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Abstract.This paper investigates the existence and multiplicity of solutions
for superlinear p (x)-Laplacian equations with Dirichlet boundary condi-
tions. Under no Ambrosetti-Rabinowitz’s superquadraticity conditions, we
obtain the existence and multiplicity of solutions by using a variant Fountain
theorem without Palais-Smale type assumptions.
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1 Introduction

We consider the following superlinear elliptic problem

{—Ap(x)u = f(x,u)+g(z,u), in Q, P)
u =0, on 01},

and obtain infinitely many solutions, where {2 is a bounded smooth domain of

RN (N > 3) andpEC’(ﬁ) with 1 < p(z) < N for all z € Q.

Generally, in order to search the existence of solutions for Dirichlet problems
which is superlinear, it is essential to assume the following superquadraticity
condition, which is known as Ambrosetti-Rabinowitz type condition [2]:

(AR) 3M >0, 7 > p" such that 0 < 7F (z,s) < f(x,5)s, |s| > M,z € Q,

where f is nonlinear term such that F(x,t) = [5 f(x, s)ds.
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There are many paper dealing with superlinear Dirichlet problems involving
p(z)-Laplace operator Ap,)u = div(|Vu["™ "% Vu), in which (AR) is the main
assumption to get the existence and multiplicity of solutions [9,10]. However,
as far as we are concerned, there are many functions which are superlinear

but not satisfy (AR) [3,17].

It is well known that the main aim of using (AR) is to ensure the boundedness
of the Palais-Smale type sequences of the corresponding functional. In the
present paper we do not use (AR). Instead, we use a variant Fountain theorem
not including Palais-Smale type assumptions (see Theorem 5).

The study of differential equations and variational problems involving p (z)-
growth conditions has attracted a special interest in recent years and a lot of
researchers have devoted their work to this area [5,12,14,16] since there are
some physical phenomena which can be modelled by such kind of equations.
In particular, we may mention some applications related to the study of elas-
tic mechanics and electrorheological fuids [1,4,11,15,19]. The appearance of
such physical models was facilitated by the development of variable exponent
Lebesgue L) and Sobolev spaces WP,

2 Preliminaries

At first, we shall mention some definitions and basic properties of generalized
Lebesgue-Sobolev spaces LP®) (Q), Wr@) (Q) and Wy P (©2). We refer the
reader to [6-8,13] for the fundamental properties of these spaces.

Set

Oy (ﬁ) = {p;p € C(ﬁ) ,infp (z) > 1,Vx Eﬁ}.
Let p € Oy (ﬁ) and denote

p~:=infp(x) < p(x) < p™:=supp(z) < 0.
z€Q zeQ

For any p € C'. (ﬁ), we define the variable exponent Lebesgue space by

L@ (Q) = {u | u: 2 — R is measurable, / |u (2)[P®) dx < oo} ,
0

then LP(®) (Q) endowed with the norm



0

Ul = inf {,u >0: /
0

becomes a Banach space.

p(z)
de <13,

The modular of the LP®) (Q) space, which is the mapping p : L) (Q) — R
defined by

p(u) = / u (z)| P dx, Yu € LY@ (Q). (2.1)

Proposition 1 (/7,13]) If u,u, € LP® (Q) (n=1,2,...), we have

(1) Julpe <1(=1>1) & p(u) <1l(=1;>1);
g - -
(1) |ulpy > 1 = fulpy < p(u) < lulp,;
+ -
(@1) [ulpa) <1 = ulpey < p () < lulyg);
Proposition 2 [7,18] If u,u, € LP@ (Q) (n = 1,2,...), then the following
statements are equivalent:
() lim [, — ufpm) = 0;
(1) lim p(up —u) = 0;
(7i1)u,, — u in measure in @ and lim p(u,) = p(u).

n—oo

The variable exponent Sobolev space W1P(*) (Q) is defined by

WP (Q) = {u € LPW(Q) « |[Vu| € LX) (Q)},

with the norm

llly iy = [tlpie) + [ Vttlpa), Yu € WHE (Q).

Then (W) (Q), Il () becomes a Banach space. The space W™ (Q)
is defined as the closure of C§°() in WP (Q) with respect to the norm
[[+[[1 pay- For u € Wol’p(x) (2), we can define an equivalent norm

[ull = [Vulp),



since Poincaré inequality
(Ul < Cl Vb, Yu € Wo™ (9)
holds, where C' is a positive constant [9].

Proposition 3 [7,13] If 1 < p~ and p* < oo, then the spaces LP™) (),
W@ (Q) and W™ (Q) are separable and reflexive Banach spaces.

Proposition 4 [7,13] Assume that Q) is bounded, the boundary of Q possesses

the cone property and p € C(Q). If ¢ € C(Q) and q(x) < p* (z) := %

for all x € Q, then the embedding WP (Q) — L) (Q) is compact and
continuous.

From[18], let X be a reflexive and separable Banach space, then there are
e; C X and €j C X* such that

X =spand{e;| j=1,2,..}, X" :span{e;f | j = 1,2,...},

and

. 1 1=,
(€7, ej) = ) )
0 i#7
where (., .) denotes the duality product between X and X*. For convenience,
we write

X, = span{e;}, Y, = @leXj, Zy = m
And let

By ={ueYy:|ul| <p.}, Ne ={ue€ Zg:|u|| =r}, for p, > r, > 0.
Let consider the C'-functional Iy : X — R defined by
I (u) == A(u) — AB(u), A€ [1,2].
Now we give the following variant Fountain theorem (see [20], Theorem 2.2),
which we use in the proof of the main results of the present paper:

Theorem 5 (Variant Fountain Theorem) Assume the functional I sat-
isfies the followings:

(T1) I maps bounded sets to bounded sets uniformly for \ € [1,2].



Moreover, I\(—u) = I\(u) for all (\,u) € [1,2] x X.

(Tz) B(u) > 0; B(u) — oo as ||ul]| — oo on any finite dimensional subspace
of X.

(T3) There exists p, > 1 > 0 such that

ag(A) ;= inf  ILy(u) >0>0b(N) = max I (u),

u€Zp,|lull=pp u€Yp,|Jull=ry
for all X € [1,2] and

dp(A\):= inf I \(u) — 0 as k — oo uniformly for X € [1,2].
ueZy, [|ull<py,

Then there exists A\, — 1, u(\,) € Y, such that

!
I An

v, (u(An)) =0, I, (u(X,)) = cx € [di(2),bx(1)] as n — oo.
Particularly, if {u(\,)} has a convergent subsequence for every k, then I has

infinitely many nontrivial critical points {ug} € X\ {0} satisfying I (ug) —
0™ as k — oo.

3 Main results

For problem (P), we make the following assumptions:
(Py) f(x,—t) = —f(x,t) and g (x,—t) = —g(x,t) for any = € Q, t € R.

(P2) Assume that f: Q x R — R is a Carathéodory function and there exist
l<o<d<p andc; >0,c5 > 0,c3 > 0 such that

alt]” < f(a )t <clt]” +cs)t]”, for ae. z € Qand t € R.
(P3) Assume that g : 2 xR — R is a Carathéodory function and p, ¢ € C. (ﬁ)
with p(x) <pt < ¢ <q(x) < p*(z) such that
lg(z,t)] <c (1 + |t]q<x)_1) , fora.e. x € Qand t € R,
and g (z,t)t > 0, for a.e. x € Q and t € R. Moreover, Ilfir% :;(f—’_t)l = 0 uniformly
for x € Q.

(P4) Assume one of the following conditions holds:

(1) lim 9(x,t)

@ 1 0 uniformly for x € €.



(2) lim 9(@.?)

i 1 —oo uniformly for z € €.
t|—o0 -

Moreover, Z; (= _tz and ﬁ,(f—’_t)l are decreasing in ¢ € R for ¢ large enough.

(3) lim inf & (z,8)¢ — G (x,1)
[t|—o0 |t|a

> ¢ > 0 uniformly for z € €,

oo uniformly for x € ; fp(fi’_t)l

where o > 9 and € > 0. Moreover, ‘l|im tgp(ff)l =
t|—o0

is increasing in ¢t € R for ¢ large enough.

Theorem 6 Assume that (P1)-(Py) hold, then problem (P) has infinitely
many solutions {uy} satisfying

1
® (uy) = /— Vg, [P da — /G(a:,uk)da: — /F(:U,uk)dx — 07 as k — oo,
) p(z) 2 2

where ® : Wy (Q) — R is the functional corresponding to problem (P) and
G (2.t) = L g(x, s)ds, Flx,t) = ! f(z, 5)ds.

Remark 7 The conditions (Ps) and (P3) imply the functional ® is well de-
fined and of class C'. It is well known that the critical points of ® are weak
solutions of (P). Moreover, the derivative of ® is given by

(@' (u),v) = / VP VuVude — /g(x,u)vdx — /f(x,u)vda:,
Q Q Q
for any u,v € W™ (Q).

Let us consider C'-functional ®, : Wo*™ (Q) — R defined by

p(z)

where A € [1,2]. Then B (u) > 0 and B (u) — oo as ||u|]| — oo on any finite
dimensional subspace, where n > k£ > 2.

®, (1) = / v e / G(x, u)dz—X / F(z,w)dz == A (u)—K (u)=AB (u),

To get the proof of Theorem 6, we will apply Theorem 5. Therefore, it is
enough to obtain the results of Lemma 8 and Lemma 9.

Lemma 8 Under the assumptions of Theorem 6, there exist A\, — 1, u,, (\) €
Y., such that

o v (Un (V) =0, @y, (un (N)) — e € [di (2), bk (1)] as n — oo



PROOF. First, we prove that for some r € (0, p,) such that

be(A) ;== max D, (u) <0,

uEYy ||ull=rg

for A € [1,2], u € Yj. The norms || and ||| is equivalent on the finite
dimensional subspace Yj. Therefore, there is a constant ¢ > 0 such that

lul, > c|lul|, Yu €Y.

Moreover, by (Pj3), for any € > 0 there exists C. > 0 such that |G(z,u)| <
e|ul’” + C. [u]?™. Then, by (P3) and Proposition 1, we have

1 _
Pr(u)= = lul” = K (u) = AB (u)

1 _ _

<l - g/ ul’” dz — 08/ u|"® dz — /\cl/ lul” de
P 0 0 0
1 - - - + - o

S [ull® —ec” flull” = Cellull® —cf [lu]l”.

Since o < p~ < ¢*, for |Ju|| small enough we get by(\) ;== max P, (u) <0

u€Yy, [Jull=rg

for all u € Y},.

Second, we shall show that for some 0 < 7, < p, such that

ag(A\):=inf P, (u) >0

ueZg, [lull=py o

for A € [1,2], and u € Z.

Let
Belg(@))i= sup  |ul, Brlp )= sup |uf,,
vz lull=1 1 ( ) weZlul=1 "
B (6):= sup |U|57 By (o) == sup |U|a
UEZ,|lu]|=1 UEZy,||lu||=1

Then 3y, (q () = 0, B (p7) = 0, B (6) — 0 and By (0) — 0 as k — oo (see
[10]). Therefore, by (P3) and Proposition 1, we have



Il
N

By (u) QO—KQO—MﬂwZéiMW+—K&O—Mﬂw

1 _
> — [l — 5/ lul’ dx — CE/ |u|™® do — )\cg/ lu|® da — )\cg/ |ul” dx
N Q Q Q 0

1 + - - é o
> lull™ = eluly = eluloq) = efuls = eluls

L (N (e . T
> 2l =By (p7) llull”™ = B (a (@) lull” — e} (8) [lul® = ¢B7 (o) |lul

where ¢ = max{e, C.,2¢9,2¢3}. Let ¢ € Zi, |l¢]| =1 and 0 < ¢t < 1, then it
follows

@5 (1) > plt — ey (p) 0 — Bl (@) — B 0) 1 — BT (o)1

> pﬂtq — B (@)t — (B (57) + Bl (0) + B () 17,

since 0 < § < p~ < pT < ¢~ for sufficiently large k, by choosing ¢ (¢ (7)) <
1
3y We get

@, (tp) 22;#1‘ — (B () + B2 (0) + ¢B7 (o)) 17 (3.1)

1
Put p,, == (2cp+ﬁ£_ (p~) 4 2cpt 32 (8) + 2ep™ 35 (J)) 4"=7  then, for sufficiently
large k, p, < 1. When t = p,,, ¢ € Z; with ||| = 1, we have &, (tp) > 0. So,
for sufficiently large k, we obtain ay(\) := ZirHlfH ) (u) > 0.
UELg, ||U||=pk

Finally, we prove

dg(N) == inf  ®y(u)—0

u€Zy, [|ull<py,

as k — oo uniformly. Indeed, since Y, N Z; # @ and 1, < p;, we have

dp(A) ;== inf &y (u) <b(N):= max P, (u) <O0.

u€Zy, [|ull<py u€Yy |lull=ry

By (3.1), for ¢ € Zy, ||l¢]| =1, 0 <t < p, and u = tip it follows that



therefore di(\) — 0 as k — oo. Hence, by Theorem 5 we can find A, — 1 and
upn, (A) €Y, desired as the claim. The proof is completed. O

Lemma 9 {u, (\)}>°, is bounded in Wy ™) ().

PROOF. Since @, |y, (u(X,)) =0, then we have
) (u(An)) = A" (u (M) = K" (u(An)) = AnB' (u(Xn)) = 0 (1) [Ju (M)l

or, by Proposition 1,

f(:r,u()\n))u ()‘n) 9<17’U (/\n))u ()‘n)
<A\, — dz — dx
- s! [l (A7 +Q/ [l (An)”

where p (u(\,)) is defined as in (2.1). Passing to a subsequence, if necessary,
lu (M| — o0 as n — oo, and using (P3) it follows

)

F (o]
where 0 (1) — 0 as n — oco. This is a contradiction providing that (P4) (1)
holds.

Let {w,} C W™ () and put w, = \\Zg;zgll' Since [|w,|| = 1, up to subse-
quences, from Proposition 4 we get

wy — w in Wy ()
Wy, — w in LY@ (), p(z) <v(x) <p(z),
wy () s w(x) ae x €.

Then the main concern is that either {w,} C Wy (Q) vanish or it does
not vanish. We shall prove that none of these alternatives can occur and this
contradiction will prove that {w,} C W™ (Q) is bounded.

If w # 0, from Proposition 1, Fatou’s Lemma, (P,),(P3) and for n large
enough, we have

P (1 (M) = A" (u(An)) = K (1w (An)) = AnB' (u(An)) = 0 (1) flu (M)

or



L f@aa e =gl (n)u ()
Lo =a [ o)
Y ST DITCR Py TR T
IENPOWITE /TN
Using |u1\i£>noo |19L|(;E_’“_)1 = —o0 in (Py) (2), we get

ey [EEODEOD gl OO |
’ ”zg/ e )P / o
e —g(x,u()\n)gu()\n)’ P dr = oo,
()

{w0In{|u(An)[=c}
(z,0)

which is a contradiction. Moreover, we can get the similar result if | 1|im ‘g|p77_1 =
oo in (Py) (3).

If w = 0, we can define a sequence {t,} C R as in (see [17] ) such that

Oy (thu(N\y)) == tem[(zi)f] Dy, (tu () -

Let w,, := (2p+c)P%wn with ¢ > 0. Then for n large enough, we have
@>\n (tnun) Z @An (wn)
> A <(2p+c)p wn> - K ((2p+c)z’1wn> - \.B ((2p+c)zﬂlwn>

2pT o)A (w,) — K (@,) — \B (@,) > 2¢— K (@,) — \B (@,)

which implies that JLHC}O O, (thu,) — oo by the fact ¢ > 0 can be large arbi-

trarily. Noting that @, (0) = 0 and ®,,  (u,) — ¢, so 0 < t, < 1 when n large
enough. Hence we have (®) (t,u(A,)),tu(Ay)) = 0. Thus, it follows

1

Tim [@y, (tnu (An)) — — (@4, (tntr(An)) sttt (M) )] — 00,
tn
where p, = %. Therefore,
nhjgo[(A (tau (An)) — K (tau (An)) — AnB (thu (An))
1 !/ 1 ! ]' /
—— (A" (thau (\)) + — K (tyu (\y)) + Mp— B (thu (My))] — o0,
ptn ptn ptn

10



that is,

lim (A B (bt (A))— M B (bt M)+ I (bt (M)~ (£t ()] — 0.

e Py, D,
Moreover, if (P4) (2) holds, we have
1 1
—f(z,su) su — F (z,su) + —g (x, su) su — G (x, su) <,
Py, D,

for all s > 0 and u € R, so we get a contradiction.

If (P4) (3) holds, by (P3), we get

n

Co 5 1, B "
msmwaNM+Kmum K (u(\)).

Thus, .
—K'(u(\)) — K (u(\,)) — oc. (3.2)

Furthermore, using the property of u (\,) (see Lemma 8), it follows that

mum&(gﬂwum—Bm@m)+;Kw@m—Kwum

> <1K’ (u(\)) — K (u ()\n))> . ;Z/ ()| dx

" Pn \DPn

&£KWOW—KWOM—Q

which contradicts (3.2). Therefore {u (A\,)} is bounded. The proof is com-
pleted. O
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