sum_{m=1}^{n-1}\left(\left|k \tau_{k} m a_{m} z^{m}\right|^{2}+\left|\tau_{k}^{2} m a_{m-1} z^{m-1}\right|^{2}+2\left|k \tau_{k}^{3} m^{2} a_{m} a_{m-1} z^{2 m-1}\right|\right)
\end{aligned}
$$

Integrating the both sides of this inequality around $z=r e^{i m \varphi}$ and taking limit $r \rightarrow 1^{-}$we obtain

$$
\begin{aligned}
& \sum_{m=1}^{n}(m-1)^{2}\left|a_{m}\right|^{2}+\sum_{m=n+1}^{\infty}\left|c_{m}\right|^{2} \\
\leq & k^{2} \tau_{k}^{2} \sum_{m=1}^{n-1} m^{2}\left|a_{m}\right|^{2}+\tau_{k}^{4} \sum_{m=1}^{n-1} m^{2}\left|a_{m-1}\right|^{2}+2 k\left|\tau_{k}\right|^{3} \sum_{m=1}^{n-1} m^{2}\left|a_{m}\right|\left|a_{m-1}\right|
\end{aligned}
$$

and hence we find

$$
\leq \sum_{m=1}\left\{(n-1)^{2}\left|a_{n}\right|^{2}, k^{2} \tau_{k}^{2} m^{2}-(m-1)^{2}\right\}\left|a_{m}\right|^{2}+\sum_{m=1}^{n-1} \tau_{k}^{4} m^{2}\left|a_{m-1}\right|^{2}+\sum_{m=1}^{n-1} 2 k\left|\tau_{k}\right|^{3} m^{2}\left|a_{m}\right|\left|a_{m-1}\right|(
$$

The inequality (2.11) holds for $n=1$. Assume that the estimation (2.11) holds for all natural numbers less or equal to n. Then from (2.12) and from (2.11) we have

$$
\begin{align*}
& n^{2}\left|a_{n+1}\right|^{2} \\
\leq & \sum_{m=1}^{n}\left\{k^{2} \tau_{k}^{2} m^{2}-(m-1)^{2}\right\}\left|a_{m}\right|^{2}+\tau_{k}^{4} \sum_{m=1}^{n} m^{2}\left|a_{m-1}\right|^{2}+2 k\left|\tau_{k}\right|^{3} \sum_{m=1}^{n} m^{2}\left|a_{m}\right|\left|a_{m-1}\right| \\
\leq & \sum_{m=1}^{n}\left\{k^{2} \tau_{k}^{2} m^{2}-(m-1)^{2}\right\}\left\{\left|\tau_{k}\right|^{m-1} F_{k, m}\right\}^{2}+\tau_{k}^{4} \sum_{m=1}^{n} m^{2}\left\{\left|\tau_{k}\right|^{m-2} F_{k, m-1}\right\}^{2} \\
& +2 k\left|\tau_{k}\right|^{3} \sum_{m=1}^{n} m^{2}\left\{\left|\tau_{k}\right|^{m-1} F_{k, m}\right\}\left\{\left|\tau_{k}\right|^{m-2} F_{k, m-1}\right\} \\
= & \sum_{m=1}^{n}\left[\left\{m \tau_{k}^{m}\left(k F_{k, m}+F_{k, m-1}\right)\right\}^{2}-(m-1)^{2}\left\{\left|\tau_{k}\right|^{m-1} F_{k, m}\right\}^{2}\right] \\
= & \sum_{m=1}^{n}\left[\left\{m \tau_{k}^{m} F_{k, m+1}\right\}^{2}-(m-1)^{2}\left\{\left|\tau_{k}\right|^{m-1} F_{k, m}\right\}^{2}\right] \\
= & n^{2}\left|\tau_{k}\right|^{2 n}\left\{F_{k, n+1}\right\}^{2} . \tag{2.13}
\end{align*}
$$

In this way we have proved by induction the inequality (2.11) for all $n \in \mathbb{N}$.

References

[1] J. Dziok, R. K. Raina, J. Sokół, On α-convex functions related to shell-like functions connected with Fibonacci numbers, Appl. Math. Comput. 218(3), 996-1002 (2011).
[2] J. Dziok, R. K. Raina, J. Sokól, Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comput. Math. Appl. 61(9), 2605-2613 (2011).
[3] S. Falcón, A. Plaza, On the Fibonacci k-numbers, Chaos Solitons Fractals 32(5), 1615-1624 (2007).
[4] S. Falcón, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals 33(1), 38-49 (2007).
[5] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56(1), 87-92 (1991).
[6] W. Janowski, Extremal problems for a family of functions with positive real part and some related families, Ann. Polon. Math. 23, 159-177 (1970).
[7] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28, 297-326 (1973).
[8] S. Kanas, A. Wiśniowska, Conic regions and k-uniform convexity II, Folia Scient. Univ. Tech. Resoviensis 170, 65-78 (1998).
[9] S. Kanas, A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput Appl. Math. 105, 327-336 (1999).
[10] S. Kanas, A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45(3), 647-657 (2000).
[11] W. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math. 57, 165-175 (1992).
[12] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions. Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I, International Press, Cambridge, MA, 1994.
[13] E. Paprocki, J. Sokół, The extremal problems in some subclass of strongly starlike functions, Folia Scient. Univ. Techn. Resoviensis 157, 89-94 (1996).
[14] M. S. Robertson, Certain classes of starlike functions, Michigan Math. J. 76, no.1, 755-758 (1954).
[15] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118, 189-196 (1993).
[16] J. Sokół, A certain class of starlike functions, Comput. Math. Appl. 62(2), 611-619 (2011).
[17] J. Sokół, On some subclass of strongly starlike functions, Demonstratio Math. Vol. XXXI, No 1, 81-86 (1998).
[18] J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis 175, 111-116 (1999).
[19] J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike function, Folia Scient. Univ. Tech. Resoviensis 147, 101-105 (1996).
[20] J. Stankiewicz, Quelques problèmes extrèmaux dans les classes des fonctions α-angulairement ètoilèes, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 20, 59-75 (1966).

Department of Mathematics, Balikesir University, 10145 Cagis, Balikesir, Turkey
E-mail address: nihal@balikesir.edu.tr
Department of Mathematics, Rzeszów University of Technology, ul. W. Pola 2, 35-959 Rzeszów, Poland

E-mail address: jsokol@prz.edu.pl

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Univalent function, starlike function, subordination, k-Fibonacci number.

