
Existence of Solutions for p(x)-Laplacian equations

without Ambrosetti-Rabinowitz type condition

Zehra Yucedag 1

Department of Mathematics, Faculty of Science, Dicle University,
21280-Diyarbakir, Turkey

Abstract.This paper investigates the existence and multiplicity of solutions
for superlinear p (x)-Laplacian equations with Dirichlet boundary condi-
tions. Under no Ambrosetti-Rabinowitz�s superquadraticity conditions, we
obtain the existence and multiplicity of solutions by using a variant Fountain
theorem without Palais-Smale type assumptions.
Keywords: p (x)-Laplace operator; variable exponent Lebesgue-Sobolev

spaces; variational approach; variant Fountain theorem
MSC: 35D05, 35J60, 35J70

1 Introduction

We consider the following superlinear elliptic problem

(
��p(x)u = f (x; u) + g (x; u) ; in 
;

u = 0; on @
;
(P)

and obtain in�nitely many solutions, where 
 is a bounded smooth domain of
RN (N � 3) and p 2 C

�


�
with 1 < p (x) < N for all x 2 
.

Generally, in order to search the existence of solutions for Dirichlet problems
which is superlinear, it is essential to assume the following superquadraticity
condition, which is known as Ambrosetti-Rabinowitz type condition [2]:

(AR) 9M > 0; � > p+ such that 0 < �F (x; s) � f (x; s) s; jsj �M;x 2 
;

where f is nonlinear term such that F (x; t) =
R t
0 f(x; s)ds.
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There are many paper dealing with superlinear Dirichlet problems involving
p(x)-Laplace operator�p(x)u := div(jrujp(x)�2ru), in which (AR) is the main
assumption to get the existence and multiplicity of solutions [9,10]. However,
as far as we are concerned, there are many functions which are superlinear
but not satisfy (AR) [3,17].

It is well known that the main aim of using (AR) is to ensure the boundedness
of the Palais-Smale type sequences of the corresponding functional. In the
present paper we do not use (AR). Instead, we use a variant Fountain theorem
not including Palais-Smale type assumptions (see Theorem 5).

The study of di¤erential equations and variational problems involving p (x)-
growth conditions has attracted a special interest in recent years and a lot of
researchers have devoted their work to this area [5,12,14,16] since there are
some physical phenomena which can be modelled by such kind of equations.
In particular, we may mention some applications related to the study of elas-
tic mechanics and electrorheological fuids [1,4,11,15,19]. The appearance of
such physical models was facilitated by the development of variable exponent
Lebesgue Lp(x) and Sobolev spaces W 1;p(x).

2 Preliminaries

At �rst, we shall mention some de�nitions and basic properties of generalized
Lebesgue-Sobolev spaces Lp(x) (
), W 1;p(x) (
) and W 1;p(x)

0 (
). We refer the
reader to [6�8,13] for the fundamental properties of these spaces.

Set

C+
�


�
=
n
p; p 2 C

�


�
, inf p (x) > 1;8x 2 


o
:

Let p 2 C+
�


�
and denote

p� := inf
x2

p (x) � p (x) � p+ := sup

x2

p (x) <1:

For any p 2 C+
�


�
, we de�ne the variable exponent Lebesgue space by

Lp(x) (
) =

8<:u j u : 
! R is measurable;
Z



ju (x)jp(x) dx <1
9=; ;

then Lp(x) (
) endowed with the norm
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jujp(x) = inf
8<:� > 0 :

Z



�����u (x)�
�����
p(x)

dx � 1
9=; ;

becomes a Banach space.

The modular of the Lp(x) (
) space, which is the mapping � : Lp(x) (
) ! R
de�ned by

� (u) =
Z



ju (x)j p(x) dx; 8u 2 Lp(x) (
) : (2:1)

Proposition 1 ([7,13]) If u; un 2 Lp(x) (
) (n = 1; 2; :::), we have

(i) jujp(x) < 1 (= 1;> 1), � (u) < 1 (= 1;> 1) ;

(ii) jujp(x) > 1 =) jujp
�

p(x) � � (u) � juj
p+

p(x);

(iii) jujp(x) < 1 =) jujp
+

p(x) � � (u) � juj
p�

p(x);

Proposition 2 [7,13] If u; un 2 Lp(x) (
) (n = 1; 2; :::), then the following
statements are equivalent:

(i) lim
n!1

jun � ujp(x) = 0;

(ii) lim
n!1

�(un � u) = 0;

(iii)un ! u in measure in 
 and lim
n!1

�(un) = � (u) :

The variable exponent Sobolev space W 1;p(x) (
) is de�ned by

W 1;p(x) (
) = fu 2 Lp(x) (
) : jruj 2 Lp(x) (
)g;
with the norm

kuk1;p(x) = jujp(x) + jrujp(x); 8u 2 W 1;p(x) (
) :

Then (W 1;p(x) (
) ; k�k1;p(x)) becomes a Banach space. The space W
1;p(x)
0 (
)

is de�ned as the closure of C10 (
) in W
1;p(x) (
) with respect to the norm

k�k1;p(x). For u 2 W
1;p(x)
0 (
), we can de�ne an equivalent norm

kuk = jrujp(x);
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since Poincaré inequality

jujp(x) � Cjrujp(x); 8u 2 W 1;p(x)
0 (
)

holds, where C is a positive constant [9].

Proposition 3 [7,13] If 1 < p� and p+ < 1, then the spaces Lp(x) (
),
W 1;p(x) (
) and W 1;p(x)

0 (
) are separable and re�exive Banach spaces.

Proposition 4 [7,13] Assume that 
 is bounded, the boundary of 
 possesses
the cone property and p 2 C+(
). If q 2 C+(
) and q (x) < p� (x) := Np(x)

N�p(x)
for all x 2 
, then the embedding W 1;p(x) (
) ,! Lq(x) (
) is compact and
continuous.

From[18], let X be a re�exive and separable Banach space, then there are
ej � X and e�j � X� such that

X = span fej j j = 1; 2; :::g; X� = span
n
e�j j j = 1; 2; :::

o
;

and

he�i ; eji =

8><>: 1 i = j;

0 i 6= j;
where h:; :i denotes the duality product between X and X�: For convenience,
we write

Xj = span fejg ; Yk = �kj=1Xj; Zk = �1j=kXj:

And let

Bk = fu 2 Yk : kuk � �kg ; Nk = fu 2 Zk : kuk = rkg ; for �k > rk > 0:

Let consider the C1-functional I� : X ! R de�ned by

I� (u) := A(u)� �B(u); � 2 [1; 2] :

Now we give the following variant Fountain theorem (see [20], Theorem 2.2),
which we use in the proof of the main results of the present paper:

Theorem 5 (Variant Fountain Theorem) Assume the functional I� sat-
is�es the followings:

(T1) I� maps bounded sets to bounded sets uniformly for � 2 [1; 2].
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Moreover, I�(�u) = I�(u) for all (�; u) 2 [1; 2]�X.

(T2) B(u) � 0; B(u) ! 1 as kuk ! 1 on any �nite dimensional subspace
of X.

(T3) There exists �k > rk > 0 such that

ak(�) := inf
u2Zk;kuk=�k

I�(u) � 0 > bk(�) := max
u2Yk;kuk=rk

I�(u);

for all � 2 [1; 2] and

dk(�) := inf
u2Zk;kuk��k

I�(u)! 0 as k !1 uniformly for � 2 [1; 2] :

Then there exists �n ! 1, u(�n) 2 Yn such that

I 0�n jYn(u(�n)) = 0; I�n(u(�n))! ck 2 [dk(2); bk(1)] as n!1:

Particularly, if fu(�n)g has a convergent subsequence for every k, then I1 has
in�nitely many nontrivial critical points fukg 2 Xn f0g satisfying I1 (uk) !
0� as k !1.

3 Main results

For problem (P), we make the following assumptions:

(P1) f (x;�t) = �f (x; t) and g (x;�t) = �g (x; t) for any x 2 
, t 2 R.

(P2) Assume that f : 
� R! R is a Carathéodory function and there exist
1 < � � � < p� and c1 > 0; c2 > 0; c3 > 0 such that

c1 jtj� � f (x; t) t � c2 jtj� + c3 jtj� , for a.e. x 2 
 and t 2 R:

(P3) Assume that g : 
�R! R is a Carathéodory function and p; q 2 C+
�


�

with p (x) � p+ < q� � q (x) < p� (x) such that

jg (x; t)j � c
�
1 + jtjq(x)�1

�
, for a.e. x 2 
 and t 2 R;

and g (x; t) t � 0; for a.e. x 2 
 and t 2 R: Moreover, lim
t!0

g(x;t)

tp��1
= 0 uniformly

for x 2 
.

(P4) Assume one of the following conditions holds:

(1) lim
jtj!1

g (x; t)

tp��1
= 0 uniformly for x 2 
:
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(2) lim
jtj!1

g (x; t)

tp��1
= �1 uniformly for x 2 
:

Moreover, f(x;t)
tp��1

and g(x;t)

tp��1
are decreasing in t 2 R for t large enough.

(3) lim inf
jtj!1

g (x; t) t� �G (x; t)
jtj� � c > 0 uniformly for x 2 
;

where � > � and � > 0. Moreover, lim
jtj!1

g(x;t)

tp
��1 =1 uniformly for x 2 
; g(x;t)

tp
��1

is increasing in t 2 R for t large enough.

Theorem 6 Assume that (P1)-(P4) hold, then problem (P) has in�nitely
many solutions fukg satisfying

� (uk) :=
Z



1

p (x)
jrukjp(x) dx�

Z



G(x; uk)dx�
Z



F (x; uk)dx! 0� as k !1;

where � : W 1;p(x)
0 (
)! R is the functional corresponding to problem (P) and

G (x; t) =
R t
0 g(x; s)ds, F (x; t) =

R t
0 f(x; s)ds.

Remark 7 The conditions (P2) and (P3) imply the functional � is well de-
�ned and of class C1. It is well known that the critical points of � are weak
solutions of (P). Moreover, the derivative of � is given by

h�0 (u) ; �i =
Z



jrujp(x)�2rur�dx�
Z



g(x; u)�dx�
Z



f(x; u)�dx;

for any u; � 2 W 1;p(x)
0 (
).

Let us consider C1-functional �� : W
1;p(x)
0 (
)! R de�ned by

�� (u) =
Z



1

p (x)
jrujp(x) dx�

Z



G(x; u)dx��
Z



F (x; u)dx := A (u)�K (u)��B (u) ,

where � 2 [1; 2]. Then B (u) � 0 and B (u) ! 1 as kuk ! 1 on any �nite
dimensional subspace, where n > k > 2:

To get the proof of Theorem 6, we will apply Theorem 5. Therefore, it is
enough to obtain the results of Lemma 8 and Lemma 9.

Lemma 8 Under the assumptions of Theorem 6, there exist �n ! 1; un (�) 2
Yn such that

�0�n jYn (un (�)) = 0; ��n (un (�))! ck 2 [dk (2) ; bk (1)] as n!1:
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PROOF. First, we prove that for some rk 2 (0; �k) such that

bk(�) := max
u2Yk;kuk=rk

�� (u) < 0;

for � 2 [1; 2], u 2 Yk. The norms j�j� and k�k is equivalent on the �nite
dimensional subspace Yk. Therefore, there is a constant c > 0 such that

juj� � c kuk ; 8u 2 Yk:

Moreover, by (P3), for any " > 0 there exists C" > 0 such that jG(x; u)j �
" jujp

�
+ C" jujq(x). Then, by (P2) and Proposition 1, we have

�� (u)�
1

p�
kukp

�
�K (u)� �B (u)

� 1

p�
kukp

�
� "

Z



jujp
�
dx� C"

Z



jujq(x) dx� �c1
Z



juj� dx

� 1

p�
kukp

�
� "cp� kukp

�
� C" kukq

+

� c�4 kuk
� :

Since � < p� < q+, for kuk small enough we get bk(�) := max
u2Yk;kuk=rk

�� (u) < 0

for all u 2 Yk.

Second, we shall show that for some 0 < rk < �k such that

ak(�):= inf
u2Zk;kuk=�k

�� (u) � 0

for � 2 [1; 2], and u 2 Zk.

Let

�k (q (x)) : = sup
u2Zk;kuk=1

jujq(x) ; �k
�
p�
�
:= sup

u2Zk;kuk=1
jujp� ;

�k (�) : = sup
u2Zk;kuk=1

juj� ; �k (�) := sup
u2Zk;kuk=1

juj� :

Then �k (q (x))! 0, �k (p
�)! 0; �k (�)! 0 and �k (�)! 0 as k !1 (see

[10]). Therefore, by (P2) and Proposition 1, we have
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�� (u) =A (u)�K (u)� �B (u) �
1

p+
kukp

+

�K (u)� �B (u)

� 1

p+
kukp

+

� "
Z



jujp
�
dx� C"

Z



jujq(x) dx� �c2
Z



juj� dx� �c3
Z



juj� dx

� 1

p+
kukp

+

� c jujp
�

p� � c juj
q�

q(x) � c juj
�
� � c juj

�
�

� 1

p+
kukp

+

� c�p
�

k

�
p�
�
kukp

�
� c�q

�

k (q (x)) kukq
�
� c��k (�) kuk

� � c��k (�) kuk
�

where c = max f"; C"; 2c2; 2c3g. Let ' 2 Zk, k'k = 1 and 0 < t < 1; then it
follows

�� (t')�
1

p+
tp
+ � c�p

�

k

�
p�
�
tp
� � c�q

�

k (q (x)) tq
� � c��k (�) t� � c��k (�) t�

� 1

p+
tq
� � c�q

�

k (q (x)) tq
� �

�
c�p

�

k

�
p�
�
+ c��k (�) + c�

�
k (�)

�
t�;

since � < � < p� < p+ < q� for su¢ ciently large k, by choosing c�q
�

k (q (x)) <
1
2p+
, we get

�� (t')�
1

2p+
tq
� �

�
c�p

�

k

�
p�
�
+ c��k (�) + c�

�
k (�)

�
t�: (3:1)

Put �k :=
�
2cp+�p

�

k (p�) + 2cp+��k (�) + 2cp
+��k (�)

� 1
q��� , then, for su¢ ciently

large k, �k < 1. When t = �k, ' 2 Zk with k'k = 1, we have �� (t') � 0. So,
for su¢ ciently large k, we obtain ak(�) := inf

u2Zk;kuk=�k
�� (u) � 0.

Finally, we prove
dk(�) := inf

u2Zk;kuk��k
�� (u)! 0

as k !1 uniformly. Indeed, since Yk \ Zk 6= ? and rk < �k, we have

dk(�) := inf
u2Zk;kuk��k

�� (u) � bk(�) := max
u2Yk;kuk=rk

�� (u) < 0:

By (3:1), for ' 2 Zk, k'k = 1, 0 � t � �k and u = t' it follows that

�� (u) =�� (t') �
1

2p+
tq
�
-
�
c�p

�

k

�
p�
�
+ c��k (�) + c�

�
k (�)

�
t�

��
�
c�p

�

k

�
p�
�
+ c��k (�) + c�

�
k (�)

�
t�

��
�
c�p

�

k

�
p�
�
+ c��k (�) + c�

�
k (�)

�
��k

��
�
c�p

�

k

�
p�
�
+ c��k (�) + c�

�
k (�)

�
;
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therefore dk(�)! 0 as k !1. Hence, by Theorem 5 we can �nd �n ! 1 and
un (�) 2 Yn desired as the claim. The proof is completed. 2

Lemma 9 fun (�)g1n=1 is bounded in W
1;p(x)
0 (
).

PROOF. Since �0�n jYn (u (�n)) = 0, then we have

�0� (u (�n)) = A
0 (u (�n))�K 0 (u (�n))� �nB0 (u (�n)) = o (1) ku (�n)k ;

or, by Proposition 1,

1� o (1)= �n
Z



f(x; u (�n))u (�n)

� (u (�n))
dx+

Z



g(x; u (�n))u (�n)

� (u (�n))
dx

��n
Z



f(x; u (�n))u (�n)

ku (�n)kp
� dx+

Z



g(x; u (�n))u (�n)

ku (�n)kp
� dx

where � (u (�n)) is de�ned as in (2:1). Passing to a subsequence, if necessary,
ku (�n)k ! 1 as n!1, and using (P2) it follows

1� o (1) �
Z



g (x; u (�n))u (�n)

ku (�n)kp
� dx;

where o (1) ! 0 as n ! 1. This is a contradiction providing that (P4) (1)
holds.

Let f!ng � W
1;p(x)
0 (
) and put !n :=

u(�n)
ku(�n)k . Since k!nk = 1, up to subse-

quences, from Proposition 4 we get

!n*! in W 1;p(x)
0 (
) ;

!n!! in L
(x) (
) ; p (x) � 
 (x) < p� (x) ;
!n (x)!! (x) a.e. x 2 
:

Then the main concern is that either f!ng � W
1;p(x)
0 (
) vanish or it does

not vanish. We shall prove that none of these alternatives can occur and this
contradiction will prove that f!ng � W 1;p(x)

0 (
) is bounded.

If ! 6= 0, from Proposition 1, Fatou�s Lemma, (P2) ; (P3) and for n large
enough, we have

�0� (u (�n)) = A
0 (u (�n))�K 0 (u (�n))� �nB0 (u (�n)) = o (1) ku (�n)k ;

or
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�1 + o (1)= �n
Z



�f(x; u (�n))u (�n)
� (u (�n))

dx+
Z



�g(x; u (�n))u (�n)
� (u (�n))

dx

��n
Z



�f(x; u (�n))u (�n)
ku (�n)kp

� dx+
Z



�g(x; u (�n))u (�n)
ku (�n)kp

� dx:

Using lim
juj!1

g(x;u)

jujp��1
= �1 in (P4) (2), we get

�1 + o (1)�
Z



�g(x; u (�n))u (�n)
ku (�n)kp

� dx =
Z



�g(x; u (�n))u (�n)
ju (�n)jp

� j!njp
�
dx

� c+
Z

f! 6=0g\fju(�n)j�cg

�g (x; u (�n))u (�n)
ju (�n)jp

� j!njp
�
dx!1;

which is a contradiction. Moreover, we can get the similar result if lim
juj!1

g(x;u)

jujp��1
=

1 in (P4) (3).

If ! � 0, we can de�ne a sequence ftng � R as in (see [17] ) such that

��n (tnu (�n)) := max
t2[0;1]

��n (tu (�n)) :

Let !n := (2p+c)
1
p� !n with c > 0. Then for n large enough, we have

��n (tnun)���n (!n)

�A
�
(2p+c)

1
p� !n

�
�K

�
(2p+c)

1
p� !n

�
� �nB

�
(2p+c)

1
p� !n

�
� 1

p+
(2p+c)A (!n)�K (!n)� �nB (!n) � 2c�K (!n)� �nB (!n)

� c;

which implies that lim
n!1

��n (tnun) ! 1 by the fact c > 0 can be large arbi-
trarily. Noting that ��n (0) = 0 and ��n (un)! c, so 0 < tn < 1 when n large
enough. Hence we have h�0�n (tnu (�n)) ; tnu (�n)i = 0. Thus, it follows

lim
n!1

[��n (tnu (�n))�
1

ptn

D
�0�n (tnu (�n)) ; tnu (�n)

E
]!1;

where ptn =
A0(tnu(�n))
A(tnu(�n))

. Therefore,

lim
n!1

[(A (tnu (�n))�K (tnu (�n))� �nB (tnu (�n))

� 1

ptn
(A0 (tnu (�n)) +

1

ptn
K 0 (tnu (�n)) + �n

1

ptn
B0 (tnu (�n))]!1;
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that is,

lim
n!1

[�n
1

ptn
B0 (tnu (�n))��nB (tnu (�n))+

1

ptn
K 0 (tnu (�n))�K (tnu (�n))]!1:

Moreover, if (P4) (2) holds, we have

1

ptn
f (x; su) su� F (x; su) + 1

ptn
g (x; su) su�G (x; su) � c;

for all s > 0 and u 2 R, so we get a contradiction.

If (P4) (3) holds, by (P2), we get

1 � c2
pn

Z



ju (�n)j� dx+
1

pn
K 0 (u (�n))�K (u (�n)) :

Thus,
1

pn
K 0 (u (�n))�K (u (�n))!1: (3:2)

Furthermore, using the property of u (�n) (see Lemma 8), it follows that

bk (1)��n
 
1

pn
B0 (u (�n))�B (u (�n))

!
+
1

pn
K 0 (u (�n))�K (u (�n))

� 1

pn

 
1

pn
K 0 (u (�n))�K (u (�n))

!
� c2
pn

Z



ju (�n)j� dx

� c 1
pn
K 0 (u (�n))�K (u (�n))� c;

which contradicts (3:2). Therefore fu (�n)g is bounded. The proof is com-
pleted. 2
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