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Abstract: Let G be a simple graph with n vertices and Gc be its complement. The matrix Q(G) =

D(G) +A(G) is called the signless Laplacian of G, where D(G) = diag(d(v1), d(v2), . . . , d(vn)) and A(G)

denote the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let q1(G)

be the largest eigenvalue of Q(G). We first give some upper and lower bounds on q1(G) + q1(G
c) for a

graph G. Finally, lower and upper bounds are obtained for the clique number ω(G) and the independence

number α(G), in terms of the eigenvalues of the signless Laplacian matrix of a graph G.

Keywords: Signless Laplacian eigenvales; Maximum and minimum degree; Bounds; Clique number;

Independence number.

AMS subject classification: 05C50, 15A18

1. Introduction

We consider only simple graphs (i.e. finite, undirected graphs without loops or multiple edges). Let

G = (VG, EG) be a simple graph on n vertices and m edges (so n = |VG| is its order, and m = |EG|

is its size). For vi ∈ VG, the degree of vi, written by d(vi) or di, is the number of edges incident

with v. Let ∆ = max{di : vi ∈ VG} and δ = min{di : vi ∈ VG}. Spectral graph theory [3, 4, 10]

studies properties of graphs using the spectrum of related matrices. The oldest and most studied matrix

associated with G appears to be adjacency matrix A = (aij) where aij = 1 if vi and vj of the graph G are

adjacent and 0 otherwise. Another much studied matrix is the Laplacian, defined by L = D − A where

D(G) = diag(d1, d2, . . . , dn) (see [1, 11, 17]). The matrix Q = D + A is called the signless Laplacian

matrix of G (see [6]), which has recently attracted more and more researchers’ attention. One reason

for this is that the signless Laplacian spectrum seems to be more informative than the other commonly

used graph matrices [6]. For more results on the signless Laplacian matrix one may refer to three survey

papers [7, 8, 9].

For an n×n real symmetric matrix M , in view of Geršgorin’s Theorem, its eigenvalues are nonnegative

real numbers. In particular, if M is equal to one of the matrices A,L and Q (associated to a graph G on n

vertices), then the corresponding eigenvalues (or spectrum) are called the A-eigenvalues (or A-spectrum),

L-eigenvalues (or L-spectrum) and Q- eigenvalues (or Q-spectrum), respectively. Throughout the paper,

these eigenvalues will be denoted by λ1(G) > λ2(G) > · · · > λn(G), µ1(G) > µ2(G) > · · · > µn(G)

and q1(G) > q2(G) > · · · > qn(G), respectively. They are the roots of the corresponding characteristic

polynomials PG(x) = det(xI−A), LG(x) = det(xI−L) andQG(x) = det(xI−Q). The largest eigenvalues,

i.e., λ1(G), µ1(G) and q1(G) are called the A-index, L-index and Q-index (of G), respectively.

Given a graph G, define ω(G) and α(G), the clique number and independence number of G to be the

numbers of vertices of the largest clique and the largest independent set in G, respectively. Obviously,

ω(G) = α(Gc), where Gc is the complement of G.

The knowledge of the spectrum of a graph is important as spectral results which are relevant for the

estimation of some parameters of graphs. Research on the bound involving eigenvalues of A (resp. L, Q)

attracts much attention [5, 20, 21]. For connected graph G, Chen and Wang [2] determined sharp upper

and lower bounds on q1(G) involving maximum degree and minimum degree. Nosal [19] gave sharp lower

and upper bounds of λ1(G) + λ1(G
c). Li [13] gave another upper bound on λ1(G) + λ1(G

c). Liu, Lu
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and Tian [14], presented an upper bound on µ1(G) + µ1(G
c). Liu, Lu and Tian [16] presented lower and

upper bounds for the independence number α(G) and the clique number ω(G) involving the Laplacian

eigenvalues of the graph G; Liu and Liu [15] presented lower and upper bounds for the independence

number α(G) and the clique number ω(G) involving the signless Laplacian eigenvalues of the graph G.

The remainder of the paper is organized as follows: in Section 2 we give some preliminary results

needed later on; in Section 3 we gave new upper and lower bounds on q1(G) + q1(G
c); in the last section

we present improved lower and upper bounds for the independence number α(G) and the clique number

ω(G) involving the signless Laplacian eigenvalues of the graph G.

2. Lemmas

In this section, we give some preliminary lemmas which will be used in the subsequent sections. Let B

be a matrix. Denote by si(B) the ith row sum of B.

Lemma 2.1 ([20]). Let B be a real symmetric n × n matrix, and let λ be an eigenvalue of B with an

eigenvector x whose entries are all nonnegative. Let p be any polynomial. Then

min
16i6n

si(p(B)) 6 p(λ) 6 max
16i6n

si(p(B)).

Moreover, if all entries of x are positive, then either of the equalities holds if and only if the row sums of

p(B) are all equal.

Lemma 2.2. Let G be a simple graph with n vertices and m edges, and ∆ and δ be the maximum degree

and the minimum degree of the vertices of G, respectively. Then

q1(G) 6
∆+ δ − 1 +

√

(∆ + δ − 1)2 + 8[2m− (n− 1)δ]

2
,

Moreover, if G is connected, then the equality holds if and only if G is a regular graph.

Proof. If G is connected, it is just Theorem 2.2 in [2]; If G is not connected, in view of Lemma 2.1, by a

similar discussion as in the proof of Theorem 2.2 in [2], the result also holds in this case. We omit the

procedure here.

Lemma 2.3. Let G be a simple graph with n vertices and m edges, and ∆ and δ be the maximum degree

and the minimum degree of the vertices of G, respectively. Then

q1(G) 6
δ − 1 +

√

(δ − 1)2 + 8[2m+∆2 − (n− 1)δ]

2
.

Moreover, if G is connected, then the equality holds if and only if G is a regular graph.

Proof. If G is connected, it is just Theorem 2.1 in [2]; If G is not connected, in view of Lemma 2.1, by a

similar discussion as in the proof of Theorem 2.1 in [2], the result also holds in this case. We omit the

procedure here.

Lemma 2.4 ([18]). Let F = {(x1, x2, . . . , xn)
T : xi ≥ 0,

∑n

i=1 xi = 1}. Then

1−
1

ω(G)
= max

x∈F
〈x,Ax〉.

Consider two sequences of real numbers: ξ1 > ξ2 > · · · > ξn and η1 ≥ η2 > · · · > ηm with m < n.

The second sequence is said to interlace the first one whenever

ξi > ηi > ξn−m+i

for i = 1, 2, . . . ,m. The interlacing is called tight if there exists an integer k ∈ [0,m] such that ξi = ηi
for 1 6 i 6 k and ξn−m+i = ηi for k + 1 6 i 6 m. Suppose rows and columns of the matrix M are

partitioned according to a partitioning of {1, 2, . . . , n}. The partition is called regular if each block of M

has constant row (and column) sum.
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Lemma 2.5 ([12]). Let B be the matrix whose entries are the average row sums of the blocks of a

symmetric partitioned matrix of M . Then

(i) the eigenvalues of B interlace the eigenvalues of M ;

(ii) if the interlacing is tight, then the partition is regular.

3. Upper and lower bounds on q1(G) + q1(G
c)

In this section, we give upper and lower bounds on q1(G) + q1(G
c) involving maximum degree, minimum

degree, order and size of G.

Theorem 3.1. Let G be a simple graph with n vertices, and δ and ∆ be the minimum degree and the

maximum degree of G, respectively. Then

q1(G) + q1(G
c) 6 n− 2 +

√

(∆ + δ + 1− n)2 + n2 + 4(∆− δ)(n− 1).

Proof. Suppose |EG| = m. Note that ∆(Gc) = n − 1 − δ, δ(Gc) = n − 1 −∆ and |EGc | = n(n−1)
2 −m.

By Lemma 2.2, we have

q1(G) 6
∆+ δ − 1 +

√

(∆ + δ − 1)2 + 8[2m− (n− 1)δ]

2

and

q1(G
c) 6

(2n− 3−∆− δ) +
√

(2n− 3−∆− δ)2 + 8[(n− 1)(∆ + 1)− 2m]

2
.

This gives

q1(G) + q1(G
c) 6 n− 2 +

1

2
f(m), (3.1)

where

f(m) =
√

(∆ + δ − 1)2 + 8[2m− (n− 1)δ] +
√

(2n− 3−∆− δ)2 + 8[(n− 1)(∆ + 1)− 2m].

Since

df

dm
=

8
√

(∆ + δ − 1)2 + 8[2m− δ(n− 1)]
−

8
√

(2n− 3−∆− δ)2 + 8[(n− 1)(∆ + 1)− 2m]
,

it is easy to check that
df

dm
> 0

if and only if

m 6
2(n− 2)(n− 1−∆− δ) + 4(n− 1)(∆ + δ + 1)

16
.

Therefore

f(m) 6
√

(∆ + δ − 1)2 + 2(n− 2)(n− 1−∆− δ) + 4(n− 1)(∆− δ + 1)

+
√

(2n− 3−∆− δ)2 − 2(n− 2)(n− 1−∆− δ) + 4(n− 1)(∆− δ + 1)

= 2
√

(∆ + δ + 1− n)2 + n2 + 4(∆− δ)(n− 1).

In view of (3.1) we have

q1(G) + q1(G
c) 6 n− 2 +

√

(∆ + δ + 1− n)2 + n2 + 4(∆− δ)(n− 1),

as desired.
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Theorem 3.2. Let G be a simple graph with n vertices, and δ and ∆ be the minimum degree and the

maximum degree of G, respectively. Then

q1(G) + q1(G
c) 6

n+ δ −∆− 3

2
+

1

2
(f1 + f2),

where

f1 =

√

(δ − 1)2 + 4∆2 + 4(n− 1)(∆ + 1− δ) + 4(n− 1− δ)2 +
(n+ δ −∆− 3)(n−∆− δ − 1)

2
, (3.2)

f2 =

√

(n− 2−∆)2 + 4∆2 + 4(n− 1)(∆ + 1− δ) + 4(n− 1− δ)2 −
(n+ δ −∆− 3)(n−∆− δ − 1)

2
.

(3.3)

Proof. Suppose |EG| = m. Note that ∆(Gc) = n − 1 − δ, δ(Gc) = n − 1 −∆ and |EGc | = n(n−1)
2 −m.

By Lemma 2.3, we have

q1(G) 6
δ − 1 +

√

(δ − 1)2 + 8[2m+∆2 − (n− 1)δ]

2
,

and

q1(G
c) 6

(n−∆− 2) +
√

(n− 2−∆)2 + 8[(n− 1)(∆ + 1)− 2m+ (n− 1− δ)2]

2
.

This gives

q1(G) + q1(G
c) 6

n+ δ −∆− 3

2
+

1

2
g(m), (3.4)

where

g(m) =
√

(δ − 1)2 + 8[2m+∆2 − (n− 1)δ] +
√

(n− 2−∆)2 + 8[(n− 1)(∆ + 1)− 2m+ (n− 1− δ)2].

Since

dg

dm
=

8
√

(δ − 1)2 + 8[2m+∆2 − (n− 1)δ]
−

8
√

(n− 2−∆)2 + 8[(n− 1)(∆ + 1)− 2m+ (n− 1− δ)2]
,

it is easy to check that
dg

dm
> 0

if and only if

m 6
(n+ δ −∆− 3)(n−∆− δ − 1) + 8(n− 1)(∆ + δ + 1) + 8(n−∆− δ − 1)(n+∆− δ − 1)

32
.

Therefore

g(m) 6f1 + f2,

where f1 and f2 are defined in (3.2) and (3.3), respectively.

In view of (3.4) we have

q1(G) + q1(G
c) 6

n+ δ −∆− 3

2
+

1

2
(f1 + f2),

where f1 and f2 are defined in (3.2) and (3.3), respectively. This completes the proof.
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4. Upper and lower bounds for ω(G) and α(G)

In this section, we give upper and lower bounds for clique number and independence number of (regular)

graph G involving signless Laplacian eigenvalues.

Theorem 4.1. Let G be a simple graph with n vertices, m edges and maximum degree ∆. Then

ω(G) >
2m

2m− (q1 −∆)2
, (4.1)

where q1 is the largest eigenvalue of Q(G).

Proof. Let (x1, x2, . . . , xn)
T be the normalized eigenvector corresponding to q1(G). Then

q1(G) =
∑

16i<j6n,aij=1

(xi + xj)
2

=

n
∑

i=1

dix
2
i +

∑

16i<j6n,aij=1

2xixj

6 ∆

n
∑

i=1

x2
i +

∑

16i<j6n,aij=1

2xixj

= ∆+
∑

16i<j6n,aij=1

2xixj .

Since q1(G) > ∆+ 1 (see (3) in [2]), by the Cauchy inequality we have

(q1(G)−∆)2 6





∑

16i<j6n,aij=1

2xixj





2

6 2m



2
∑

16i<j6n,aij=1

x2
ix

2
j



 .

Note that (x2
1, x

2
2, . . . , x

2
n)

T > 0 and x2
1 + x2

2 + · · ·+ x2
n = 1; hence in view of Lemma 2.4 we have

∑

16i<j6n,aij=1

2x2
ix

2
j 6 1−

1

ω(G)
.

Therefore
(q1(G)−∆)2

2m
6 1−

1

ω(G)
,

that is

ω(G) >
2m

2m− (q1 −∆)2
.

This completes the proof.

Note. In [14] it was proved that

ω(G) >
2m

2m− (µ1 −∆)2
, (4.2)

where µ1 is the largest eigenvalue of L(G). Note that ∆ + 1 6 µ1(G) 6 q1(G), hence the lower bound

(4.1) is better than (4.2).

Theorem 4.2. Let G be a simple graph of order n with at least one edge, and minimum degree δ

and maximum degree ∆. Let q1 and q2 be the first and the second largest eigenvalues of Q(G). If

q1 + q2 − 3δ ≤ 0, then

α(G) >
q1 + q2 − 3δ

δ
·

n∆

q1 + q2 − 4∆
. (4.3)

5



Proof. Let G be a simple graph with order n and a partition VG = V1 ∪ V2. Let Gi (i = 1, 2) be the

subgraph of G induced by Vi with ni < n vertices and average degree ri (n1 + n2 = n). Let d̄i =
∑

v∈Vi
dG(v)/ni for i = 1, 2. Note that Q(G) =

(

Q11 Q12

Q21 Q22

)

=

(

D11 +A(G1) A12

A21 D22 +A(G2)

)

,

where D11 = diag(dG(v1), . . . , dG(vn1
)), D12 = diag(dG(vn1+1), . . . , dG(vn)) and A21 = AT

12. Put B =

(
bij
ni

), where bij is the sum of the entries in Qij . Then

B =

(

d̄1 + r1 d̄1 − r1
d̄2 − r2 d̄2 + r2

)

and |ϕI − B| = ϕ2 − (r1 + r2 + d̄1 + d̄2)ϕ + 2(r2d̄1 + r1d̄2). Then by Lemma 2.5, we have qn−1(G) 6

ϕ1(B) 6 q1(G), qn(G) 6 ϕ2(B) 6 q2(G). Then

ϕ1(B) + ϕ2(B) = r1 + r2 + d̄1 + d̄2 6 q1(G) + q2(G).

Note that 2(n2d̄2 − n1d̄1) = n2(d̄2 + r2)− n1(d̄1 + r1), and hence n2d̄2 − n1d̄1 = n2r2 − n1r1.

Let VG1
be the largest independent set of G, then r1 = 0 and α(G) = n1. We have r2 = d̄2 −

n1

n2

d̄1,

and

d̄1 + 2d̄2 −
n1

n2
d̄1 6 q1 + q2.

By n = n1 + n2, we have

q1 + q2 − 2d̄2 − d̄1

d̄1
n =

q1 + q2 − 2d̄2 − 2d̄1

d̄1
n1.

Since G has at least one edge, n1 < n. Note that δ 6 d̄1 6 ∆, δ 6 d̄2 6 ∆, and hence

q1 + q2 − 4∆

∆
n1 6

q1 + q2 − 3δ

δ
n.

Thus we get

α(G) = n1 >
q1 + q2 − 3δ

δ
·

n∆

q1 + q2 − 4∆
,

as required.

Remark 1. Note that if q1 + q2 − 3δ > 0, then q1+q2−3δ
δ

· n∆
q1+q2−4∆ < 0, and the inequality in (4.3) is

trivial. Hence, we add the restriction q1 + q2 − 3δ ≤ 0 in Theorem 4.2. In fact, there exists graph, say G,

such that q1(G) + q2(G)− 3δ(G) ≤ 0. For example, q1(K2) + q2(K2)− 3δ(K2) = 2 + 0− 3 < 0.

If G is a d-regular graph, then q1 = 2d,∆ = δ = d. Hence, by Theorem 4.2 we have

Corollary 4.3 ([15]). Let G be a simple d-regular graph of order n with at least one edge. Then

α(G) >
n(d− q2)

2d− q2
,

where q2 is the second largest eigenvalue of Q(G).

Theorem 4.4. Let G be a d-regular graph with order n (n ≥ 3). Then

ω(G) >
n2

n2 − nd+ (d− qn−1)M2
, (4.4)

where M = minyi 6=0
1

|yi| and un−1 = (y1, y2, . . . , yn)
T is the normalized eigenvector corresponding to qn−1

(the second least eigenvalue of Q(G)).
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Proof. Since G is a d-regular graph, we have q1 = 2d. And the normalized eigenvector corresponding

to q1 is u1 = e√
n
, where e = (1, 1, . . . , 1)T . Let θ = M

n
and x = 1

n
e + θun−1. Then θyi > − 1

n

(i = 1, 2, . . . , n). Since
∑n

i=1 qi = 2m = nd and n ≥ 3, we have q1 6= qn−1 and 〈e,un−1〉 = 0. So

x ∈ F = {(x1, x2, . . . , xn)
T : xi ≥ 0,

∑n

i=1 xi = 1}. By Lemma 2.4, we have

〈x, Qx〉 = 〈x, Dx〉 + 〈x, Ax〉

6 d〈x,x〉 +

(

1−
1

ω(G)

)

= d(
1

n
+ θ2) +

(

1−
1

ω(G)

)

.

On the other hand,

〈x, Qx〉 =
〈 e

n
+ θun−1, Q

(e

n
+ θun−1

)〉

=
〈 e

n
,Q

e

n

〉

+
〈 e

n
,Qθun−1

〉

+
〈

θun−1, Q
e

n

〉

+ 〈θun−1, Qθun−1〉

=
1

n2
〈e, Qe〉+ 0 + 0 + θ2〈un−1, Qun−1〉

=
2nd

n2
+ θ2qn−1.

Therefore 2d
n
+ θ2qn−1 6 d( 1

n
+ θ2) + 1− 1

ω
, that is

ω(G) >
1

1− d
n
+ θ2(d− qn−1)

.

Since θ = M
n
, M = minyi 6=0

1
|yi| , we find

ω(G) >
n2

n2 − nd+ (d− qn−1)M2
.

This completes the proof.

Remark. For a d-regular graph G, in [15] it was proved that

ω(G) >
n2

n2 − nd+ (d− qn)M2
, (4.5)

where qn is the least eigenvalue of Q(G). Note that qn−1 > qn, hence the lower bound (4.4) is better

than (4.5).

For a d-regular graph G, when i =

{

⌊n−1
2 ⌋, n is even;

⌊n
2 ⌋, n is odd,

we have q1 > qn−i > qn−i+1 > · · · >

qn−1 > qn. By a similar discussion as in the proof of Theorem 4.4, we can obtain another improved lower

bound on ω(G) as follows:

ω(G) >
n2

n2 − nd+ (d− qn−i)M2
,

where M = minyi 6=0
1

|yi| and un−i = (y1, y2, . . . , yn)
T is the normalized eigenvector corresponding to qn−i.
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