Multiplication and Composition Operators on

Weak L, spaces

René Erlin Castillo!, Fabio Andrés Vallejo Narvaez?
and Julio C. Ramos Ferndndez?

Abstract

In a self-contained presentation, we discuss the Weak L, spaces.
Invertible and compact multiplication operators on Weak L,, are char-
acterized. Boundedness of the composition operator on Weak L, is
also characterized.
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1 Introduction

One of the real attraction of Weak L,, space is that the subject is sufficiently
concrete and yet the spaces have fine structure of importance for applications.
Weak L, spaces are function spaces which are closely related to L, spaces. We
do not know the exact origin of Weak L,, spaces, which is a apparently part
of the folklore. The Book by Colin Benett and Robert Sharpley[4] contains
a good presentation of Weak L, but from the point of view of rearrangement
function. In the present paper we study the Weak L,, space from the point of
view of distribution function. This circumstance motivated us to undertake
a preparation of the present paper containing a detailed exposition of these
function spaces. In section 6 of the present paper we first prove a charac-
terization of the boundedness of M, in terms of u, and show that the set
of multiplication operators on Weak L,, is a maximal abelian subalgebra of
B (Weak Lp), the Banach algebra of all bounded linear operators on Weak L,,.
For the systemic study of the multiplication operator on different spaces we
refereed to ([1], [2], [5] [3], [10], [18], [21]).

We use it to characterize the invertibility of M, on Weak L,. The compact
multiplication operators are also characterized in this section.

In section 7 a necessary and sufficient condition for the boundedness of com-
position operator Cr is given. For the study of composition operator on

different function spaces we refereed to ([6], [11], [12], [16], [18], [19]).

2 Weak L, spaces

Definition 2.1. For f a measurable function on X, the distribution function
of f is the function Dy defined on [0,00) as follows:

Ds(N) = u({ € X : /(@) > A}). (1)

The distribution function D provides information about the size of f but
not about the behavior of f itself near any given point. For instance, a func-
tion on R"™ and each of its translates have the same distribution function. It
follows from definition 2.1 that Dy is a decreasing function of A (not neces-
sarily strictly).

Let (X, u) be a measurable space and f and g be a measurable functions on
(X, i) then Dy enjoy the following properties: For all A;, Ay > 0:
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1. |g] < |f| p-a.e. implies that D, < Dy;

A1

2. D.f(\) = Dy (H) for all ¢ € C/{0};

3. Df+g(>\1 + )\2) S Df()\l) + Dg()\g);
4. Dyg(MA2) < Dy(A1) 4 Dg(Aa).

For more details on distribution function see ([7] and [15]).
Next, Let (X, 1) be a measurable space, for 0 < p < oo, we consider

C p
Weak L = { £l € X150 > ) < (5) ]
for some C' > 0. Observe that Weak L., = L.

Weak L, as a space of functions is denoted by L, o).

Proposition 2.1. Let f € Weak L, with 0 <p < oo. Then

”f”L(p,oo) = inf {C’ >0:Ds(N) < (%) }
1/p
= (sup )\pr(/\))

A>0

— sup A {D;(A\)}7.

A>0

A = inf {c >0:Ds(a) < (g)p} ,

1/p
B = (sup ozpr(a)) :

a>0

Dy(a) < (g)p,

Proof. Let us define

and

Since f € Weak L,,, then

(07

for some C' > 0, then



{C>0:Df(a)§ (g)p Va>0}7é(2).

(0%

On the other hand

a’Dy(a) < B,
thus {a”Ds(a) : @ > 0} is bounded above by BP and so B € R.
Therefore

p
)\:inf{C'>0:Df(oz)§<€) oz>0}§B. (2)
Q
Now, let € > 0, then there exists C' such that
A< C < )A+e,
and thus o (At
+ €
DN < o <%
then
sup N Dy () < (A+ )"
A>0
1/p
(sup /\pr()\)> <A
A>0
B < ), (3)
by (2) and (3) B = A. O

Definition 2.2. For 0 < p < oo the space L, is defined as the set of all
p—measurable functions f such that

p
/1,0, = inf {C >0:Ds(N) < (%) VA > o}

~ (s Appfm)”p

A>0
= sup AM{D; (M)},
A>0
is finite. Two functions in L, ) will be considered equal if they are equal
—a.e.



The Weak L, = L, ) are larger than the L, spaces, we have the following.
Proposition 2.2. For any 0 < p < co and any f € L, we have
Ly C Lipso),

and hence
1711z, ., < £l -
(This is just a restatement of the Chebyshev inequality).

Proof. If f € L,, then

Viu({re X 1f@)] > A) < / fIP du < / f1P du= 1] .
{IfI>A} X
therefore

A1, \"
w(toe x> ) < () ()
Hence f € Weak L, = L, ), which means that
Ly C Lp,oc)- (5)

Next, from (4) we have

1/p
(sup{)\pr(/\)}) <[y,
A>0

71z, ., = 1711,
[l

Remark 2.1. The inclusion (5) is strict, indeed, let f(z) = 2~/? on (0, 00)
(with the Lebesgue measure). Note

m({xe (0, ) : m%/p > A}) :m({xe (0,00) : || < %}) —onr

Thus f € Weak L,(0, 00), but

e%e] 1 p 9] dCC
o \z/? 0o T

then f ¢ L,(0,00).



Proposition 2.3. Let f,g € L, ). Then
i Neflly, = el

for any constant c,
Lip,o0)

1/p
el ol <2(1,  +lalls, )

Proof. (1) For ¢ > 0 we have

A
uﬁﬁexwd@n>An:w4{zex.uuN>;})
thus
A
And thus
1/p
Ieflz ., = (500D 0)
A>0
1/p
= (sup NDy (i)>
A>0 c
1/p 1/p
= (sup cpwpr(w)) =c (sup wpr(w)) ,
cw>0 cw>0
then

lef Lo =l fllLg -
(2) Note that

{xGX:V@H@@ﬂ>A}Q{xEX:U@ﬂ>%}U{x€X:@@H>%}

Hence

p({z € X 1f@) + ()| > \})

gu<{xexzu@n>%}>+u({xeX:wuﬂ>g}),

VDHAMEQH%(3>+AH%(%)

NP Dypog(N) <2P {sup AP D¢(X) + sup /\ng()\)} :

A>0 A>0

then



therefore

1/p » » 1/p
(sup )\pr+g()\)) <2 <HfH + HgH )

ASO L(p,o0) L(p,o0)

1/p
1+l <2 (I, +lalls, )™

]

Remark 2.2. Proposition 2.3 (2) tell us that |.[[z, ., define a quasi-norm
on L(ppo).

Definition 2.3. A quasi-norm is a functional that is like a norm except that
it does only satisfy the triangle inequality with a constant C' > 1, that is

1+ gl < C(IF1+ ol )-

3 Convergence in measure

Next, we discus some convergence notions. The following notion is of impor-
tance in probability theory.

Definition 3.1. Let f, f, (n = 1,2,3,...) be a measurable functions on the
measurable space (X, ). The sequence { f, }nen is said to converge in measure
to f (fo > f) if for all € > 0 there exists an ng € N such that

,u({:v € X |fulx) = f(x)| > e}) <€ forall n>ng. (6)

Remark 3.1. The preceding definition is equivalent to the following state-
ment.
For all € > 0,

Jim u(fr € X 1fule) ~ f@)] > }) =0 ™
Cleary (7) implies (6). To see the convergence given € > 0, pick 0 < § < ¢

and apply (6) for this d.
There exists an ng € N such that

p(fr e X hulo) = F@)| > 6)) <6
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holds for n > ny. Since
p({e € X fu@) = )] > ) < pfw € X+ |fule) = F@)] > 6}).
We concluded that
p({e € X i |ful@) = f@)] > €}) <o,

for all n > ng. Let n — 0o to deduce that

hmsupu({x € X :|fulz) — f(z)] > 6}) <. (8)

n—oo
Since (8) holds for all 0 < § < € (7) follows by letting § — 0.

Remark 3.2. Convergence in measure is a more general property than con-
vergence in either L, or L, ), 0 < p < oo, as the following proposition
indicates:

Proposition 3.1. Let 0 < p < 00 and f,, f be in Ly ).
1. If fn, f arein L, and f, — f in Ly, then f, — f in L ).
2. If fu = [ in Lipoo) then fr 5 f.

Proof. (1) Fix 0 < p < co. Proposition 2.2 gives that for all € > 0 we have:
1 p
p({re X |fule) = f@)| > ) < 5 [ 1fo— fI7dn
X
eu({z € X1 fal@) = F@) > e}) < = 111,
sup )\prn_f()\) S ||fn - f”II)/Iﬂ
A>0

and thus
[ fo = Fllz ey < 1 — fllz,-

This shows that convergence in L,, implies convergence in Weak L,,. The case
p = oo is tautological.

(2) Give € > 0 find an ng € N such that for n > ng, we have

8



1/p )
I = gy = (300005 0)) < 67
A>0

then taking A = €, we conclude that

eﬁz({x € X :|fulz)— f(x)] > E}) < Pt

for n > ng.
Hence

p({x € X :|fulx) = f(x)| > e}) <e for n>ng.

Example 3.1. Fix 0 < p < co. On [0, 1] define the functions

fk’j:kl/px(j_ll) E>1, 1<j<k.
'k

k

Consider the sequence {fl,la f2,1, f2,2, f3,17 f3,27 f3,37 }
Observe that

m({r € [0.1]: fiya) > 0}) = %
hus
t lim m({x € [0,1] : fuy(z) > 0}) —0,

k—o0

that is fr; — 0.

Likewise, Observe that

1/p
sl = (5003 (i € 0.1): i) = )
A>0

k -1 1/p
> | sup =1.
k>1 K

Which implies that f ; does not converge to 0 in L, ).

It turns out that every sequence convergent in L, ) has a subsequence that
converges p-a.e. to the same limit.

Theorem 3.1. Let f, and f be a complex-valued measurable functions on a
measure space (X, A, 1) and suppose f, 25 f. Then some subsequence of
fn converges to f pu—a.e.



Proof. For all k= 1,2, ... choose inductively n; such that

u({z € X :1fula) = (@) > 274}) <27, (9)

and such that n; < ny < ... <ny < ... Define the sets
Ay ={w e X 1| fu @) = J(@)] > 27},

(9) implies that

for all m = 1,2,3, ... It follows from (10) that

1 (G Ak> <1< o0 (11)

k=1
Using (10) and (11), we conclude that the sequence of the measure of the

e}
sets { U Ak} converges as m — oo to
meN

k=m
“(ﬁleQ:ﬂ' (12)

To finish the proof, observe that the null set in (12) contains the set of all
x € X for which f,, (x) does not converge to f(z). O

Remark 3.3. In many situations we are given a sequence of functions and
we would like to extract a convergent subsequence. One way to achieve this
is via the next theorem which is a useful variant of theorem 3.1. We first
give a relevant definition.

Definition 3.2. We say that a sequence of measurable functions { f, }nen on
the measure space (X, A, ) is Cauchy in measure if for every e > 0 there
exists an ng € N such that for n, m > ng we have

p(fr € X hule) = fulo)| > ) <

10



Theorem 3.2. Let (X, A, ) be a measure space and let { f,, }nen be a complex
valued sequence on X, that is Cauchy in measure. Then some subsequence
of fn converges u—a.e.

Proof. The proof is very similar to that of theorem 3.1 for all £k = 1,2, 3, ...
choose n; inductively such that

({2 € Xt fun (@) = fupn(@)] > 27}) <278, (13)
and such that ny < ns <ng < ... <ng < ngyy < ... Define
Ay = {x € X ¢ |fu (@) = furs(@)] > sz}.
As shown in the proof of theorem 3.1 (13) implies that

u (ﬁ G Ak> — 0, (14)

m=1k=m

forz ¢ |J Ar and i > j > jo > m (and jp large enough) we have

k=m
i1 i
|fnz<x> - fng<x)| < Z ’fm(x) - fnl+1(x)‘ < 224 < 217] < 217%'
I=j 1=j
This implies that the sequence {f,,(z)}ien is Cauchy for every x in the set
( U Ak) and therefore converges for all such . We define a function
k=m

lim f, () when z ¢ ﬁ Ej Ay

J—0 m=1k=m
fz) =
0 whenz e (| U Ak
m=1k=m
Then f,, — f almost everywhere. O]

Proposition 3.2. If f € Weak L, and ,u({x € X: f(x) # 0}) < o0, then

f € Ly for all ¢ < p. On the other hand, if f € Weak L, N Lo, then f € L,
for all ¢ > p.
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Proof. 1t p < 0o, we write

oo

J1s@rdi=a [ x1D,00 i

1 o)

:q/)\q_lDf()\) d)\+q/)\q_1Df()\) dA.

0 1

Note that
p({e € X 1f@) > M) < p({z € X f2) £0}).

Therefore u({x e X :|f(x)] > A}) < C, then

1 00

/|f(35)|qdu < qc/Aq-l d)\+q(3’/>\q‘p‘1 dr=C +
X

0 1

qO)\q_p
q—7p

Therefore f € L.

If f € Weak L, N Lo. Then

(e 9]

[1@ldn=a [ D3

[e.9]

M
= q/)\q_lDf()\) X + q/)\q_lDf(/\) d,
0 M
where M = esssup|f(x)|. Note that

,u({xGX:|f(a:)|>)\}> =0 for A> M,

since f € Weak L, N Lo, therefore

[ o 1%, .
q/)\ D¢(N)dA=0 and Ds(N) < —
M

12
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Then

M M

[is@idn=a [x D003 < sl [0 an
X 0 0
allfz,, . Mo
= OO’
q—p
then
J1s@lrdu< o,
X
Thus f € L,. m
Proposition 3.3. Let f € Weak L,, N Weak L,, with py < p < p1. Then
f € Ly.

Proof. Let us write

= fxqn<ny + fxqssy = fi+ fo

Observe that fi < f and f, < f. In particular f; € Weak L,, and f, €
Weak L,,. Also, write that f; is bounded and

,u({xeX o) 7A0}) :;L({xeX | f ()] > 1}) < C < 0.

Therefore by proposition 3.2, we have f; € L, and fy € L,. Since L, is a
linear vector space, we conclude that f € L,,. O

4 An interpolation result

It is a useful fact that if a function is in L, (X, p) N L,(X, i), then it also lies
in L, (X, p) for all p < < q. The usefulness of the spaces L, ) can be seen
from the following sharpening of this statement:

Proposition 4.1. Let 0 < p < ¢ < 00 and let f in L o) N Ligoo)- Then f
s in L, for allp <r < q and

1

r ro V" iﬁ %
L (o D) T EL IR, o)

T_p q_r (p,o0) q

whit the suitable interpolation when g = oo.

171
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Proof. Let us take first ¢ < co. We know that

1717, . Hinw>

D¢(N) < min ( VERRSY

174 )
B = 220 . 17
(ufup 1)

Lp,oo

We now estimate the L, norm of f. By (16), (17), we have

(16)

set

o0

B :r/X"—lDf(A) d\

0
00

P q
< T/)\T_lmin (Hfu;p’oo, Hf!?“”) d\

0

171

B 00
o [algls, e [l o
0 B

T P _ T q _
L, B s,
r

r P = q “r
- r—p+q—7’ (HfHL(p,oo)) (HfHL(q,ow) ’

Observe that the integrals converge, since r —p > 0 and r — ¢ < 0.
The case ¢ = oo is easier. Since Dy(A\) = 0 for A > || f||... we need to use
only the inequality

DN <A77 £I1S

(p.oo)’

for A <||f|L.. in estimating the first integral in (18). We obtain

17 A1, I

r—p'" o)

r

,
<
L, =

Which is nothing other than (15) when ¢ = co. This complete the proof. [J

Note that (15) holds with constant 1 if L, ) and L, are replaced by L,
and L,, respectively. It is often convenient to work with functions that are
only locally in some L,, space. This leads to the following definition.
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Definition 4.1. For 0 < p < oo, the space L} (R™,|.]) or simply L} (R™)

loc loc
(where |.| denote the Lebesque measure) is the set of all Lebesque-measurable

functions f on R™ that satisfy

/If(x)lp dr < oo, (19)

for any compact subset K of R™. Functions that satisfy (19) with p =1 are
called locally integrable functions on R™.

The union of all L,(R") spaces for 1 < p < oo is contained in L},.(R™).

loc
More generally, for 0 < p < ¢ < co we have the following:

L,(R") C L (R") C L7, (R").

loc

Functions in L,(R™) for 0 < p < 1 may not be locally integrable. For exam-
ple, take f(z) = |2|~* " X{a:|z|<1} Which is in L,(R") when p < n/(n+a), and
observe that f is not integrable over any open set in R containing the origen.

In what follows we will need the following useful result.

Proposition 4.2. Let {a;}en be a sequence of positives reals.

Jj=1

0
a) (Z@) <) laﬁforanyOgﬁgl. [lea§<oo.
J= Jj=

0
b) > al < (Z@) for any 1 <6 < co. If§aj<oo.

1=

N
NO-1 Zag when 1 < 6 < .
=1

N

e
. .

1=

£
~ — ~~—
>

INA

0
N N
Za? < N0 (Z%’) when 0 < 6 < 1.

15



Proof. (a) We proceed by induction. Note that if 0 < 0 < 1, then 6 — 1 <0,
also a; +as > a1 and a; 4+ ay > ay from this we have (a; +a2)?~! < ™! and
(a1 + a3)’' < af' and thus

ar(ar +a)’™t <a! and  ag(ay +ap)’t < d.

Hence
aq (CLl + CLQ)G_l + aQ(al + CLQ)G_1 S a(f + (Ig,

next, pulling out the common factor on the left hand side of the above in-
equality, we have
(a1 + a2)' (a1 + az) < af +df,

(ay + az)? < df +df.

n 9 n
0
aj | = Z aj,
j=1 j=1

E aj + Ap+1 Z An+1,

Now, suppose that

holds. Since

3

J=1
and
n n
E aj + Qpy1 = E aj,
=1 j=1
we have
n 0—1
Z 9—1
( a; + an+1> S anJrla
j=1
and

n 0—-1 n 0—-1
(Z Qa; + an+1> S <Z (Zj) .
j=1

J=1

16



Hence

n 0—1 n n
0
§ a5+ A § aj + ap1 | < apyq + a;
Jj=1 Jj=1 Jj=1
0
g aj + Gpi <a,.+ a;
Jj=1 Jj=1
n n+1
0 0 _ 0
<a, .+ a; = a;.
J=1 Jj=1

o0
Since Y a? < oo, we have
i=1

(5] <

(b) Since Z a; < oo, then lim a; =0,

which implies that there exists ng € N such that
O0<a; <1 if j>mng, since 1<60< oo,

we obtain
af» <a; forall j>ng.

From this we have

> af < .
j=1
1
Consider the sequence {a?}jeN, since 1 < 6, then 0 < 7 < 1 by part (a)
(Zaf) SHOES
and thus )

17



(c) By Hélder’s inequality we have

then

N 0 N
(Z aj) < NO-1 Za?.
j=1

j=1

(d) On more time, by Holder’s inequality

Proposition 4.3. Let fi,..., fx be in Ly« then

N N

a) || 2 fj <N il for 1<p<oo.
Jj=1 (p,o0) j=1
N 1 N

b) || 22 1 <Nv S filleg., for 0<p<l.
Jj=1 Lip,o0) j=1

Proof. First of all, note that for > 0 and N > 1

a
il + .+ N> A+ fot+ o+ ] >a> N

Thus

{xEX:|f1—|—f2+...—|—fN|>a}

C{a:eX:|f1|>%}U{xeX:|f1|>%}U...U{meX:|fN|>%}.
Then
M({IEX:|f1—|—f2+...+f]v|>0é}>Siﬂ({IEX:‘fj’>%}>,
=1

18



that is

Dy (a) < ﬁ:ij (%)

; =sup oD ) < sup afD ( )
L(p,oo) a>0 Zf] Z a>0 f N
N

= ZsupapDij( )

a>0

7=1
N N
: j:l

thus

(p,00)

N N %
I>n) =~ (Z Hfjll’i(w)>
j=1 i=1

By proposition (4.2) (a) since 0 < ]lj < 1 we have

N N
|, <» (Z HfjnL(p,m)) -

(b) As in part (a) we have

N
H;fj . (Z”fJ“L(pw)

Since 0 < p < 1, then 1 < ]l), next by proposition 4.2 (c¢) we have

(p,00)

1

. N
BREEL 0 ST ) S (IT

J=1

= N Z 15l -
j=1

N
Y
j=1

19



O

Proposition 4.4. Give a measurable function f on (X, u) and A > 0, define
= Fxggsay and f2 = f— fx = fr = Fxqs<a-

a) Then
Dy (a) = D¢(a) when o> A
ne D¢(N) when o < A

Dp(a) = 0 when o > A\
)= D¢(a) — Dy(X) when o < A

b) If f € L,(X,p). Then

5015, =» [ 07D y(a) da+ Dy()

OépilDf( )dOé — )\pr()\),

\yy

Iz, =
1211,

5
flPdu=p | o *Ds(a)da — P Dys(a) + NP Dy(N).
f e f
A<|fI<6 A

¢) If fisin Ly ooy then f isin Ly(X, p) for any ¢ > p and fy is in Ly(X, p)
for any g < p. Thus L, o) € Lypy+Ly, when 0 < py < p < p; < o0.

Proof. (a) Note
Dy, (@) = pn({o: f@) xgsmn @) > a}) = p({z 1 /@) > a}nfe: 1f] > A}),
if o > A, then {z : |f(2)] > a} € {z :|f] > A}, thus

Dy (0) = p({o: |f(@) > adnfe s |f] > A}) = p({e: 1 (@) > a}) = Dy(a).
If o < A, then {z : |f(z)| > A} C {z : |f| > a}, thus

Dy, (0) = p({o: |f(@) > a}nfa s |f] > A}) = u({z: 1/ @) > A}) = Dy,

20



And thus
D¢(a) when a > A

Dy (a) = { D¢(X) when a < A\ (20)

Next, consider

Dpr(e) = p(fx : 1@ (@) > o)
:M<{373 |f(x)| >a}n{z:|f] < )\}>,

if o > Athen {z:|f| >a}n{z:|f(z)] <A} =0, thus Dy (a) = 0.
If a < A, then

Dpr(a) = u({o: |f@)] > a} n{z < (@) < A})
= u({z: 1f@) > a} N {z: |f(@)] > A)°)
= u({z: /@) > N\ {o: |f(@)] > A})
—u({e: /@) > ab) = u({z: 1f@)] > A}) = Dsla) = Dy(N).
And hence

0 when o > A\

Dp(e) = { D¢(a) — Dy(X) when a < A (21)

(b) If f € L,(X, p), then

oo

A [e%S)
508, =» [ @ *Dpterda=p [ Dy @) o+ [ D)o
0 A

0
By part (a)(20) we have

o0

A
[, =» [ o"'Ds(N)da+p [ o~ Dy(a) da
o j

A
oo

= )\pr()\) —i—p/ozp_lDf(oz) do.
A

21



Also

o0

A
MP =p [ e 'Dp(a)da=p | & *Dp(a)da+p | o’ D(a)da,
L f f f
0

0 A

[e.e]

by part (a) (21) we obtain

A A
||f,\Hp — /ap_l (Df(a) — Df()\)) do = p/ap—lDf(a) do — )\pr()\)
0 0
Next,

|fIP dp
A<|fIL8

IHPWL—t/ PP du
[fI>A |f]>6

:/|f|pX{|f>/\} dﬁb—/|f|pX{|f>5} dp
X X

=ZVM@—mew m

p/aplpfm) do+ N Dy(N) —p/aplDf(a) do — 7D, (5)
A 1

_ (/ a?1Dj(a) do — /aplDf(a> da) LN DS(A) = 87D (3)

)

5
p/ap 'Di(a) da — 6 Dy(a) + XDy (N).
)

(c) We known that

L

then if ¢ > p
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A
7215, = o [ @™ Dyfa)da— 2Dy

0
gq/aq & ”LW da = ND;(N)
0
\&-P
~ sl 2 -
And thus f* € L, if ¢ > p.

\I—P
Mg =

Now, if ¢ < p, then

5017, = [ a7 Dy(a) da+ 2Dy

[e.9]

Thus f\ € Ly if ¢ < p.
Finally, since f € L) and

f=1+ I
where fA € L,, if p < p; and f\ € Ly, if py < p. Then
Lpoo) © Ly, + Ly, when 0 <py<p<p <o0.
O

Proposition 4.5. Let (X, u) be a measure space and let E be a subset of X
with w(E) < co. Then

a) for 0 < g < p we have

[t s LB F U, o S € Eoe
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b) Conclude that if u(X) < oo and 0 < q < p, then
Ly(X, 1) € Lip,ooy © Lo(X, ).

Proof. Let f € L), then

[t
E

_ q]o/\ql,u({x € E:|f(x) > A}) d

0
1

[w(B)] P17, 0 7
<o [ wumave [ xpay
9 _1
[®)] 7111,
_1
[w(B)] P17, 7 11
<q / A u(E) dX + q / - L(M) "

‘3\'—‘

[w®] Piifln, .,
= () 12y ) 0B) + 2 (B 7)o

= [ S, L+ 2 B T,
= [u(®)] I, .,

q p 1-1 q
E/ ) T T
(b) If u(X) < oo, then

q _r -3 g
X/ 10 < 2 [T P,
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Hence
L, C Loy € Ly

]

Corolario 4.1. Let (X, u) be a measurable space and let E be a subset of X
with pu(E) < co. Then

1 fllp/2 < [4H(E)}1/p||f”L(p,oo>‘
And thus L, o) € Lya.

Proof. Since 0 < £ < p we can apply proposition 4.5 to obtain

/ 197 die < L) =172
E

Lo
5 (p,00)

= 20u(E)]| £

Lp,o0)

1l < 2221 B2\ £,

= [4M(E)}1/prHL(p,oo)'

From this last result one can see that

Lpooy © Lpa-

5 Normability of Weak L, for p > 1

Let (X, A, ) be a measure space and let 0 < p < co. Pick 0 < r < p and
define

sy, = s o] 7 | [irran]

0<u(E)<oo

where the supremum is taken over all measurable subsets E of X of finite
measure.
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Proposition 5.1. Let f be in Ly, ). Then

1

11, o, < WA, < (525) 9D,

Proof. By proposition 4.5 with ¢ = r we have

— E 7%+% / rd
1Ml =, _sup T(E)] (E /] u)

< swp [u(Eﬂ‘H( . [M<E>F‘;Hf\\2(p,m))

O<u(E)<oo

- (] () ),

0<u(E)<oo

1
_ (P )
- (%) Wl .,

On the other hand by definition

(B 7 ( / f’"du) <Al

for all E' € A such that u(E) < co now, let us consider A = {z : |f(z)| > a}
for f € Ly ). Observe that p1(A) < oo. Then

> [MAn¢+é(/fr@J

A
> [Dy(a)] o (/ardu)
A

That is



and thus
PD < .
supa?Dy(a) < |||f][,, .,
[
Lemma 5.1 (Fatou for L, ). For all measurable function g,, on X we have
H lim inf |g,, < Cp liminf Hgn
n—00 ) n—00

’HL(p,oo HL(}D,OO)‘

for some constant C,, that depends only on p € (0,00).

Proof.
[ timinf |ga[[[, < [|[liminf|g.[[|[,
1
—14d . r '
= sup  [u(E)] T /(hrrllnf!gn\) dp
0<u(E)<oo / n—00

1
1,1
< sup  [u(E)] T /1i7{gg1fgnrdu> :
E

By Fatou’s lemma

3=

< sup  [wE)] T (hgiogf / 90l dps
E

0<p(E)<oo

3=

<timint sup [u(E)] 7 | [ ol du
N0 g<u(E)<oo J

S|

1
o b\’
< lim inf (pTr) H9”||L<p,oo>

1

P\ ..
B (p—r) hrrzgglng”HL(p,oo)'

Finally

1

Jimint o, < (52 ) it o],

p—r n—00
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The following result is an improvement of lemma 5.1.
Lemma 5.2. For all measurable functions g, on X we have
H liminf |g, < lim inf ||gn
n—oo n—oo

llz,, .. I

Proof. Since
Dlim inf |gn | ()\) S lim inf Dgn ()\),

n—oo

Then

c? oL
{O >0 hmmegn(/\) S v} Q {O >0: Dliminf|gn\()\) S —} s

n—oo

and thus
.. ) cr
H hg}g}lf |g”|HL(p,oo) = inf {C’ >0: Dl}ﬂgﬂgﬂo‘) < —}

8.
< inf {C’ > 0: liminf D, () < —}

n—00 —\P

. cr
= lim inf (mf {C’ >0: Dy, (M) < V})

n—oo

- hggolf Hg"HL(p,oo)'

Proposition 5.2. Let 0 <p<1,0< s < oo and (X, A, n) be a measurable
space

a) Let f be a measurable function on X. Then

{If1<s}

b) Let f;, 1 < j <m, be measurable functions on X. Then
Il max 1£l[7, < Z; I51%,
j—

And also
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2
It tllh, < pZHfJHL(,,w)

The latter estimate is refereed to as the p—normability of Weak L, for
p<l1.

Proof. By proposition 4.4 (b) with p = 1, we have

/ |f|dM:/|f|X{f|<s}dM:/|f8|dM
X X

{If1<s}

= /Df(a) da — sDy(s)

/ p
< /—a Dy(a) do

>~ ar
0

da
<|If1I7, ., =
0

(b) Let max |f;(x)| = fx(x) for some 1 < k < m. Then

1<5<k

D) = ({2 max [10) > a})

1<j<m

/L({Q? s fre(x) > )\}) = Dy, (o) forsome 1<k<m

Then .
P Dpax ‘f] Z sup aprJ

and thus .
[ESL e 9 1718
=

29



(c) Observe that

max |f5| < [fi] +|fol + o+ [fm],

1<5<m
from this we have

{a:: max |f;()| >a} c {:c: il + o o >a},

2,
then
{x:\f1!+...+|fm! >a}
= ({1004 bl > o} 0o s @ <))
U {ws max |f(2)] > o}
And thus

Diiytpula) = p({z s [fi+ .+ f| > a})
< u({@ Al + -+ 1 ful > 0})

< s (o AL+ o Ul > 010 o 1) < )

b (o s 50> ) h
~ i (fre o max bWl <adslhl ot Ul > a })

1<j<m

+p ({fv © max |f;()] > a}>
= ({2 s (1Al + o+ ) Xomax 1<) > 0 })
# (o o 50> ).
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By Chebyshev’s inequality

Dirern@ <5 [ (A1 1l i+ Doy )

{x-max fil<a)

Z / |fj|du+DmaX|fj|<O‘)

- {x max | f;|<a}

U |
Za / 1I<IlaX |f]|d/L+Dmax|fJ|( )

{a:max | f;|<a}

By part (a) we have

1
Za / 1r§aé§1|f]|dﬂ+Dmax\f]\(a)
]:

{z:max |f;|<a}

1 al™?

- :lozl—p

P + ||1<]<m| ]‘”L( ,00)

max |f;l

1sjsm Lp,00) ar

+ Z H 1<]<m| J|||L(;0 00)
, aP

< -
Z H 1I<%<>§1|f7

(p,00)

Finally by part (b) we obtain

m
1 P
&’ Dyiypala) <> <1T + 1) max |f]|
j=1 p S5 (p,00)
p
max |f. J|
1<5<m L(p o)

I
L[]
ST
N
|‘|
3
N————



Proposition 5.3 (Lyapunov’s inequality for Weak L,). Let (X, i) be mea-
surable space. Suppose that 0 < pg < p < p; < o0 and i = 1p;09 + p% for some
RS [O, 1]. If f e L(po’oo) N L(pl’oo) then f € L(W)O) and

0
I#lls,, ., < 1150 I,
Proof. Observe that

= [0~ Dy()"\ %) [0 Dy (o))
Thus
() o
@Dyta) < [swparDyfa)] " [suparyta)]
, »(57) o
" Dy(a [” |L(p ooJ [H ‘L@ oo)]
finally

wpernyo) < [ 1" [Is, ]

(T |12 P PP

17115, <l Mo,
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Theorem 5.1 (Holder’s inequality for Weak spaces). Let f; be in Ly, )
where 0 < p;j < oo and1 < j<k. Let

1 1 1
-—=— 4.+ —.
p y4! Dk

Then
Lk

k
_1 p;
||f1"‘kaL(pyoo) Sp g Hp;] H HfjHL(p',OO)‘
j=1 =1 ’

Proof. Let us consider Hfj =1,1<j <k Andlet zy,...,x, be a

Iz,
positive real numbers such that

1
J— p— Oé,
T Tk
then
1 1
Dy, g.(a) = Dy, g, (x_l o x—k)
1 1 1
<D — D — ...+D — 22
= fl(x1)+ f2($2)+ + fk(.fk)’ ( )
since o .
J
1 _— - pj > — D -
ot (1) 0 (2)
then .
1\" 1
Y o)
Lj ZTj
thus

1 |
Dy, (—) <z’ for 1<j<k
Lj

Hence, we can write (22) as follows

1 1
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Next, let us define
F(xy,...,zp) =2 + 25 + ...+ b~

In what follows, we will use the Lagrange multipliers in order to obtain the
minimum value of F' subject to the constrain

1
— .. — =q.
T Ty
That is
flx1, @9, .. xp) = 2" +2h> + ...+ af*
1
g(x1,me, ..., x) = T1X2 ... Tf — >
Then, next
VF = \Vg.
And thus
pll’zlnil = )\(1’21'3 Ce l‘k)
pgl’};il = )\(1’1.’173 Cen xk)
pjl'?j_l = )\(1’1.’13’3 e iL‘k),
thus
malt = ANz ... xy)
porh? = N2 .. . 1)
pjl‘?j = )\(.’L’lxg c. Qlk)
Observe that |
T1Ty - T = (23)
On the other hand note that
patt = pixy’ for 2<j <k (24)
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Now replacing (24) into (23) we have

1 1 1
p2 Pl 3 p1 pp Bl
p3 Pk

b2
1

1 1
o (&) : (p_) (p_) ottt L (25)
b2 Ps3 Pk Q

By -
b1

then we can write (25) as follows

1 1 1
() ()7 ()
y4 b2 b3 o

but

And, thus
1 1 1
O e s
p1 ' P2 Pk 1,1 a1
Dy $p1<P1+P2+'“+Pk) _ l
kL 1 T a
Pj a
[1 p;
j=1
Then
E L
Pj
] [1 7
= P1 J=1
pl’ P =
pl a )
hence

pP1 __
Ty =

—_
| L
<.
—~
)
.
S
| I
3

praP

Therefore the x; ...z such that

N R
mpl —_ Pj
! plap ]1;[1 pj
(26)
:L“?] — & 1171
Pj

are the unique critical real point.
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For this critical real point, using (26) we have

1‘11)1+$12)2+...+$Zk:Illjl—i—&le)l—i—...—l—&xzfl
D2 Pk

1 1
= p1oY’ {—+...+—]
Y41 Pk

k 1P
1 > 1
ar Ll p
On the other hand observe that one can make the function

_ .m P
F(xy,...,xp) =27 + ...+ 2pF,

subject to the constrain

1Ty ... T =

)

- Q1

as big as one wish. Indeed if 1 = %, ro=q;and z; =1for 3 <7 < k.

Then
F(zy, ... zp) = + 2> + ... 4 af*

M p1 1 P
=|— — 1+...+1
(a) +<M> Fl4o4

M p1 1 P
— (= = k—2
(a) +<M> 2500,

as M — oo, therefore the critical part (26) is a minimum. Then



thus, we have

oDy, g (a) <

ko 1P
j=1

e

N (& 2\ ¢
||f1"'fk'HL(p,oo) < (]—9) (Hpj1> U HfjHL(pj,ooy (27)

since H fi

HL(p,oo)

In general, if Hf] : #1,1 < j <k choose g; = B and use (27)

HL(P]'» HfjHL(pj,OO)

]

Theorem 5.2 (Completeness). Weak L, with the quasi-norm |||z, is
complete for all 0 < p < oco.

Proof. Let {f,}nen be a Cauchy sequence in <Weak L,, H-HL@,OO))- Then for
every € > 0 there exists an ng € N such that

1
an - meL(p,oo) < €p+1

if m,n > ng, that is,

1/p )
(wp»i%fnxm) N ol <

A>0

taking \ = e we have
“u(fa € X i |ful@) = ful0)] > ) < @,
for m,n > ng. Hence
p({e € X i 1ful@) = ful(@)] > €}) <,

for m,n > ng. This means that {f,}nen is a Cauchy sequence in the mea-
sure pu. We therefore apply theorem 3.2 and conclude that there exists an
A—measurable function f such that some subsequence of { f,, }nen converges
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to f p—a.e. Let {f,, }ren be such subsequence of {f,}ren of {f,}nen then
fne = f p-a.e as k — oo. If we apply twice lemma 5.2 we obtain firstly

HfHLmoo) - ” liminf|fnk|HL(pm

< liminf || f,

)

Iz, ., <o

thus f € Weak L,,.
Secondly
I~ £l =i 15, = £l
1+1

< lim inf ank — f"HL<p,oo> < ep

if ng,n > ny.
This prove that Weak L, is complete for 0 < p < oo. O
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6 Multiplication Operators

Let F(X) be a function space on non-empty set X. Let u : X — C be a
function such that u.f on F(X) whenever f € F(X).

Then the transformation f — w.f on F(X) is denoted by M,,. In case F'(X)
is a topological space and M, is continuous, we call it a multiplication oper-
ator induced by u.

In this section boundedness and invertibility of the multiplication M, are
characterized in terms of the boundedness and invertibility of the complex-
valued measurable function u respectively.

Theorem 6.1. The linear transformation M, : f — u.f on the Weak L,
spaces is bounded if only if u is essentially bounded. Moreover

M| = feuloe-

Proof. Let u € Ly (u), then we find

r 1/p
M1, = supA[Dars ]

A>0
1/p

=sup A :u({x e X: ’Muf(iE)‘ > )‘})}

A>0

= sup A u({az € X :|(u.f)(x)] > )\})]l/p

A>0

< sup)\:u<{x € X :|f(z)] > m}ﬂl/p.

Since  {z € X : |(uf)(2)] > A} € {2 € X ¢ [[ullo|f(x)] > A}
- {xGX:\f(:c)| > m}
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Putting o = —— we have
[l

supA[,u({as € X:|f(x)] > ﬁ})]l/p

A>0

= supalfull [u({e € X : (@) > a})]

a>0

1/p
= Jullsupau(fr € X : ()] > a})
= H“HOOHfHL(pm)'
Hence, we have proved that

[Mufll,, < el £, - (28)

Conversely, suppose M, is a bounded operator. If u is not essentially bounded
function, then for every n € N, the set E, = {z € X : |u(z)| > n} has
positive measure and note that

{z € X :nxp,(x) > A} C {z € X : |uxg, (z)] > A},

then Up
iggA[u({x € X :nxg,(x) > /\}ﬂ
gﬂgAp({xeX:mm%@ﬂ>A}ﬂ”7
Thus

allxe.l,, < [Moxs.l,

This contradicts the boundedness of M,,.

Clearly from (28) we have
[ M| < [l (29)
Next, for € > 0, let

E:{xeX:m@ﬂ>HMm—e}
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Note p(E) > 0. Then

{x € X : (JJullo — €)xE(z) > )\} C {:L“ € X :|uxg(x)| > )\},

and thus U
supA[u( {zeX: (Julw—€)xp(z) > A} )]
A>0
< sup/\[u<{x € X : |uxg,(z)| > /\}ﬂl/p.
A>0
Therefore
(lulloe = Olxelly,, ., < Muxsll,,,
IR o
Ixelly,
Thus
[ulloe < || M|, (30)
finally from (29) and (30)
A} = Telloe

]

Theorem 6.2. The set of all multiplication operator on WeakL,, ‘is an mazimal-
abelian subalgebra of the set B (Weak L,), the algebra of all bounded linear
operation on Weak L,.

Proof. Let
3= { M, 1 u€ Lo},
and consider the operator product
M,.M, = M,,,

where M,, M, € H, let us check that H is a Banach algebra. Lea u, v € L.,
then |u| < ||ullo and |v| < ||v||oo therefore:

[uvloe < [[0]oo][te]| oo,
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this implies that product is an inner operation, moreover the usual func-
tion product is associative, commutative and distributive with respect to the
sum and the scalar product, thus we conclude that H is a subalgebra of

B (Weak L,).

Now, we like to check that JH is a maximal subalgebra, that is, given N &€
B (Weak L,), if N commute with H we have to prove that N € H.

Consider the unit function e : X — C defined by e(z) = 1 for all z € X let
N € B (Weak L) be an operator which commute with H and let x be the
characteristic function of a measurable set £. Then

N(XE) [Mx (e)]
v [V (€)]
= X N(e)
= N(e).xE
= Mu(xE),
where w = N(e). Similarly

N(s) = My(s), (31)

for any simple function.
Now, let us check that w € L.. By way of contradiction assume that
w ¢ Lo, then the set

E, = {x € X :|w(x)| > n},
has a positive measure for each n € N. Note that:

My(xE,)(x) = (wxg,)(®) > nxeg, (z),

for all x € X. By the monotonicity (Property 1) of the distribution function,
we have

n

A
Durs, )2 Dy, (2).
thus \
sup A’ Dy, (A) > sup ND,y, (—) ,

n

A>0 A>0
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Putting a = % we have

[wxe, = SUp X' Duy, (A) 2 P sup a” Dy, (@)
>

p
L a>0

p,00)
P p
= n’||xz, |

XEn Lip,oc)’

since x g, is a simple function then by (31) we have

My(xE,) = N(x&,),

Hence

HN(XE") ||L(p,<>0> = nHXEn HL(%OO) ’

Therefore N is a unbounded operator. This is a contradiction to the fact N
is bounded.
So then w € L., and by theorem 6.1 M,, is bounded.

Next, given f € Weak L, there exists a nondecreasing sequence {s, }nen of a
measurable simple functions such that lim s, = f, then by (31) we have
n—oo

N(f) =N ( lim sn) — lim N(s,) = lim My(s)

n—o0 n—oo n—o0

— M, (lim sn)

n—oo

= Mw(f)

Therefore, N(f) = M,(f) for all f € Weak L, and thus we conclude that
N e H.
[

Corolario 6.1. The multiplication operator M, is invertible if only if u is
invertible on L.

Proof. Let M, be invertible, the there exists N € B(Weak Lp) such that:
M, N=NM,=1, (32)

where I represent the identity operator. Let us check that N commute with
H. Let M,, € H, then:
M, .M, = M,.M,. (33)
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Applying N to (33) and by (32) we obtain:

N.M,.M,.N = N.M,.M,.N,
N.M,.I = I.M,.N,
N.M, = M,.N,

and thus we concluded that N commute with H, by theorem 6.2 N € K
then there exists g € Lo, such that N = M, hence

M,.M, = M,.M, =1,

this implies that ug = gu = 1, a.e[u| this means that w is invertible on L.

1
On the other hand, assume u is invertible on L., that is, — € L., then:
U
=M, = ],

which means that M, is invertible on B (Weak L,,).

Lemma 6.1. Let M, be a compact operator, for e > 0 define
Ac(u) = {z € X : Ju(z)| > €},

and

Weak L, [Ae(u)] = {fXAe(u)  fe WeakLp}.

Then Weak L, [Ae(u)} is a closed invariant subspace of Weak L, under M,.
Moreover

M,| ,
Weak Lp[Ac(u)]

1S a compact operator.

Proof. Let h, s € Weak L, [Ag(u)] and a, B € R. Then h = fxa,) and
5 = gXa.(u) Where f, g € Weak L,,, thus

ah + fs = a(fxa.w) + B9xAw)
= (af + B9)Xa.w) € Weak Ly, [A(u)].
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Which mean that Weak L,[A.(u)] is a subspace of Weak L.
Next, for all h € Weak L, [A.(u)] we have

Muh = uh = quAe(u)

where uf € Weak L,,.
Therefore, M,h € Weak L,[A(u)], which means that Weak L, [A.(u)] is an

invariant subspace of Weak L, under M,.

Now, let us show that Weak L, [Ae(u)] is a closed set. Indeed, let g be
a function belonging to the closure of Weak L,[Ac(u)] then there exists a
sequence {gy }nen in Weak L,[A.(u)] such that

In — 9,

in Weak L,,. Just remain to exhibit that g belong to Weak L, [Ae(u)] Note
that

9 = 9XAc(uw) T IXAc(u)-

Next, we want to show that gx4cw) = 0. In fact, given ¢; > 0 there exists
no € N such that

loxazally,, . =119 = gno + gno) Xzl
— H (g - g’no)XAg(u) HL(p’oo)

<|lg=gnoll,,, ., <e

Thus gxacw) = 0, which mean that g = gxa, () that is g € Weak L, [Ae(u)]
And the proof is now complete. O

Theorem 6.3. Let M, € B(Weak L,). Then M, is compact if and only if
Weak L, [Ae(u)] is finite dimensional for each € > 0.

Proof. If |u(x)| > €, we should note that

lufXacw(@)| > ef xaw(®),

and thus
{x € X efxa.(r) > >\} C {x € X : |ufxa.wl)| > )\},
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then
DquAe(u) ()‘) > DGfXAE(u) O‘)

A[DquAE(u)(A)} e Z )\[D ()\)]1/13

1
sup A [DquAE(u) ()‘)} & > sup A [DefXAe(u) O‘)]l/p
A>0 A>0

€fXAc(u)

lurxacllsy, o, 2 lefXawlly, .,
=ellfxamly, -

thus
|| Mo f XA () HL(,,,OO) > e[ fXa.(w HL(W)- (34)

Now, if M, is a compact, then for lemma 6.1, Weak L, [Ag(u)] is closed
invariant subspace of M, and by theorem A.1 (appendix)

M,

Weak Lp[Ac(w)]

is a compact operator. Then by (34) M, has a closed range in

Weak Lp[Ac(u)]
Weak Ly, [Ac(u)] and it is invertible, being compact, Weak L,[A.(u)] is finite
dimensional.

Conversely, suppose that Weak L, [Ae(u)] is finite dimensional for each € > 0.
In particular for n € N, Weak L,[A1 (u)] is finite dimensional, then for each
n, define !

uy, : X —C

0 u(z) if |u(z)] >

S=

up(z) =

0 if |u(z)] <

3=

Then we find that

My, f— Muf = (up —u).f < |Jup — ullool f1,

and thus

{weX:W%—Mf@ﬂ>A}g{xeX:WM—MBU@N>A}
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From this we have
M = Ml < T = el

consequently .
1M f = My, < g

which implies that M, converge to M, uniformly.

As Weak L, [A(u)] is finite dimensional so M,, is a finite rank operator.
Therefore M, is a compact operator and hence M, is a compact operator.
m

Remark 6.1. In general, the multiplication operator on measurable space
is not 1-1. Indeed, let (X, A, 1) be a measure space and

A= X\ supp(u) = {z € X : u(z) =0},

where supp(u) stand for the support of w.
If u(A) # 0 and f = x4, then for any x € X, we have f(z)u(x) = 0 which
implies that M, (f) = 0, therefore Ker(M,) # {0} and hence M, is not 1-1.

By contrapositive, we have M, is 1-1, then ,u(X\supp(u)) = 0. On the other

hand, if (X \ supp(u)) =0 and p is a Complete measure, then M,(f) =0
implies f(z)u(z) =0 Vz € X, then {z € X : f(z) # 0} C X \ supp(u) and
so f=0pu—aeon X.

Hence, if ,u(X \ supp(u)) =0 and p is a complete measure, then M, is 1-1.

Proposition 6.1. M, is 1-1 on Y = Weak L, (supp(u)).

Proof. Let Y = Weak L (supp ) {szupp . [ € Weak L }

Indeed, if Mu(f) = 0 with [ = X suppu) € Y, then f(2)Xsuppu)(z) = 0 for
all z € X and so

f(@)u(xz) =0 Vz € supp(u)
fx) =0 Va € supp(u),
f(x)Xsupp(u) =0 VrelX.

Then f: 0 and the proof is complete. n
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Theorem 6.4. Let M, : Weak L, (supp u) — Weak L, (Supp u) Then M,
has closed range if an only if hence exist a 6 > 0 such that |u(z)| > ¢ a.e[u]
on S ={ze X :u(x)#0} the support of u.

Proof. If there exists a ¢ > 0 such that |u(z)| > ¢ a.e[u] on S, then for
f € Weak L, we have

{:L’ € X: ’(5fxg)(9c)| > )\} C {ac eX: }(ufxg)(x)} > )\},

and thus
DquS(/\) > D5sz(/\)'

Hence
Mufxsll,, = dllFxsll,,

Therefore M, has closed range.

Conversely if M, has closed range on Weak LP(S), since M, is 1-1 on
Weak L,(S) then M, is bounded below, and thus there exists an § > 0
such that

Il =l
for all f € Weak L, (S ), where
Weak L, (S) = {fXS . f € Weak Lp}.
Let E={z €S : |u(z)| <e/2}.
If u(E) > 0, then we can find a measurable set ' C FE such that yp €
Weak L,(S).
Also, we have for A > 0

{xEX:‘uXF(ac)‘>/\}§{x€X:

%XF(Z’)‘ > )\}.

So that
Hence

which is a contradiction. Therefore y(E) = 0.
This completes the proof. n
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7 Composition Operator

Let (X, A, 1) be a measure spaces and T : X — X such that T71(A) € A
for any A € A. If u(T7'(A)) = 0 for each A € A with p(A) = 0, then T is

said to be non-singular transformation.

Let Y be a measurable subset of X and 7" : Y — X is a measurable trans-
formation, then we define the linear transformation Cr from Weak L, into
the spaces of all complex - valued measurable functions on X as

f(T(z)) ifzeY
(CTf) (z) =

0 otherwise

for all f € Weak L,,.

If Cr is bounded with range in Weak L, we say that Cr is a composition
operator on Weak L,, induced by 7.

In this section a necessary and sufficient condition for the boundedness of
composition mapping Cr is given.

Theorem 7.1. LetT : X — X be a non-singular measurable transformation.
Then Cr : f — foT induced by T is bounded on WeakL, if and only if there
exists a constant M > 0 such that

p(T™HE)) < Mu(E) forall E € A.

|Cr]| = sup (—MTI(E)))l/p.

0<pu(F)<oco
EeA

Moreover

Proof. Suppose that there exists a constant M > 0 such that p(T7'(E)) <
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Mu(FE) for all E € A. Then

[Crh)l, ., = supA[u(te € X (T > 2p)]

= supA[u(T’l({x eX:|f(x)] > A}))]I/p

A>0

< Msup)\[,u({:z e X:|f(x)| > )\})}1/;)

A>0

= M||f],, -

Hence
[CrDH,, . <ML, -

Conversely, suppose that Cr is bounded and let E € A, if u(E) = oo then
we have result. Suppose that p(£) < oo and consider x7-1(g), then

w1 E)] " <swA[ulte € X xem@ > ap)]

—supA[({r € X : (xe o T) (@) > A})]

=lxee Ty,

1/p

= HCT(XE)”L(,,,OO)’
since Ct is bounded then there exists M such that
ICrixell,, <M xell,,
= M7 [u(E)]",

thus
(T (E))] " <)),

accordingly
u(T7(B)) < Mu(E).

for all E € Weak L,
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Next, we like to shown that

|Cr|| = sup (M) 1/p‘

0<p(F)<oo
EcA

/p
-1
Indeed, let N =  sup <%) , then
0<#E(EJ){<OO

1 1/p
(%) <N forall EcA, wuE)+#0,

thus
p(T~H(E)) < NPw(E) forall E € A.

Now, by the first part of this theorem, we have

lCrD,, ., < NI, -

for all f € Weak L,,.

Hence HC (f)H
|Cr|| = Supﬂ <N,
2 |,
then 1
p(rE)\
Crll < e .
Ierl< s ( W(E)
EcA
On the other hand, let
lcz ()]
M= Crl = | e
fE\A]{(jz)k L, Lipoo)
Then
lCz(H)],
22 < M forall f € Weak L, f # 0.
I£1].,

P,00)
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In particular, for f = yg such that 0 < u(E) < oo, F € A we have that
f = xg € Weak L,, and

. 1/p
|07 Cen)l,,.., (M) < M,

HXEHLWOO) pu(E)
therefore y
p(rHE)\ "
S <M = ||Cr|. 36
<>( o e (39
EcA

Finally from (35) and (36) we obtain

for =, sw_ (MUY

0<p(E)<oo
EcA

A Appendix

Definition A.1. Let T : X — X be an operator, a subspace V' of X is said
to be invariant under T' (or simply T'—invariant) whenever

T(V)C V.

Theorem A.1. Let T : X — X be an operator. If T' is compact and M is a

closed T-invariant space of X. Then T'| is compact.
M

Proof. Let {,}nen be a sequence in M C X. Then {x,}neny € X, thus
there exists a subsequence {z,, }ren of {%, }nen such that T'(x,,) converges
in X but T(x,,) € T(M), since {x,,} € M. Then T(x,,) converge on
T(M) C M =M.

Therefore T'(z,, ) converge on M, hence T'| is compact. O
M

52



References

[1] M.B. Abrahamese, Multiplication operators, Lecture notes in Math., Vol.
693 (1978), 17-36, Springer Verlag, New York, 1978.

[2] S.C. Arora, Gopal Datt and Satish Verma, Multiplication operators on
Lorentz spaces, Indian Journal of Mathematics, Vol. 48 (3) (2006), 317-
329.

(3] A. Axler, Multiplication operators on Bergman space, J. Reine Angew
Math., Vol. 33 (6) (1982), 26-44.

[4] C. Bennett and R. Sharpley, Interpolation of operators, Pure and applied
math., Vol. 129, Academic Press Inc., New york, 1988.

[5] Castillo, René Erlin; Leén Ramén; Trousselot, Eduard. Multiplication
operator on L, ) ‘spaces. Panamer. Math. J 19(2009) No. 1, 37-44.

[6] Y. Cui, H. Hudzik, Romesh Kumar and L. Maligranda, Composition
operators in Orlicz spaces, J. Austral. Math. Soc., Vol. 76 (2) (2004),
189-206.

[7] Grafakos, Loukas. Classical Fourier Analysis. Second edition, volume 249.
Springer, New York, 2008.

[8] H. Hudzik, A. Kaminska and M. Mastylo, On the dual of Orlicz-Lorentz
space, Proc. Amer. Math. Soc., Vol. 130 (6) (2003), 1645-1654.

9] R.A. Hunt, On L(p, q) spaces, LEnseignment Math., Vol. 12 (2) (1966),
249-276.

[10] B.S. Komal and Shally Gupta, Multiplication operators between Orlicz
spaces, Integral Equations and Operator Theory, Vol. 41 (2001), 324-330.

[11] Romesh Kumar, Comopsition operators on Orlicz spaces, Integral equa-
tions and operator theory, Vol. 29 (1997), 17-22.

[12] Rajeev Kumar and Romesh Kumar, Compact composition operators on
Lorentz spaces, Math. Vesnik, Vol. 57 (2005), 109-112..

[13] G.G. Lorentz, Some new function spaces, Ann. Math. Vol. 51 (1) (1950),
37-55.

53



[14] S.J. Montgomery-Smith, Orlicz-Lorentz spaces, Proceedings of the Or-
licz Memorial Conference, Oxford, Mississippi, 1991.

[15] Nielsen, Ole A. An introduction to integration and measure theory.
Canadian Mathematical society series of Monographs and Advanced
Texts. A Wiley -interscience Publication. Jhon Wiley & sons, inc, New
York, 1997. ISBN:0-471-59518-7.

[16] E. Nordgren, Composition operators on Hilbert spaces, Lecture notes in
Math., Vol. 693, 37-68, Springer Verlag, New York, 1978.

[17) M.M. Rao and Z.D. Ren, Theory of Orlicz spaces, Marcel Dekker Inc.,
New York, 1991.

[18] R.K. Singh and A. Kumar, Multiplication and composition operators
with closed ranges, Bull. Aust. Math. Soc. Vol. 16 (1977), 247-252.

[19] R.K. Singh and J.S. Manhas, Composition operators on Function spaces,
North Holland Math. Stud., vol. 179, Elsevier Science Publications, Am-
sterdem, New York, 1993.

[20] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on
Euclidean spaces, Princeton Math. Series, Vol. 32, Princeton Univ. Press,
Princeton N.J., 1971.

[21] H. Takagi, Fredholm weighted composition operators, Integral Equa-
tions and Operator Theory, Vol. 16 (1993), 267-276.

o4



'DEPARTAMENTO DE MATEMATICAS
UNIVERSIDAD NACIONAL DE COLOMBIA
BocoTA COLOMBIA

e-mail: recastillo@unal.edu.co

2DEPARTAMENTO DE MATEMATICAS
UNIVERSIDAD NACIONAL DE COLOMBIA
BoGcoTA COLOMBIA

e-mail: favallejon@unal.edu.co

3SDEPARTAMENTO DE MATEMATICAS
UNIVERSIDAD DE ORIENTE

6101 CUMANA, EDO. SUCRE, VENEZUELA
e-mail: jramos@sucre.udo.edu.ve

95



