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1 Introduction

One of the real attraction of WeakLp space is that the subject is sufficiently
concrete and yet the spaces have fine structure of importance for applications.
WeakLp spaces are function spaces which are closely related to Lp spaces. We
do not know the exact origin of Weak Lp spaces, which is a apparently part
of the folklore. The Book by Colin Benett and Robert Sharpley[4] contains
a good presentation of WeakLp but from the point of view of rearrangement
function. In the present paper we study the WeakLp space from the point of
view of distribution function. This circumstance motivated us to undertake
a preparation of the present paper containing a detailed exposition of these
function spaces. In section 6 of the present paper we first prove a charac-
terization of the boundedness of Mu in terms of u, and show that the set
of multiplication operators on Weak Lp is a maximal abelian subalgebra of
B
(
WeakLp

)
, the Banach algebra of all bounded linear operators on WeakLp.

For the systemic study of the multiplication operator on different spaces we
refereed to ([1], [2], [5] [3], [10], [18], [21]).
We use it to characterize the invertibility of Mu on Weak Lp. The compact
multiplication operators are also characterized in this section.
In section 7 a necessary and sufficient condition for the boundedness of com-
position operator CT is given. For the study of composition operator on
different function spaces we refereed to ([6], [11], [12], [16], [18], [19]).

2 Weak Lp spaces

Definition 2.1. For f a measurable function on X, the distribution function
of f is the function Df defined on [0,∞) as follows:

Df (λ) := µ
(
{x ∈ X : |f(x)| > λ}

)
. (1)

The distribution function Df provides information about the size of f but
not about the behavior of f itself near any given point. For instance, a func-
tion on Rn and each of its translates have the same distribution function. It
follows from definition 2.1 that Df is a decreasing function of λ (not neces-
sarily strictly).

Let (X,µ) be a measurable space and f and g be a measurable functions on
(X,µ) then Df enjoy the following properties: For all λ1, λ2 > 0:
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1. |g| ≤ |f | µ-a.e. implies that Dg ≤ Df ;

2. Dcf (λ1) = Df

(
λ1
|c|

)
for all c ∈ C/{0};

3. Df+g(λ1 + λ2) ≤ Df (λ1) +Dg(λ2);

4. Dfg(λ1λ2) ≤ Df (λ1) +Dg(λ2).

For more details on distribution function see ([7] and [15]).
Next, Let (X,µ) be a measurable space, for 0 < p <∞, we consider

Weak Lp :=

{
f : µ({x ∈ X : |f(x)| > λ}) ≤

(
C

λ

)p}
,

for some C > 0. Observe that Weak L∞ = L∞.

Weak Lp as a space of functions is denoted by L(p,∞).

Proposition 2.1. Let f ∈Weak Lp with 0 < p <∞. Then

‖f‖L(p,∞)
= inf

{
C > 0 : Df (λ) ≤

(
C

λ

)p}
=

(
sup
λ>0

λpDf (λ)

)1/p

= sup
λ>0

λ {Df (λ)}1/p .

Proof. Let us define

λ = inf

{
C > 0 : Df (α) ≤

(
C

α

)p}
,

and

B =

(
sup
α>0

αpDf (α)

)1/p

.

Since f ∈Weak Lp, then

Df (α) ≤
(
C

α

)p
,

for some C > 0, then
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{
C > 0 : Df (α) ≤

(
C

α

)p
∀ α > 0

}
6= ∅.

On the other hand
αpDf (α) ≤ Bp,

thus {αpDf (α) : α > 0} is bounded above by Bp and so B ∈ R.
Therefore

λ = inf

{
C > 0 : Df (α) ≤

(
C

α

)p
α > 0

}
≤ B. (2)

Now, let ε > 0, then there exists C such that

λ ≤ C < λ+ ε,

and thus

Df (λ) ≤ Cp

λp
<

(λ+ ε)p

λp
,

then

sup
λ>0

λpDf (λ) < (λ+ ε)p(
sup
λ>0

λpDf (λ)

)1/p

≤ λ

B < λ, (3)

by (2) and (3) B = λ.

Definition 2.2. For 0 < p < ∞ the space L(p,∞) is defined as the set of all
µ−measurable functions f such that

‖f‖L(p,∞)
= inf

{
C > 0 : Df (λ) ≤

(
C

λ

)p
∀λ > 0

}
=

(
sup
λ>0

λpDf (λ)

)1/p

= sup
λ>0

λ {Df (λ)}1/p ,

is finite. Two functions in L(p,∞) will be considered equal if they are equal
µ−a.e.
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The Weak Lp = L(p,∞) are larger than the Lp spaces, we have the following.

Proposition 2.2. For any 0 < p <∞ and any f ∈ Lp we have

Lp ⊂ L(p,∞),

and hence ∥∥f∥∥
L(p,∞)

≤
∥∥f∥∥

Lp
.

(This is just a restatement of the Chebyshev inequality).

Proof. If f ∈ Lp, then

λpµ
(
{x ∈ X : |f(x)| > λ}

)
≤

∫
{|f |>λ}

|f |p du ≤
∫
X

|f |p du =
∥∥f∥∥p

Lp
,

therefore

µ
(
{x ∈ X : |f(x)| > λ}

)
≤
(
‖f‖Lp
λ

)p
. (4)

Hence f ∈ Weak Lp = L(p,∞), which means that

Lp ⊂ L(p,∞). (5)

Next, from (4) we have(
sup
λ>0
{λpDf (λ)}

)1/p

≤
∥∥f∥∥

Lp∥∥f∥∥
L(p,∞)

≤
∥∥f∥∥

Lp
.

Remark 2.1. The inclusion (5) is strict, indeed, let f(x) = x−1/p on (0,∞)
(with the Lebesgue measure). Note

m

({
x ∈ (0,∞) :

1

|x|1/p
> λ

})
= m

({
x ∈ (0,∞) : |x| < 1

λp

})
= 2λ−p.

Thus f ∈Weak Lp(0,∞), but∫ ∞
0

(
1

x1/p

)p
dx =

∫ ∞
0

dx

x
→∞,

then f /∈ Lp(0,∞).
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Proposition 2.3. Let f, g ∈ L(p,∞). Then

1.
∥∥cf∥∥

L(p,∞)
= |c|

∥∥f∥∥
L(p,∞)

for any constant c,

2.
∥∥f + g

∥∥
L(p,∞)

≤ 2
(∥∥f∥∥p

L(p,∞)
+
∥∥g∥∥p

L(p,∞)

)1/p
.

Proof. (1) For c > 0 we have

µ
(
{x ∈ X : |cf(x)| > λ}

)
= µ

({
x ∈ X : |f(x)| > λ

c

})
,

thus

Dcf (λ) = Df

(
λ

c

)
.

And thus

‖cf‖L(p,∞)
=

(
sup
λ>0

λpDcf (λ)

)1/p

=

(
sup
λ>0

λpDf

(
λ

c

))1/p

=

(
sup
cw>0

cpwpDf (w)

)1/p

= c

(
sup
cw>0

wpDf (w)

)1/p

,

then
‖cf‖L(p,∞)

= c‖f‖L(p,∞)
.

(2) Note that{
x ∈ X : |f(x)+g(x)| > λ

}
⊆
{
x ∈ X : |f(x)| > λ

2

}⋃{
x ∈ X : |g(x)| > λ

2

}
.

Hence

µ
(
{x ∈ X : |f(x) + g(x)| > λ}

)
≤ µ

({
x ∈ X : |f(x)| > λ

2

})
+ µ

({
x ∈ X : |g(x)| > λ

2

})
,

then

λpDf+g(λ) ≤λpDf

(
λ

2

)
+ λpDg

(
λ

2

)
λpDf+g(λ) ≤2p

[
sup
λ>0

λpDf (λ) + sup
λ>0

λpDg(λ)

]
,
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therefore (
sup
λ>0

λpDf+g(λ)

)1/p

≤2
(∥∥f∥∥p

L(p,∞)
+
∥∥g∥∥p

L(p,∞)

)1/p
∥∥f + g

∥∥
L(p,∞)

≤2
(∥∥f∥∥p

L(p,∞)
+
∥∥g∥∥p

L(p,∞)

)1/p
.

Remark 2.2. Proposition 2.3 (2) tell us that ‖.‖L(p,∞)
define a quasi-norm

on L(p,∞).

Definition 2.3. A quasi-norm is a functional that is like a norm except that
it does only satisfy the triangle inequality with a constant C ≥ 1, that is

‖f + g‖ ≤ C
(
‖f‖+ ‖g‖

)
.

3 Convergence in measure

Next, we discus some convergence notions. The following notion is of impor-
tance in probability theory.

Definition 3.1. Let f, fn (n = 1, 2, 3, ...) be a measurable functions on the
measurable space (X,µ). The sequence {fn}n∈N is said to converge in measure

to f (fn
µ→ f) if for all ε > 0 there exists an n0 ∈ N such that

µ
(
{x ∈ X : |fn(x)− f(x)| > ε}

)
< ε for all n ≥ n0. (6)

Remark 3.1. The preceding definition is equivalent to the following state-
ment.
For all ε > 0,

lim
n→∞

µ
(
{x ∈ X : |fn(x)− f(x)| > ε}

)
= 0. (7)

Cleary (7) implies (6). To see the convergence given ε > 0, pick 0 < δ < ε
and apply (6) for this δ.
There exists an n0 ∈ N such that

µ
(
{x ∈ X : |fn(x)− f(x)| > δ}

)
< δ,
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holds for n ≥ n0. Since

µ
(
{x ∈ X : |fn(x)− f(x)| > ε}

)
≤ µ

(
{x ∈ X : |fn(x)− f(x)| > δ}

)
.

We concluded that

µ
(
{x ∈ X : |fn(x)− f(x)| > ε}

)
< δ,

for all n ≥ n0. Let n→∞ to deduce that

lim sup
n→∞

µ
(
{x ∈ X : |fn(x)− f(x)| > ε}

)
≤ δ. (8)

Since (8) holds for all 0 < δ < ε (7) follows by letting δ → 0.

Remark 3.2. Convergence in measure is a more general property than con-
vergence in either Lp or L(p,∞), 0 < p < ∞, as the following proposition
indicates:

Proposition 3.1. Let 0 < p ≤ ∞ and fn, f be in L(p,∞).

1. If fn, f are in Lp and fn → f in Lp, then fn → f in L(p,∞).

2. If fn → f in L(p,∞) then fn
µ→ f .

Proof. (1) Fix 0 < p <∞. Proposition 2.2 gives that for all ε > 0 we have:

µ
(
{x ∈ X : |fn(x)− f(x)| > ε}

)
≤ 1

εp

∫
X

|fn − f |p dµ

εpµ
(
{x ∈ X : |fn(x)− f(x)| > ε}

)
≤ ‖fn − f‖pLp

sup
λ>0

λpDfn−f (λ) ≤ ‖fn − f‖pLp ,

and thus
‖fn − f‖L(p,∞)

≤ ‖fn − f‖Lp .

This shows that convergence in Lp implies convergence in WeakLp. The case
p =∞ is tautological.

(2) Give ε > 0 find an n0 ∈ N such that for n > n0, we have
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‖fn − f‖L(p,∞)
=

(
sup
λ>0

λpDfn−f (λ)

)1/p

< ε
1
p
+1,

then taking λ = ε, we conclude that

εpµ
(
{x ∈ X : |fn(x)− f(x)| > ε}

)
< εp+1,

for n > n0.
Hence

µ
(
{x ∈ X : |fn(x)− f(x)| > ε}

)
< ε for n > n0.

Example 3.1. Fix 0 < p <∞. On [0, 1] define the functions

fk,j = k1/pχ( j−1
k
, j
k)

k ≥ 1, 1 ≤ j ≤ k.

Consider the sequence {f1,1, f2,1, f2,2, f3,1, f3,2, f3,3, ...}.
Observe that

m
(
{x ∈ [0, 1] : fk,j(x) > 0}

)
=

1

k
,

thus
lim
k→∞

m
(
{x ∈ [0, 1] : fk,j(x) > 0}

)
= 0,

that is fk,j
m−→ 0.

Likewise, Observe that

‖fk,j‖L(p,∞)
=

(
sup
λ>0

λpm
(
{x ∈ [0, 1] : fk,j(x) > λ}

))1/p

≥
(

sup
k≥1

k − 1

k

)1/p

= 1.

Which implies that fk,j does not converge to 0 in L(p,∞).

It turns out that every sequence convergent in L(p,∞) has a subsequence that
converges µ-a.e. to the same limit.

Theorem 3.1. Let fn and f be a complex-valued measurable functions on a
measure space (X,A, µ) and suppose fn

µ−→ f . Then some subsequence of
fn converges to f µ−a.e.
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Proof. For all k = 1, 2, ... choose inductively nk such that

µ
(
{x ∈ X : |fn(x)− f(x)| > 2−k}

)
< 2−k, (9)

and such that n1 < n2 < ... < nk < ... Define the sets

Ak =
{
x ∈ X : |fnk(x)− f(x)| > 2−k

}
,

(9) implies that

µ

(
∞⋃
k=m

Ak

)
≤

∞∑
k=m

µ(Ak) ≤
∞∑
k=m

2−k = 21−m, (10)

for all m = 1, 2, 3, ... It follows from (10) that

µ

(
∞⋃
k=1

Ak

)
≤ 1 <∞. (11)

Using (10) and (11), we conclude that the sequence of the measure of the

sets

{
∞⋃
k=m

Ak

}
m∈N

converges as m→∞ to

µ

(
∞⋂
m=1

∞⋃
k=m

Ak

)
= 0. (12)

To finish the proof, observe that the null set in (12) contains the set of all
x ∈ X for which fnk(x) does not converge to f(x).

Remark 3.3. In many situations we are given a sequence of functions and
we would like to extract a convergent subsequence. One way to achieve this
is via the next theorem which is a useful variant of theorem 3.1. We first
give a relevant definition.

Definition 3.2. We say that a sequence of measurable functions {fn}n∈N on
the measure space (X,A, µ) is Cauchy in measure if for every ε > 0 there
exists an n0 ∈ N such that for n, m > n0 we have

µ
(
{x ∈ X : |fn(x)− fm(x)| > ε}

)
< ε.
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Theorem 3.2. Let (X,A, µ) be a measure space and let {fn}n∈N be a complex
valued sequence on X, that is Cauchy in measure. Then some subsequence
of fn converges µ−a.e.

Proof. The proof is very similar to that of theorem 3.1 for all k = 1, 2, 3, ...
choose nk inductively such that

µ
(
{x ∈ X : |fnk(x)− fnk+1

(x)| > 2−k}
)
< 2−k, (13)

and such that n1 < n2 < n3 < ... < nk < nk+1 < ... Define

Ak =
{
x ∈ X : |fnk(x)− fnk+1

(x)| > 2−k
}
.

As shown in the proof of theorem 3.1 (13) implies that

µ

(
∞⋂
m=1

∞⋃
k=m

Ak

)
= 0, (14)

for x /∈
∞⋃
k=m

Ak and i ≥ j ≥ j0 ≥ m (and j0 large enough) we have

|fni(x)− fnj(x)| ≤
i−1∑
l=j

|fnl(x)− fnl+1
(x)| ≤

i∑
l=j

2−l ≤ 21−j ≤ 21−j0 .

This implies that the sequence {fni(x)}i∈N is Cauchy for every x in the set(
∞⋃
k=m

Ak

)c
and therefore converges for all such x. We define a function

f(x) =


lim
j→∞

fnj(x) when x /∈
∞⋂
m=1

∞⋃
k=m

Ak

0 when x ∈
∞⋂
m=1

∞⋃
k=m

Ak

Then fnj → f almost everywhere.

Proposition 3.2. If f ∈ Weak Lp and µ
(
{x ∈ X : f(x) 6= 0}

)
< ∞, then

f ∈ Lq for all q < p. On the other hand, if f ∈ Weak Lp ∩ L∞ then f ∈ Lq
for all q > p.
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Proof. If p <∞, we write∫
X

|f(x)|q dµ = q

∞∫
0

λq−1Df (λ) dλ

= q

1∫
0

λq−1Df (λ) dλ+ q

∞∫
1

λq−1Df (λ) dλ.

Note that

µ
(
{x ∈ X : |f(x)| > λ}

)
≤ µ

(
{x ∈ X : f(x) 6= 0}

)
.

Therefore µ
(
{x ∈ X : |f(x)| > λ}

)
≤ C, then

∫
X

|f(x)|q dµ ≤ qC

1∫
0

λq−1 dλ+ qC

∞∫
1

λq−p−1 dλ = C +
qCλq−p

q − p

]∞
1
<∞

Therefore f ∈ Lq.

If f ∈Weak Lp ∩ L∞. Then

∫
X

|f(x)|q dµ = q

∞∫
0

λq−1Df (λ) dλ

= q

M∫
0

λq−1Df (λ) dλ+ q

∞∫
M

λq−1Df (λ) dλ,

where M = esssup|f(x)|. Note that

µ
(
{x ∈ X : |f(x)| > λ}

)
= 0 for λ > M,

since f ∈Weak Lp ∩ L∞, therefore

q

∞∫
M

λq−1Df (λ) dλ = 0 and Df (λ) ≤

∥∥f∥∥p
L(p,∞)

λp
.
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Then

∫
X

|f(x)|q dµ = q

M∫
0

λq−1Df (λ) dλ ≤ q
∥∥f∥∥p

L(p,∞)

M∫
0

λq−p−1 dλ

=
q
∥∥f∥∥p

L(p,∞)
M q−p

q − p
<∞,

then ∫
X

|f(x)|q dµ ≤ ∞.

Thus f ∈ Lq.

Proposition 3.3. Let f ∈ Weak Lp0 ∩Weak Lp1 with p0 < p < p1. Then
f ∈ Lp.

Proof. Let us write

f = fχ{|f |≤1} + fχ{|f |>1} = f1 + f2.

Observe that f1 ≤ f and f2 ≤ f . In particular f1 ∈ Weak Lp0 and f2 ∈
Weak Lp1 . Also, write that f1 is bounded and

µ
(
{x ∈ X : f2(x) 6= 0}

)
= µ

(
{x ∈ X : |f(x)| > 1}

)
< C <∞.

Therefore by proposition 3.2, we have f1 ∈ Lp and f2 ∈ Lp. Since Lp is a
linear vector space, we conclude that f ∈ Lp.

4 An interpolation result

It is a useful fact that if a function is in Lp(X,µ)∩Lq(X,µ), then it also lies
in Lr(X,µ) for all p < r < q. The usefulness of the spaces L(p,∞) can be seen
from the following sharpening of this statement:

Proposition 4.1. Let 0 < p < q ≤ ∞ and let f in L(p,∞) ∩ L(q,∞). Then f
is in Lr for all p < r < q and

∥∥f∥∥
Lr
≤
(

r

r − p
+

r

q − r

)1/r ∥∥f∥∥ 1
r−

1
q

1
p−

1
q

L(p,∞)

∥∥f∥∥ 1
p−

1
r

1
p−

1
q

L(q,∞)
(15)

whit the suitable interpolation when q =∞.
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Proof. Let us take first q <∞. We know that

Df (λ) ≤ min

(∥∥f∥∥p
Lp,∞

λp
,

∥∥f∥∥q
Lq,∞

λq

)
, (16)

set

B =

(∥∥f∥∥q
Lq,∞∥∥f∥∥p
Lp,∞

) 1
q−p

. (17)

We now estimate the Lr norm of f . By (16), (17), we have

∥∥f∥∥r
Lr

= r

∞∫
0

λr−1Df (λ) dλ

≤ r

∞∫
0

λr−1 min

(∥∥f∥∥p
Lp,∞

λp
,

∥∥f∥∥q
Lq,∞

λq

)
dλ

= r

B∫
0

λr−1−p
∥∥f∥∥p

Lp,∞
dλ+ r

∞∫
B

λr−1−q
∥∥f∥∥q

Lq,∞
dλ (18)

=
r

r − q
∥∥f∥∥p

Lp,∞
Br−p +

r

q − r
∥∥f∥∥q

Lq,∞
Br−q

=

(
r

r − p
+

r

q − r

)(∥∥f∥∥p
L(p,∞)

) q−r
q−p
(∥∥f∥∥q

L(q,∞)

) r−p
q−p

.

Observe that the integrals converge, since r − p > 0 and r − q < 0.
The case q = ∞ is easier. Since Df (λ) = 0 for λ > ‖f‖L∞ we need to use
only the inequality

Df (λ) ≤ λ−p
∥∥f∥∥p

L(p,∞)
,

for λ ≤ ‖f‖L∞ in estimating the first integral in (18). We obtain∥∥f∥∥r
Lr
≤ r

r − p
∥∥f∥∥p

L(p,∞)

∥∥f∥∥r−p
L∞

,

Which is nothing other than (15) when q =∞. This complete the proof.

Note that (15) holds with constant 1 if L(p,∞) and L(q,∞) are replaced by Lp
and Lq, respectively. It is often convenient to work with functions that are
only locally in some Lp space. This leads to the following definition.
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Definition 4.1. For 0 < p < ∞, the space Lploc(Rn, |.|) or simply Lploc(Rn)
(where |.| denote the Lebesgue measure) is the set of all Lebesgue-measurable
functions f on Rn that satisfy∫

K

|f(x)|p dx <∞, (19)

for any compact subset K of Rn. Functions that satisfy (19) with p = 1 are
called locally integrable functions on Rn.

The union of all Lp(Rn) spaces for 1 ≤ p ≤ ∞ is contained in L1
loc(Rn).

More generally, for 0 < p < q <∞ we have the following:

Lq(Rn) ⊆ Lqloc(R
n) ⊆ Lploc(R

n).

Functions in Lp(Rn) for 0 < p < 1 may not be locally integrable. For exam-
ple, take f(x) = |x|−α−nχ{x:|x|≤1} which is in Lp(Rn) when p < n/(n+α), and
observe that f is not integrable over any open set in Rn containing the origen.

In what follows we will need the following useful result.

Proposition 4.2. Let {aj}j∈N be a sequence of positives reals.

a)

(
∞∑
j=1

aj

)θ

≤
∞∑
j=1

aθj for any 0 ≤ θ ≤ 1. If
∞∑
j=1

aθj <∞.

b)
∞∑
j=1

aθj ≤

(
∞∑
j=1

aj

)θ

for any 1 ≤ θ <∞. If
∞∑
j=1

aj <∞.

c)

(
N∑
j=1

aj

)θ

≤ N θ−1
N∑
j=1

aθj when 1 ≤ θ <∞.

d)

(
N∑
j=1

aθj

)
≤ N1−θ

(
N∑
j=1

aj

)θ

when 0 ≤ θ ≤ 1.
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Proof. (a) We proceed by induction. Note that if 0 ≤ θ ≤ 1, then θ− 1 ≤ 0,
also a1 + a2 ≥ a1 and a1 + a2 ≥ a2 from this we have (a1 + a2)

θ−1 ≤ aθ−11 and
(a1 + a2)

θ−1 ≤ aθ−12 and thus

a1(a1 + a2)
θ−1 ≤ aθ1 and a2(a1 + a2)

θ−1 ≤ aθ2.

Hence
a1(a1 + a2)

θ−1 + a2(a1 + a2)
θ−1 ≤ aθ1 + aθ2,

next, pulling out the common factor on the left hand side of the above in-
equality, we have

(a1 + a2)
θ−1(a1 + a2) ≤ aθ1 + aθ2,

(a1 + a2)
θ ≤ aθ1 + aθ2.

Now, suppose that (
n∑
j=1

aj

)θ

≤
n∑
j=1

aθj ,

holds. Since
n∑
j=1

aj + an+1 ≥ an+1,

and
n∑
j=1

aj + an+1 ≥
n∑
j=1

aj,

we have (
n∑
j=1

aj + an+1

)θ−1

≤ aθ−1n+1,

and (
n∑
j=1

aj + an+1

)θ−1

≤

(
n∑
j=1

aj

)θ−1

.
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Hence (
n∑
j=1

aj + an+1

)θ−1( n∑
j=1

aj + an+1

)
≤ aθn+1 +

(
n∑
j=1

aj

)θ

(
n∑
j=1

aj + an+1

)θ

≤ aθn+1 +

(
n∑
j=1

aj

)θ

≤ aθn+1 +
n∑
j=1

aθj =
n+1∑
j=1

aθj .

Since
∞∑
j=1

aθj <∞, we have

(
∞∑
j=1

aj

)θ

≤
∞∑
j=1

aθj .

(b) Since
∞∑
j=1

aj <∞, then lim
j→∞

aj = 0,

which implies that there exists n0 ∈ N such that

0 < aj < 1 if j ≥ n0, since 1 ≤ θ <∞,

we obtain
aθj < aj for all j ≥ n0.

From this we have
∞∑
j=1

aθj <∞.

Consider the sequence {aθj}j∈N, since 1 ≤ θ, then 0 <
1

θ
≤ 1 by part (a)

(
∞∑
j=1

aθj

) 1
θ

≤
∞∑
j=1

(
aθj
) 1
θ =

∞∑
j=1

aj,

and thus
∞∑
j=1

aθj ≤

(
∞∑
j=1

aj

)θ

.
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(c) By Hölder’s inequality we have

N∑
j=1

aj ≤

(
N∑
j=1

1

)1− 1
θ
(

N∑
j=1

aθj

) 1
θ

= N
θ−1
θ

(
N∑
j=1

aθj

) 1
θ

,

then (
N∑
j=1

aj

)θ

≤ N θ−1
N∑
j=1

aθj .

(d) On more time, by Hölder’s inequality

N∑
j=1

aθj ≤

(
N∑
j=1

1

)1−θ( N∑
j=1

(
aθj
) 1
θ

)θ

= N1−θ

(
N∑
j=1

aj

)θ

.

Proposition 4.3. Let f1, . . . , fN be in L(p,∞) then

a)
∥∥∥ N∑
j=1

fj

∥∥∥
L(p,∞)

≤ N
N∑
j=1

‖fj‖L(p,∞)
for 1 ≤ p <∞.

b)
∥∥∥ N∑
j=1

fj

∥∥∥
L(p,∞)

≤ N
1
p

N∑
j=1

‖fj‖L(p,∞)
for 0 < p < 1.

Proof. First of all, note that for α > 0 and N ≥ 1

|f1|+ ...+ |fN | ≥ |f1 + f2 + ...+ fN | > α ≥ α

N
.

Thus{
x ∈ X : |f1 + f2 + . . .+ fN | > α

}
⊂
{
x ∈ X : |f1| >

α

N

}
∪
{
x ∈ X : |f1| >

α

N

}
∪ . . . ∪

{
x ∈ X : |fN | >

α

N

}
.

Then

µ
(
{x ∈ X : |f1 + f2 + ...+ fN | > α}

)
≤

N∑
j=1

µ
({
x ∈ X : |fj| >

α

N

})
,
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that is

D∑ fj(α) ≤
N∑
j=1

Dfj

( α
N

)
.

Hence

∥∥∥ N∑
j=1

fj

∥∥∥p
L(p,∞)

= sup
α>0

αpD∑ fj(α) ≤
N∑
j=1

sup
α>0

αpDfj

( α
N

)
=

N∑
j=1

sup
α>0

αpDNfj(α)

=
N∑
j=1

‖Nfj‖pL(p,∞)
= Np

N∑
j=1

‖fj‖pL(p,∞)
,

thus

∥∥∥ N∑
j=1

fj

∥∥∥
L(p,∞)

≤ N

(
N∑
j=1

‖fj‖pL(p,∞)

) 1
p

.

By proposition (4.2) (a) since 0 < 1
p
< 1 we have

∥∥∥ N∑
j=1

fj

∥∥∥
L(p,∞)

≤ N

(
N∑
j=1

‖fj‖L(p,∞)

)
.

(b) As in part (a) we have∥∥∥ N∑
j=1

fj

∥∥∥p
L(p,∞)

≤ Np

(
N∑
j=1

∥∥fj∥∥pL(p,∞)

)
.

Since 0 < p < 1, then 1 < 1
p
, next by proposition 4.2 (c) we have

∥∥∥ N∑
j=1

fj

∥∥∥
L(p,∞)

≤ N

(
N∑
j=1

∥∥fj∥∥pL(p,∞)

) 1
p

≤ N(N
1
p
−1)

N∑
j=1

(∥∥fj∥∥pL(p,∞)

) 1
p

= N
1
p

N∑
j=1

∥∥fj∥∥L(p,∞)
.
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Proposition 4.4. Give a measurable function f on (X,µ) and λ > 0, define
fλ = fχ{|f |>λ} and fλ = f − fλ = fλ = fχ{|f |≤λ}.

a) Then

Dfλ(α) =

{
Df (α) when α > λ
Df (λ) when α ≤ λ.

Dfλ(α) =

{
0 when α ≥ λ

Df (α)−Df (λ) when α < λ

b) If f ∈ Lp(X,µ). Then

∥∥fλ∥∥pLp = p

∞∫
λ

αp−1Df (α) dα + λpDf (λ),

∥∥fλ∥∥p
Lp

= p

λ∫
0

αp−1Df (α) dα− λpDf (λ),

∫
λ<|f |≤δ

|f |p dµ = p

δ∫
λ

αp−1Df (α) dα− δpDf (α) + λpDf (λ).

c) If f is in L(p,∞) then fλ is in Lq(X,µ) for any q > p and fλ is in Lq(X,µ)
for any q < p. Thus L(p,∞) ⊆ Lp0+Lp1 when 0 < p0 < p < p1 ≤ ∞.

Proof. (a) Note

Dfλ(α) = µ
(
{x : |f(x)|χ{|f |>λ}(x) > α}

)
= µ

(
{x : |f(x)| > α}∩{x : |f | > λ}

)
,

if α > λ, then {x : |f(x)| > α} ⊆ {x : |f | > λ}, thus

Dfλ(α) = µ
(
{x : |f(x)| > α}∩{x : |f | > λ}

)
= µ

(
{x : |f(x)| > α}

)
= Df (α).

If α ≤ λ, then {x : |f(x)| > λ} ⊆ {x : |f | > α}, thus

Dfλ(α) = µ
(
{x : |f(x)| > α}∩{x : |f | > λ}

)
= µ

(
{x : |f(x)| > λ}

)
= Df (λ).
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And thus

Dfλ(α) =

{
Df (α) when α > λ
Df (λ) when α ≤ λ.

(20)

Next, consider

Dfλ(α) = µ
(
{x : |f(x)|χ{|f |≤λ}(x) > α}

)
= µ

(
{x : |f(x)| > α} ∩ {x : |f | ≤ λ}

)
,

if α ≥ λ then {x : |f | > α} ∩ {x : |f(x)| ≤ λ} = ∅, thus Dfλ(α) = 0.
If α < λ, then

Dfλ(α) = µ
(
{x : |f(x)| > α} ∩ {x : |f(x)| ≤ λ}

)
= µ

(
{x : |f(x)| > α} ∩ {x : |f(x)| > λ}c

)
= µ

(
{x : |f(x)| > α}\{x : |f(x)| > λ}

)
= µ

(
{x : |f(x)| > α}

)
− µ

(
{x : |f(x)| > λ}

)
= Df (α)−Df (λ).

And hence

Dfλ(α) =

{
0 when α ≥ λ

Df (α)−Df (λ) when α < λ.
(21)

(b) If f ∈ Lp(X,µ), then

∥∥fλ∥∥pLp = p

∞∫
0

αp−1Dfλ(α) dα = p

λ∫
0

αp−1Dfλ(α) dα + p

∞∫
λ

αp−1Dfλ(α) dα,

By part (a)(20) we have

∥∥fλ∥∥pLp = p

λ∫
0

αp−1Df (λ) dα + p

∞∫
λ

αp−1Df (α) dα

= λpDf (λ) + p

∞∫
λ

αp−1Df (α) dα.
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Also

∥∥fλ∥∥p
Lp

= p

∞∫
0

αp−1Dfλ(α) dα = p

λ∫
0

αp−1Dfλ(α) dα + p

∞∫
λ

αp−1Dfλ(α) dα,

by part (a) (21) we obtain

∥∥fλ∥∥p
Lp

= p

λ∫
0

αp−1
(
Df (α)−Df (λ)

)
dα = p

λ∫
0

αp−1Df (α) dα− λpDf (λ).

Next,∫
λ<|f |≤δ

|f |p dµ

=

∫
|f |>λ

|f |p dµ−
∫
|f |>δ

|f |p dµ

=

∫
X

|f |pχ{|f |>λ} dµ−
∫
X

|f |pχ{|f |>δ} dµ

=

∫
X

|fλ|p dµ−
∫
X

|fδ|p dµ

= p

∞∫
λ

αp−1Df (α) dα + λpDf (λ)− p
∞∫
δ

αp−1Df (α) dα− δpDf (δ)

= p

 ∞∫
λ

αp−1Df (α) dα−
∞∫
δ

αp−1Df (α) dα

+ λpDf (λ)− δpDf (δ)

= p

δ∫
λ

αp−1Df (α) dα− δpDf (α) + λpDf (λ).

(c) We known that

Df (α) ≤

∥∥f∥∥p
L(p,∞)

αp
,

then if q > p
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∥∥fλ∥∥q
Lq

= q

λ∫
0

αq−1Df (α) dα− λqDf (λ)

≤ q

λ∫
0

αq−1

∥∥f∥∥p
L(p,∞)

αp
dα− λqDf (λ)

= q
∥∥f∥∥p

L(p,∞)

λq−p

q − p
− λqDf (λ) ≤ q

∥∥f∥∥p
L(p,∞)

λq−p

q − p
<∞.

And thus fλ ∈ Lq if q > p.

Now, if q < p, then

∥∥fλ∥∥qLq = q

∞∫
λ

αq−1Df (α) dα + λqDf (λ)

≤ q
∥∥f∥∥p

L(p,∞)

∞∫
λ

αq−p−1 dα + λqDf (λ)

= q
λq−p

p− q
∥∥f∥∥p

L(p,∞)
+ λqDf (λ) <∞.

Thus fλ ∈ Lq if q < p.
Finally, since f ∈ L(p,∞) and

f = fλ + fλ,

where fλ ∈ Lp1 if p < p1 and fλ ∈ Lp0 if p0 < p. Then

L(p,∞) ⊆ Lp0 + Lp1 when 0 < p0 < p < p1 ≤ ∞.

Proposition 4.5. Let (X,µ) be a measure space and let E be a subset of X
with µ(E) <∞. Then

a) for 0 < q < p we have∫
E

|f(x)|q dµ ≤ p

p− q
[
µ(E)

]1− q
p
∥∥f∥∥q

L(p,∞)
for f ∈ L(p,∞).
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b) Conclude that if µ(X) <∞ and 0 < q < p, then

Lp(X,µ) ⊆ L(p,∞) ⊆ Lq(X,µ).

Proof. Let f ∈ L(p,∞), then∫
E

|f |q dµ

= q

∞∫
0

λq−1µ
(
{x ∈ E : |f(x)| > λ}

)
dλ

≤ q

[
µ(E)
]− 1

p ‖f‖L(p,∞)∫
0

λq−1µ(E) dλ+ q

∞∫
[
µ(E)
]− 1

p ‖f‖L(p,∞)

λq−1Df (λ) dλ

≤ q

[
µ(E)
]− 1

p ‖f‖L(p,∞)∫
0

λq−1µ(E) dλ+ q

∞∫
[
µ(E)
]− 1

p ‖f‖L(p,∞)

λq−1
‖f‖pL(p,∞)

λp
dλ

=
([
µ(E)

]− 1
p‖f‖L(p,∞)

)q
µ(E) +

q

p− q

([
µ(E)

]− 1
p‖f‖L(p,∞)

)q−p
‖f‖pL(p,∞)

=
[
µ(E)

]1− q
p‖f‖qL(p,∞)

+
q

p− q
[
µ(E)

]1− q
p‖f‖qL(p,∞)

=
p

p− q
[
µ(E)

]1− q
p‖f‖qL(p,∞)

.

And thus ∫
E

|f |q dµ ≤ p

p− q
[
µ(E)

]1− q
p
∥∥f∥∥q

L(p,∞)
.

(b) If µ(X) <∞, then∫
X

|f |q dµ ≤ p

p− q
[
µ(X)

]1− q
p
∥∥f∥∥q

L(p,∞)
.
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Hence
Lp ⊆ L(p,∞) ⊆ Lq.

Corolario 4.1. Let (X,µ) be a measurable space and let E be a subset of X
with µ(E) <∞. Then

‖f‖p/2 ≤
[
4µ(E)

]1/p∥∥f∥∥
L(p,∞)

.

And thus L(p,∞) ⊆ Lp/2.

Proof. Since 0 < p
2
< p we can apply proposition 4.5 to obtain∫

E

|f |p/2 dµ ≤ p

p− p
2

[µ(E)]1−
p/2
p

∥∥f∥∥p/2
L(p,∞)

= 2[µ(E)]1/2
∥∥f∥∥p/2

L(p,∞)

‖f‖p/2 ≤ 22/p[µ(E)]1/p
∥∥f∥∥

L(p,∞)

=
[
4µ(E)

]1/p∥∥f∥∥
L(p,∞)

.

From this last result one can see that

L(p,∞) ⊆ Lp/2.

5 Normability of Weak Lp for p > 1

Let (X,A, µ) be a measure space and let 0 < p < ∞. Pick 0 < r < p and
define ∣∣∣∣∣∣f ∣∣∣∣∣∣

L(p,∞)
= sup

0<µ(E)<∞

[
µ(E)

]− 1
r
+ 1
p

∫
E

|f |r dµ

 1
r

,

where the supremum is taken over all measurable subsets E of X of finite
measure.
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Proposition 5.1. Let f be in L(p,∞). Then

∥∥f∥∥
L(p,∞)

≤
∣∣∣∣∣∣f ∣∣∣∣∣∣

L(p,∞)
≤
(

p

p− r

) 1
r ∥∥f∥∥

L(p,∞)
.

Proof. By proposition 4.5 with q = r we have

∣∣∣∣∣∣f ∣∣∣∣∣∣
L(p,∞)

= sup
0<µ(E)<∞

[
µ(E)

]− 1
r
+ 1
p

∫
E

|f |r dµ

 1
r

≤ sup
0<µ(E)<∞

[
µ(E)

]− 1
r
+ 1
p

(
p

p− r
[
µ(E)

]1− r
p
∥∥f∥∥r

L(p,∞)

) 1
r

= sup
0<µ(E)<∞

[
µ(E)

]− 1
r
+ 1
p

(
p

p− r

) 1
r [
µ(E)

] 1
r
− 1
p
∥∥f∥∥

L(p,∞)

=

(
p

p− r

) 1
r ∥∥f∥∥

L(p,∞)
.

On the other hand by definition

[
µ(E)

]− 1
r
+ 1
p

∫
E

|f |r dµ

 1
r

≤
∣∣∣∣∣∣f ∣∣∣∣∣∣

L(p,∞)
,

for all E ∈ A such that µ(E) <∞ now, let us consider A = {x : |f(x)| > α}
for f ∈ L(p,∞). Observe that µ(A) <∞. Then

∣∣∣∣∣∣f ∣∣∣∣∣∣p
L(p,∞)

≥

[µ(A)
]− 1

r
+ 1
p

∫
A

|f |r dµ

 1
r


p

≥
[
Df (α)

]− p
r
+1

∫
A

αr dµ


p
r

=
[
Df (α)

]− p
r
+1
αp
[
Df (α)

] p
r = αpDf (α).

That is
αpDf (α) ≤

∣∣∣∣∣∣f ∣∣∣∣∣∣
L(p,∞)

,
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and thus
sup
α>0

αpDf (α) ≤
∣∣∣∣∣∣f ∣∣∣∣∣∣

L(p,∞)
.

Lemma 5.1 (Fatou for L(p,∞)). For all measurable function gn on X we have∣∣∣∣ lim inf
n→∞

|gn|
∣∣∣∣
L(p,∞)

≤ Cp lim inf
n→∞

∣∣∣∣gn∣∣∣∣L(p,∞)
.

for some constant Cp that depends only on p ∈ (0,∞).

Proof.∣∣∣∣ lim inf
n→∞

|gn|
∣∣∣∣
L(p,∞)

≤
∣∣∣∣∣∣ lim inf

n→∞
|gn|
∣∣∣∣∣∣

L(p,∞)

= sup
0<µ(E)<∞

[
µ(E)

]− 1
r
+ 1
p

∫
E

(
lim inf
n→∞

|gn|
)r

dµ

 1
r

≤ sup
0<µ(E)<∞

[
µ(E)

]− 1
r
+ 1
p

∫
E

lim inf
n→∞

|gn|r dµ

 1
r

.

By Fatou’s lemma

≤ sup
0<µ(E)<∞

[
µ(E)

]− 1
r
+ 1
p

lim inf
n→∞

∫
E

|gn|r dµ

 1
r

≤ lim inf
n→∞

sup
0<µ(E)<∞

[
µ(E)

]− 1
r
+ 1
p

∫
E

|gn|r dµ

 1
r

≤ lim inf
n→∞

(
p

p− r

) 1
r ∥∥gn∥∥L(p,∞)

=

(
p

p− r

) 1
r

lim inf
n→∞

∥∥gn∥∥L(p,∞)
.

Finally ∥∥ lim inf
n→∞

|gn|
∥∥
L(p,∞)

≤
(

p

p− r

) 1
r

lim inf
n→∞

∥∥gn∥∥L(p,∞)
.
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The following result is an improvement of lemma 5.1.

Lemma 5.2. For all measurable functions gn on X we have∥∥ lim inf
n→∞

|gn|
∥∥
L(p,∞)

≤ lim inf
n→∞

∥∥gn∥∥L(p,∞)
.

Proof. Since
Dlim inf

n→∞
|gn|(λ) ≤ lim inf

n→∞
Dgn(λ),

Then{
C > 0 : lim inf

n→∞
Dgn(λ) ≤ Cp

λp

}
⊆
{
C > 0 : Dlim inf

n→∞
|gn|(λ) ≤ Cp

λp

}
,

and thus∥∥ lim inf
n→∞

|gn|
∥∥
L(p,∞)

= inf

{
C > 0 : Dlim inf

n→∞
|gn|(λ) ≤ Cp

λp

}
≤ inf

{
C > 0 : lim inf

n→∞
Dgn(λ) ≤ Cp

λp

}
= lim inf

n→∞

(
inf

{
C > 0 : Dgn(λ) ≤ Cp

λp

})
= lim inf

n→∞

∥∥gn∥∥L(p,∞)
.

Proposition 5.2. Let 0 < p < 1, 0 < s <∞ and (X,A, µ) be a measurable
space

a) Let f be a measurable function on X. Then∫
{|f |≤s}

|f | dµ ≤ s1−p

1− p
∥∥f∥∥p

L(p,∞)
.

b) Let fj, 1 ≤ j ≤ m, be measurable functions on X. Then

∥∥ max
1≤j≤m

|fj|
∥∥p
L(p,∞)

≤
m∑
j=1

∥∥fj∥∥pL(p,∞)
.

And also
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c) ∥∥f1 + ...+ fm
∥∥p
L(p,∞)

≤ m
2− p
1− p

m∑
j=1

∥∥fj∥∥pL(p,∞)
.

The latter estimate is refereed to as the p−normability of Weak Lp for
p < 1.

Proof. By proposition 4.4 (b) with p = 1, we have∫
{|f |≤s}

|f | dµ =

∫
X

|f |χ{|f |≤s} dµ =

∫
X

|f s| dµ

=

s∫
0

Df (α) dα− sDf (s)

≤
s∫

0

αpDf (α)

αp
dα

≤
∥∥f∥∥p

L(p,∞)

s∫
0

dα

αp
=

s1−p

1− p
∥∥f∥∥p

L(p,∞)
.

(b) Let max
1≤j≤k

|fj(x)| = fk(x) for some 1 ≤ k ≤ m. Then

Dmax |fj |(α) = µ

(
{x : max

1≤j≤m
|fj(x)| > α}

)
= µ

(
{x : fk(x) > λ}

)
= Dfk(α) for some 1 ≤ k ≤ m

≤
m∑
j=1

Dfj(α).

Then

αpDmax |fj |(α) ≤
m∑
j=1

supαpDfj(α),

and thus ∥∥ max
1≤j≤m

|fj|
∥∥p
L(p,∞)

≤
m∑
j=1

∥∥fj∥∥pL(p,∞)
.
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(c) Observe that

max
1≤j≤m

|fj| ≤ |f1|+ |f2|+ ...+ |fm|,

from this we have{
x : max

1≤j≤m
|fj(x)| > α

}
⊂
{
x : |f1|+ ...+ |fm| > α

}
,

then {
x : |f1|+ ...+ |fm| > α

}
=

({
x : |f1|+ ...+ |fm| > α

}
∩
{
x : max

1≤j≤m
|fj(x)| ≤ α

})
∪
{
x : max

1≤j≤m
|fj(x)| > α

}
.

And thus

Df1+...+fm(α) = µ
(
{x : |f1 + ...+ fm| > α}

)
≤ µ

(
{x : |f1|+ ...+ |fm| > α}

)
≤ µ

(
{x : |f1|+ ...+ |fm| > α} ∩ {x : max

1≤j≤m
|fj(x)| ≤ α}

)
+ µ

(
{x : max

1≤j≤m
|fj(x)| > α}

)
= µ

({
x ∈ {x : max

1≤j≤m
|fj(x)| ≤ α} : |f1|+ ...+ |fm| > α

})
+ µ

(
{x : max

1≤j≤m
|fj(x)| > α}

)
= µ

({
x :
(
|f1|+ ...+ |fm|

)
χ{x:max |fj |≤α} > α

})
+ µ

(
{x : max

1≤j≤m
|fj(x)| > α}

)
.
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By Chebyshev’s inequality

Df1+...+fm(α) ≤ 1

α

∫
{x:max |fj |≤α}

(
|f1|+ ...+ |fm|

)
dµ+Dmax |fj |(α)

=
m∑
j=1

1

α

∫
{x:max |fj |≤α}

|fj| dµ+Dmax |fj |(α)

≤
m∑
j=1

1

α

∫
{x:max |fj |≤α}

max
1≤j≤m

|fj| dµ+Dmax |fj |(α).

By part (a) we have

m∑
j=1

1

α

∫
{x:max |fj |≤α}

max
1≤j≤m

|fj| dµ+Dmax |fj |(α)

≤
m∑
j=1

1

α

α1−p

1− p

∥∥∥ max
1≤j≤m

|fj|
∥∥∥p
L(p,∞)

+

∥∥ max
1≤j≤m

|fj|
∥∥p
L(p,∞)

αp

≤
m∑
j=1

α−p

1− p

∥∥∥ max
1≤j≤m

|fj|
∥∥∥p
L(p,∞)

+
m∑
j=1

∥∥ max
1≤j≤m

|fj|
∥∥p
L(p,∞)

αp
.

Finally by part (b) we obtain

αpDf1+...+fm(α) ≤
m∑
j=1

( 1

1− p
+ 1
)∥∥∥ max

1≤j≤m
|fj|
∥∥∥p
L(p,∞)

=
m∑
j=1

(
2− p
1− p

)∥∥∥ max
1≤j≤m

|fj|
∥∥∥p
L(p,∞)

≤ 2− p
1− p

m∑
j=1

m∑
j=1

∥∥fj∥∥pL(p,∞)

= m
2− p
1− p

m∑
j=1

∥∥fj∥∥pL(p,∞)
.
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Proposition 5.3 (Lyapunov’s inequality for Weak Lp). Let (X,µ) be mea-
surable space. Suppose that 0 < p0 < p < p1 <∞ and 1

p
= 1−θ

p0
+ θ

p1
for some

θ ∈ [0, 1]. If f ∈ L(p0,∞) ∩ L(p1,∞) then f ∈ L(p,∞) and∥∥f∥∥
L(p,∞)

≤
∥∥f∥∥1−θ

L(p0,∞)

∥∥f∥∥θ
L(p1,∞)

.

Proof. Observe that

αpDf (α) = αp(1−θ+θ)
[
Df (α)

]p(1
p

)

= αp(1−θ)αpθ
[
Df (α)

]p(1−θ
p0

+
θ
p1

)

= αp(1−θ)
[
Df (α)

]p(1−θ
p0

)
αpθ
[
Df (α)

]pθ
p1

=
[
αp0Df (α)

]p(1−θ
p0

)[
αp1Df (α)

]pθ
p1 .

Thus

αpDf (α) ≤
[
sup
α>0

αp0Df (α)

]p(1−θ
p0

) [
sup
α>0

αp1Df (α)

]pθ
p1

αpDf (α) ≤
[∥∥f∥∥p0

L(p0,∞)

]p(1−θ
p0

) [∥∥f∥∥p1
L(p1,∞)

]pθ
p1 ,

finally

sup
α>0

αpDf (α) ≤
[∥∥f∥∥p0

L(p0,∞)

]p(1−θ
p0

) [∥∥f∥∥p1
L(p1,∞)

]pθ
p1

∥∥f∥∥p
L(p,∞)

≤
[∥∥f∥∥1−θ

L(p0,∞)

∥∥f∥∥θ
L(p1,∞)

]p
∥∥f∥∥

L(p,∞)
≤
∥∥f∥∥1−θ

L(p0,∞)

∥∥f∥∥θ
L(p1,∞)

.
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Theorem 5.1 (Hölder’s inequality for Weak spaces). Let fj be in L(pj ,∞)

where 0 < pj <∞ and 1 ≤ j ≤ k. Let

1

p
=

1

p1
+ ...+

1

pk
.

Then ∥∥f1...fk∥∥L(p,∞)
≤ p−

1
p

k∏
j=1

p
1
pj

j

k∏
j=1

∥∥fj∥∥L(pj,∞)
.

Proof. Let us consider
∥∥fj∥∥L(pj,∞)

= 1, 1 ≤ j ≤ k. And let x1, . . . , xn be a

positive real numbers such that

1

x1
. . .

1

xk
= α,

then

Df1...fk(α) = Df1...fk

(
1

x1
. . .

1

xk

)

≤ Df1

(
1

x1

)
+Df2

(
1

x2

)
+ . . .+Dfk

(
1

xk

)
, (22)

since

1 =
∥∥fj∥∥pjL(pj,∞)

≥ sup
j

(
1

xj

)pj
Dfj

(
1

xj

)
,

then (
1

xj

)pj
Dfj

(
1

xj

)
≤ 1,

thus

Dfj

(
1

xj

)
≤ x

pj
j for 1 ≤ j ≤ k.

Hence, we can write (22) as follows

Df1...fk

(
1

x1
. . .

1

xk

)
≤ xp11 + xp22 + . . .+ xpkk .
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Next, let us define

F (x1, . . . , xk) = xp11 + xp22 + . . .+ xpkk .

In what follows, we will use the Lagrange multipliers in order to obtain the
minimum value of F subject to the constrain

1

x1
. . .

1

xk
= α.

That is
f(x1, x2, . . . , xk) = xp11 + xp22 + . . .+ xpkk

g(x1, x2, . . . , xk) = x1x2 . . . xk −
1

α
.

Then, next
∇F = λ∇g.

And thus
p1x

p1−1
1 = λ(x2x3 . . . xk)

p2x
p2−1
2 = λ(x1x3 . . . xk)

...

pjx
pj−1
j = λ(x1x3 . . . xk),

thus
p1x

p1
1 = λ(x1x2 . . . xk)

p2x
p2
2 = λ(x1x2 . . . xk)

...

pjx
pj
j = λ(x1x2 . . . xk).

Observe that

x1x2 . . . xk =
1

α
. (23)

On the other hand note that

p1x
p1
1 = pjx

pj
j for 2 ≤ j ≤ k. (24)
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Now replacing (24) into (23) we have

x1

(
p1
p2

) 1
p2

x
p1
p2
1

(
p1
p3

) 1
p3

x
p1
p3 . . .

(
p1
pk

) 1
pk

x
p1
pk
1

= x1

(
p1
p2

) 1
p2

(
p1
p3

) 1
p3

. . .

(
p1
pk

) 1
pk

x
p1
p2

+
p1
p3

+...+
p1
pk

1 =
1

α
, (25)

but (
p1
p1

) 1
p1

= 1,

then we can write (25) as follows(
p1
p1

) 1
p1

(
p1
p2

) 1
p2

(
p1
p3

) 1
p3

. . .

(
p1
pk

) 1
pk

x
p1
p1

+
p1
p2

+
p1
p3

+...+
p1
pk

1 =
1

α
.

And, thus

p
1
p1

+ 1
p2

+...+ 1
pk

1

k∏
j=1

p
1
pj

j

x
p1
(

1
p1

+ 1
p2

+...+ 1
pk

)
1 =

1

α
.

Then

p
1
p

1 x
p1
p =

k∏
j=1

p
1
pj

j

α
,

hence

xp11 =
1

p1αp

[
k∏
j=1

p
1
pj

j

]p
.

Therefore the x1 . . . xk such that
xp11 =

1

p1αp

[
k∏
j=1

p
1
pj

j

]p

x
pj
j =

p1
pj
xp11

(26)

are the unique critical real point.
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For this critical real point, using (26) we have

xp11 + xp22 + . . .+ xpkk = xp11 +
p1
p2
xp11 + . . .+

p1
pk
xp11

= p1x
p1
1

[
1

p1
+ . . .+

1

pk

]

=
1

αp

[
k∏
j=1

p
1
pj

j

]p
1

p
.

On the other hand observe that one can make the function

F (x1, . . . , xk) = xp11 + . . .+ xpkk ,

subject to the constrain

x1x2 . . . xk =
1

α
,

as big as one wish. Indeed if x1 = M
α

, x2 = 1
M

and xj = 1 for 3 ≤ j ≤ k.
Then

F (x1, . . . , xk) = xp11 + xp22 + . . .+ xpkk

=

(
M

α

)p1
+

(
1

M

)p1
+ 1 + . . .+ 1

=

(
M

α

)p1
+

(
1

M

)p1
+ k − 2→∞,

as M →∞, therefore the critical part (26) is a minimum. Then

Df1...fk(α) ≤ 1

pαp

[
k∏
j=1

p
1
pj

j

]p

αpDf1...fk(α) ≤ 1

p

[
k∏
j=1

p
1
pj

j

]p
,
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thus, we have

αpDf1...fk(α) ≤ 1

p

[
k∏
j=1

p
1
pj

j

]p

∥∥f1 . . . fk∥∥L(p,∞)
≤
(

1

p

) 1
p

(
k∏
j=1

p
1
pj

j

)
k∏
j=1

∥∥fj∥∥L(pj,∞)
, (27)

since
∥∥fj∥∥L(pj,∞)

= 1.

In general, if
∥∥fj∥∥L(pj,∞)

6= 1, 1 ≤ j ≤ k choose gj =
fj

‖fj‖L(pj,∞)

and use (27)

Theorem 5.2 (Completeness). Weak Lp with the quasi-norm ‖.‖L(p,∞)
is

complete for all 0 < p <∞.

Proof. Let {fn}n∈N be a Cauchy sequence in
(

Weak Lp, ‖.‖L(p,∞)

)
. Then for

every ε > 0 there exists an n0 ∈ N such that

‖fn − fm‖L(p,∞)
< ε

1
p
+1

if m,n ≥ n0, that is,(
sup
λ>0

λpDfn−fm(λ)

)1/p

= ‖fn − fm‖L(p,∞)
< ε

1
p
+1,

taking λ = ε we have

εpµ
(
{x ∈ X : |fn(x)− fm(x)| > ε}

)
< εp+1,

for m,n ≥ n0. Hence

µ
(
{x ∈ X : |fn(x)− fm(x)| > ε}

)
< ε,

for m,n ≥ n0. This means that {fn}n∈N is a Cauchy sequence in the mea-
sure µ. We therefore apply theorem 3.2 and conclude that there exists an
A−measurable function f such that some subsequence of {fn}n∈N converges
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to f µ−a.e. Let {fnk}k∈N be such subsequence of {fn}n∈N of {fn}n∈N then
fnk → f µ-a.e as k →∞. If we apply twice lemma 5.2 we obtain firstly∥∥f∥∥

L(p,∞)
=
∥∥ lim inf |fnk |

∥∥
L(p,∞)

≤ lim inf
∥∥fnk∥∥L(p,∞)

<∞,

thus f ∈Weak Lp.
Secondly ∥∥f − fn∥∥L(p,∞)

=
∥∥ lim inf |fnk − fn|

∥∥
L(p,∞)

≤ lim inf
∥∥fnk − fn∥∥L(p,∞)

< ε
1
p
+1,

if nk, n ≥ n0.
This prove that Weak Lp is complete for 0 < p <∞.
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6 Multiplication Operators

Let F (X) be a function space on non-empty set X. Let u : X → C be a
function such that u.f on F (X) whenever f ∈ F (X).
Then the transformation f → u.f on F (X) is denoted by Mu. In case F (X)
is a topological space and Mu is continuous, we call it a multiplication oper-
ator induced by u.

In this section boundedness and invertibility of the multiplication Mu are
characterized in terms of the boundedness and invertibility of the complex-
valued measurable function u respectively.

Theorem 6.1. The linear transformation Mu : f → u.f on the Weak Lp
spaces is bounded if only if u is essentially bounded. Moreover∥∥Mu

∥∥ = ‖u‖∞.

Proof. Let u ∈ L∞(u), then we find

∥∥Muf
∥∥
L(p,∞)

= sup
λ>0

λ
[
DMuf (λ)

]1/p
= sup

λ>0
λ
[
µ
(
{x ∈ X : |Muf(x)| > λ}

)]1/p
= sup

λ>0
λ
[
µ
(
{x ∈ X : |(u.f)(x)| > λ}

)]1/p
≤ sup

λ>0
λ
[
µ
({

x ∈ X : |f(x)| > λ
‖u‖∞

})]1/p
.

Since
{
x ∈ X : |(u.f)(x)| > λ

}
⊂
{
x ∈ X : ‖u‖∞|f(x)| > λ

}
=
{
x ∈ X : |f(x)| > λ

‖u‖∞

}
.
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Putting α =
λ

‖u‖∞
we have

sup
λ>0

λ
[
µ
({

x ∈ X : |f(x)| > λ
‖u‖∞

})]1/p
= sup

α>0
α‖u‖∞

[
µ
(
{x ∈ X : |f(x)| > α}

)]1/p
= ‖u‖∞ sup

α>0
α
[
µ
(
{x ∈ X : |f(x)| > α}

)]1/p
= ‖u‖∞

∥∥f∥∥
L(p,∞)

.

Hence, we have proved that∥∥Muf
∥∥
L(p,∞)

≤ ‖u‖∞
∥∥f∥∥

L(p,∞)
. (28)

Conversely, supposeMu is a bounded operator. If u is not essentially bounded
function, then for every n ∈ N, the set En =

{
x ∈ X : |u(x)| > n

}
has

positive measure and note that{
x ∈ X : nχEn(x) > λ

}
⊂
{
x ∈ X : |uχEn(x)| > λ

}
,

then

sup
λ>0

λ
[
µ
(
{x ∈ X : nχEn(x) > λ}

)]1/p
≤ sup

λ>0
λ
[
µ
(
{x ∈ X : |uχEn(x)| > λ}

)]1/p
.

Thus
n
∥∥χEn∥∥L(p,∞)

≤
∥∥MuχEn

∥∥
L(p,∞)

.

This contradicts the boundedness of Mu.

Clearly from (28) we have ∥∥Mu

∥∥ ≤ ‖u‖∞. (29)

Next, for ε > 0, let

E =
{
x ∈ X : |u(x)| > ‖u‖∞ − ε

}
.
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Note µ(E) > 0. Then{
x ∈ X :

(
‖u‖∞ − ε

)
χE(x) > λ

}
⊂
{
x ∈ X : |uχE(x)| > λ

}
,

and thus

sup
λ>0

λ
[
µ
({

x ∈ X :
(
‖u‖∞ − ε

)
χE(x) > λ

})]1/p
≤ sup

λ>0
λ
[
µ
(
{x ∈ X : |uχEn(x)| > λ}

)]1/p
.

Therefore (
‖u‖∞ − ε

)∥∥χE∥∥L(p,∞)
≤
∥∥MuχE

∥∥
L(p,∞)

‖u‖∞ − ε ≤

∥∥MuχE
∥∥
L(p,∞)∥∥χE∥∥L(p,∞)

≤
∥∥Mu

∥∥.
Thus

‖u‖∞ ≤
∥∥Mu

∥∥, (30)

finally from (29) and (30) ∥∥Mu

∥∥ = ‖u‖∞.

Theorem 6.2. The set of all multiplication operator on WeakLp‘is an maximal-
abelian subalgebra of the set B (Weak Lp), the algebra of all bounded linear
operation on Weak Lp.

Proof. Let

H =
{
Mu : u ∈ L∞

}
,

and consider the operator product

Mu.Mv = Muv,

where Mu, Mv ∈ H, let us check that H is a Banach algebra. Lea u, v ∈ L∞
then |u| ≤ ‖u‖∞ and |v| ≤ ‖v‖∞ therefore:

‖uv‖∞ ≤ ‖v‖∞‖u‖∞,
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this implies that product is an inner operation, moreover the usual func-
tion product is associative, commutative and distributive with respect to the
sum and the scalar product, thus we conclude that H is a subalgebra of
B (Weak Lp).

Now, we like to check that H is a maximal subalgebra, that is, given N ∈
B (Weak Lp), if N commute with H we have to prove that N ∈ H.

Consider the unit function e : X → C defined by e(x) = 1 for all x ∈ X let
N ∈ B (Weak Lp) be an operator which commute with H and let χE be the
characteristic function of a measurable set E. Then

N(χE) = N [MχE(e)]

= MχE [N(e)]

= χE.N(e)

= N(e).χE

= Mw(χE),

where w = N(e). Similarly

N(s) = Mw(s), (31)

for any simple function.
Now, let us check that w ∈ L∞. By way of contradiction assume that
w /∈ L∞, then the set

En =
{
x ∈ X : |w(x)| > n

}
,

has a positive measure for each n ∈ N. Note that:

Mw(χEn)(x) =
(
wχEn

)
(x) ≥ nχEn(x),

for all x ∈ X. By the monotonicity (Property 1) of the distribution function,
we have

DwχEn
(λ) ≥ DχEn

(
λ

n

)
,

thus

sup
λ>0

λpDwχEn
(λ) ≥ sup

λ>0
λpDχEn

(
λ

n

)
,
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Putting α = λ
n

we have∥∥wχEn∥∥pL(p,∞)
= sup

λ>0
λpDwχEn

(λ) ≥ np sup
α>0

αpDχEn
(α)

= np
∥∥χEn∥∥pL(p,∞)

,

since χEn is a simple function then by (31) we have

Mw(χEn) = N(χEn),

Hence ∥∥N(χEn)
∥∥
L(p,∞)

≥ n
∥∥χEn∥∥L(p,∞)

,

Therefore N is a unbounded operator. This is a contradiction to the fact N
is bounded.
So then w ∈ L∞ and by theorem 6.1 Mw is bounded.

Next, given f ∈WeakLp there exists a nondecreasing sequence {sn}n∈N of a
measurable simple functions such that lim

n→∞
sn = f , then by (31) we have

N(f) = N
(

lim
n→∞

sn

)
= lim

n→∞
N(sn) = lim

n→∞
Mw(sn)

= Mw

(
lim
n→∞

sn

)
= Mw(f).

Therefore, N(f) = Mw(f) for all f ∈ Weak Lp and thus we conclude that
N ∈ H.

Corolario 6.1. The multiplication operator Mu is invertible if only if u is
invertible on L∞.

Proof. Let Mu be invertible, the there exists N ∈ B
(
Weak Lp

)
such that:

Mu.N = N.Mu = I, (32)

where I represent the identity operator. Let us check that N commute with
H. Let Mw ∈ H, then:

Mw.Mu = Mu.Mw. (33)
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Applying N to (33) and by (32) we obtain:

N.Mw.Mu.N = N.Mu.Mw.N,

N.Mw.I = I.Mw.N,

N.Mw = Mw.N,

and thus we concluded that N commute with H, by theorem 6.2 N ∈ H

then there exists g ∈ L∞ such that N = Mg, hence

Mu.Mg = Mg.Mu = I,

this implies that ug = gu = 1, a.e[µ] this means that u is invertible on L∞.

On the other hand, assume u is invertible on L∞ that is,
1

u
∈ L∞, then:

Mu.M1/u = M1/u.Mu = M(1/u)u

= M1 = I,

which means that Mu is invertible on B (Weak Lp).

Lemma 6.1. Let Mu be a compact operator, for ε > 0 define

Aε(u) =
{
x ∈ X : |u(x)| ≥ ε

}
,

and
Weak Lp

[
Aε(u)

]
=
{
fχAε(u) : f ∈Weak Lp

}
.

Then Weak Lp
[
Aε(u)

]
is a closed invariant subspace of Weak Lp under Mu.

Moreover

Mu

∣∣∣
Weak Lp[Aε(u)]

,

is a compact operator.

Proof. Let h, s ∈ Weak Lp
[
Aε(u)

]
and α, β ∈ R. Then h = fχAε(u) and

s = gχAε(u) where f, g ∈Weak Lp, thus

αh+ βs = α
(
fχAε(u)

)
+ β

(
gχAε(u)

)
= (αf + βg)χAε(u) ∈Weak Lp

[
Aε(u)

]
.
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Which mean that Weak Lp
[
Aε(u)

]
is a subspace of Weak Lp.

Next, for all h ∈Weak Lp
[
Aε(u)

]
we have

Muh = uh = ufχAε(u)

= (uf)χAε(u),

where uf ∈Weak Lp.
Therefore, Muh ∈Weak Lp

[
Aε(u)

]
, which means that Weak Lp

[
Aε(u)

]
is an

invariant subspace of Weak Lp under Mu.

Now, let us show that Weak Lp
[
Aε(u)

]
is a closed set. Indeed, let g be

a function belonging to the closure of Weak Lp
[
Aε(u)

]
then there exists a

sequence {gn}n∈N in Weak Lp
[
Aε(u)

]
such that

gn → g,

in Weak Lp. Just remain to exhibit that g belong to Weak Lp
[
Aε(u)

]
. Note

that
g = gχAε(u) + gχAcε(u).

Next, we want to show that gχAcε(u) = 0. In fact, given ε1 > 0 there exists
n0 ∈ N such that∥∥gχAcε(u)∥∥L(p,∞)

=
∥∥(g − gn0 + gn0)χAcε(u)

∥∥
L(p,∞)

=
∥∥(g − gn0)χAcε(u)

∥∥
L(p,∞)

≤
∥∥g − gn0

∥∥
L(p,∞)

< ε1.

Thus gχAcε(u) = 0, which mean that g = gχAε(u) that is g ∈Weak Lp
[
Aε(u)

]
.

And the proof is now complete.

Theorem 6.3. Let Mu ∈ B (Weak Lp). Then Mu is compact if and only if
Weak Lp

[
Aε(u)

]
is finite dimensional for each ε > 0.

Proof. If |u(x)| ≥ ε, we should note that∣∣ufχAε(u)(x)
∣∣ ≥ εfχAε(u)(x),

and thus{
x ∈ X : εfχAε(u)(x) > λ

}
⊂
{
x ∈ X :

∣∣ufχAε(u)(x)
∣∣ > λ

}
,
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then
DufχAε(u)

(λ) ≥ DεfχAε(u)
(λ)

λ
[
DufχAε(u)

(λ)
]1/p ≥ λ

[
DεfχAε(u)

(λ)]1/p

sup
λ>0

λ
[
DufχAε(u)

(λ)
]1/p ≥ sup

λ>0
λ
[
DεfχAε(u)

(λ)]1/p∥∥ufχAε(u)∥∥L(p,∞)
≥
∥∥εfχAε(u)∥∥L(p,∞)

= ε
∥∥fχAε(u)∥∥L(p,∞)

.

thus ∥∥MufχAε(u)
∥∥
L(p,∞)

≥ ε
∥∥fχAε(u)∥∥L(p,∞)

. (34)

Now, if Mu is a compact, then for lemma 6.1, Weak Lp
[
Aε(u)

]
is closed

invariant subspace of Mu and by theorem A.1 (appendix)

Mu

∣∣∣
Weak Lp[Aε(u)]

,

is a compact operator. Then by (34) Mu

∣∣∣
Weak Lp[Aε(u)]

has a closed range in

WeakLp
[
Aε(u)

]
and it is invertible, being compact, WeakLp

[
Aε(u)

]
is finite

dimensional.

Conversely, suppose that WeakLp
[
Aε(u)

]
is finite dimensional for each ε > 0.

In particular for n ∈ N, Weak Lp[A 1
n
(u)] is finite dimensional, then for each

n, define
un : X → C

as

un(x) =


u(x) if |u(x)| ≥ 1

n

0 if |u(x)| < 1
n

Then we find that

Munf −Muf = (un − u).f ≤ ‖un − u‖∞|f |,

and thus{
x ∈ X : |(un − u).f(x)| > λ

}
⊆
{
x ∈ X : ‖un − u‖∞|f(x)| > λ

}
.
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From this we have∥∥Munf −Muf
∥∥
L(p,∞)

≤ ‖un − u‖∞
∥∥f‖L(p,∞)

,

consequently ∥∥Munf −Muf
∥∥
L(p,∞)

<
1

n

∥∥f‖L(p,∞)
,

which implies that Mun converge to Mu uniformly.

As Weak Lp
[
Aε(u)

]
is finite dimensional so Mun is a finite rank operator.

Therefore Mun is a compact operator and hence Mu is a compact operator.

Remark 6.1. In general, the multiplication operator on measurable space
is not 1-1. Indeed, let (X,A, µ) be a measure space and

A = X \ supp(u) =
{
x ∈ X : u(x) = 0

}
,

where supp(u) stand for the support of u.
If µ(A) 6= 0 and f = χA, then for any x ∈ X, we have f(x)u(x) = 0 which
implies that Mu(f) = 0, therefore Ker(Mu) 6= {0} and hence Mu is not 1-1.

By contrapositive, we have Mu is 1-1, then µ
(
X\supp(u)

)
= 0. On the other

hand, if µ
(
X \ supp(u)

)
= 0 and µ is a complete measure, then Mu(f) = 0

implies f(x)u(x) = 0 ∀x ∈ X, then
{
x ∈ X : f(x) 6= 0

}
⊆ X \ supp(u) and

so f = 0 µ− a.e on X.
Hence, if µ

(
X \ supp(u)

)
= 0 and µ is a complete measure, then Mu is 1-1.

Proposition 6.1. Mu is 1-1 on Y = Weak Lp
(
supp(u)

)
.

Proof. Let Y = Weak Lp
(
supp(u)

)
=
{
fχsupp(u) : f ∈Weak Lp

}
.

Indeed, if Mu(f̃) = 0 with f̃ = fχsupp(u) ∈ Y , then f(x)χsupp(u)(x) = 0 for
all x ∈ X and so

f(x)u(x) = 0 ∀x ∈ supp(u)

f(x) = 0 ∀x ∈ supp(u),

f(x)χsupp(u) = 0 ∀x ∈ X.

Then f̃ = 0 and the proof is complete.
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Theorem 6.4. Let Mu : Weak Lp
(
supp u

)
→ Weak Lp

(
supp u

)
. Then Mu

has closed range if an only if hence exist a δ > 0 such that |u(x)| ≥ δ a.e[µ]
on S =

{
x ∈ X : u(x) 6= 0

}
the support of u.

Proof. If there exists a δ > 0 such that |u(x)| ≥ δ a.e[µ] on S, then for
f ∈Weak Lp we have{

x ∈ X :
∣∣(δfχS)(x)

∣∣ > λ
}
⊆
{
x ∈ X :

∣∣(ufχS)(x)
∣∣ > λ

}
,

and thus
DufχS(λ) ≥ DδfχS(λ).

Hence ∥∥MufχS
∥∥
L(p,∞)

≥ δ
∥∥fχS∥∥L(p,∞)

,

Therefore Mu has closed range.
Conversely if Mu has closed range on Weak Lp

(
S
)
, since Mu is 1-1 on

Weak Lp
(
S
)

then Mu is bounded below, and thus there exists an δ > 0
such that ∥∥Muf

∥∥
L(p,∞)

≥ δ
∥∥f∥∥

L(p∞)
,

for all f ∈Weak Lp
(
S
)
, where

Weak Lp
(
S
)

=
{
fχS : f ∈Weak Lp

}
.

Let E =
{
x ∈ S : |u(x)| < ε/2

}
.

If µ(E) > 0, then we can find a measurable set F ⊆ E such that χF ∈
Weak Lp

(
S
)
.

Also, we have for λ > 0{
x ∈ X :

∣∣uχF (x)
∣∣ > λ

}
⊆
{
x ∈ X :

∣∣ ε
2
χF (x)

∣∣ > λ
}
.

So that
DuχF (λ) ≥ D ε

2
χF

(λ).

Hence ∥∥MuχF
∥∥
L(p,∞)

≤ ε
2

∥∥χF∥∥L(p,∞)
,

which is a contradiction. Therefore µ(E) = 0.
This completes the proof.
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7 Composition Operator

Let (X,A, µ) be a measure spaces and T : X → X such that T−1(A) ∈ A

for any A ∈ A. If µ
(
T−1(A)

)
= 0 for each A ∈ A with µ(A) = 0, then T is

said to be non-singular transformation.

Let Y be a measurable subset of X and T : Y → X is a measurable trans-
formation, then we define the linear transformation CT from Weak Lp into
the spaces of all complex - valued measurable functions on X as

(
CTf

)
(x) =

 f
(
T (x)

)
if x ∈ Y

0 otherwise

for all f ∈Weak Lp.

If CT is bounded with range in Weak Lp we say that CT is a composition
operator on Weak Lp induced by T .

In this section a necessary and sufficient condition for the boundedness of
composition mapping CT is given.

Theorem 7.1. Let T : X → X be a non-singular measurable transformation.
Then CT : f → f ◦T induced by T is bounded on WeakLp if and only if there
exists a constant M > 0 such that

µ
(
T−1(E)

)
≤Mµ(E) for all E ∈ A.

Moreover ∥∥CT∥∥ = sup
0<µ(E)<∞

E∈A

(
µ
(
T−1(E)

)
µ(E)

)1/p

.

Proof. Suppose that there exists a constant M > 0 such that µ
(
T−1(E)

)
≤
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Mµ(E) for all E ∈ A. Then

∥∥CT (f)
∥∥
L(p,∞)

= sup
λ>0

λ
[
µ
(
{x ∈ X :

∣∣f(T (x)
)∣∣ > λ}

)]1/p
= sup

λ>0
λ
[
µ
(
T−1

(
{x ∈ X : |f(x)| > λ}

))]1/p
≤M sup

λ>0
λ
[
µ
(
{x ∈ X : |f(x)| > λ}

)]1/p
= M

∥∥f∥∥
L(p,∞)

.

Hence ∥∥CT (f)
∥∥
L(p,∞)

≤M
∥∥f∥∥

L(p,∞)
.

Conversely, suppose that CT is bounded and let E ∈ A, if µ(E) = ∞ then
we have result. Suppose that µ(E) <∞ and consider χT−1(E), then[

µ
(
T−1(E)

)]1/p
≤ sup

λ>0
λ
[
µ
(
{x ∈ X : χT−1(E)(x) > λ}

)]1/p
= sup

λ>0
λ
[
µ
(
{x ∈ X :

(
χE ◦ T

)
(x) > λ}

)]1/p
=
∥∥χE ◦ T∥∥L(p,∞)

=
∥∥CT (χE)

∥∥
L(p,∞)

,

since CT is bounded then there exists M such that∥∥CT (χE)
∥∥
L(p,∞)

≤M1/p
∥∥χE∥∥L(p,∞)

= M1/p
[
µ(E)

]1/p
,

thus [
µ
(
T−1(E)

)]1/p
≤M1/p

[
µ(E)

]1/p
,

accordingly
µ
(
T−1(E)

)
≤Mµ(E).

for all E ∈Weak Lp
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Next, we like to shown that

∥∥CT∥∥ = sup
0<µ(E)<∞

E∈A

(
µ
(
T−1(E)

)
µ(E)

)1/p

.

Indeed, let N = sup
0<µ(E)<∞

E∈A

(
µ
(
T−1(E)

)
µ(E)

)1/p

, then

(
µ
(
T−1(E)

)
µ(E)

)1/p

≤ N for all E ∈ A, µ(E) 6= 0,

thus
µ
(
T−1(E)

)
≤ Npµ(E) for all E ∈ A.

Now, by the first part of this theorem, we have∥∥CT (f)
∥∥
L(p,∞)

≤ N
∥∥f∥∥

L(p,∞)
,

for all f ∈Weak Lp.
Hence ∥∥CT∥∥ = sup

f 6=0

∥∥CT (f)
∥∥
L(p,∞)∥∥f∥∥

L(p,∞)

≤ N,

then ∥∥CT∥∥ ≤ sup
0<µ(E)<∞

E∈A

(
µ
(
T−1(E)

)
µ(E)

)1/p

. (35)

On the other hand, let

M =
∥∥CT∥∥ = sup

f∈Weak Lp
f 6=0

∥∥CT (f)
∥∥
L(p,∞)∥∥f∥∥

L(p,∞)

.

Then ∥∥CT (f)
∥∥
L(p,∞)∥∥f∥∥

L(p,∞)

≤M for all f ∈Weak Lp, f 6= 0.
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In particular, for f = χE such that 0 < µ(E) < ∞, E ∈ A we have that
f = χE ∈Weak Lp and∥∥CT (χE)

∥∥
L(p,∞)∥∥χE∥∥L(p,∞)

=

(
µ
(
T−1(E)

)
µ(E)

)1/p

≤M,

therefore

sup
0<µ(E)<∞

E∈A

(
µ
(
T−1(E)

)
µ(E)

)1/p

≤M =
∥∥CT∥∥. (36)

Finally from (35) and (36) we obtain

∥∥CT∥∥ = sup
0<µ(E)<∞

E∈A

(
µ
(
T−1(E)

)
µ(E)

)1/p

.

A Appendix

Definition A.1. Let T : X → X be an operator, a subspace V of X is said
to be invariant under T (or simply T−invariant) whenever

T (V ) ⊆ V.

Theorem A.1. Let T : X → X be an operator. If T is compact and M is a

closed T -invariant space of X. Then T
∣∣∣
M

is compact.

Proof. Let {xn}n∈N be a sequence in M ⊆ X. Then {xn}n∈N ⊆ X, thus
there exists a subsequence {xnk}k∈N of {xn}n∈N such that T (xnk) converges
in X but T (xnk) ⊆ T (M), since {xnk} ⊆ M . Then T (xnk) converge on

T (M) ⊆M = M .

Therefore T (xnk) converge on M , hence T
∣∣∣
M

is compact.

52



References

[1] M.B. Abrahamese, Multiplication operators, Lecture notes in Math., Vol.
693 (1978), 17-36, Springer Verlag, New York, 1978.

[2] S.C. Arora, Gopal Datt and Satish Verma, Multiplication operators on
Lorentz spaces, Indian Journal of Mathematics, Vol. 48 (3) (2006), 317-
329.

[3] A. Axler, Multiplication operators on Bergman space, J. Reine Angew
Math., Vol. 33 (6) (1982), 26-44.

[4] C. Bennett and R. Sharpley, Interpolation of operators, Pure and applied
math., Vol. 129, Academic Press Inc., New york, 1988.
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