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Abstract Let a and b be two given meromorphic functions on a domain D. We study

normality of the family F of meromorphic functions that satisfy f(z)f (k)(z) = a(z) ⇔

f (k)(z) = b(z) for every f ∈ F on D. Examples are also given to show the necessity of the

conditions in our results.
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1 Introduction and main result

Let F be a family of meromorphic functions on a domain D ⊂ C. Then F is said to be

normal on D in the sense of Montel, if each sequence of F contains a subsequence which

converges spherically uniformly on each compact subset of D to a meromorphic function

which may be ∞ identically. See [4], [9], [13].

For two functions f and g meromorphic on D, and two complex numbers or mero-

morphic functions a and b, we write f(z) = a(z) ⇒ g(z) = b(z) if g(z) = b(z) whenever

f(z) = a(z), and write f(z) = a(z) ⇔ g(z) = b(z) if f(z) = a(z) if and only if g(z) = b(z).

When a is a complex value and f(z) = a ⇔ g(z) = a, we also say that f and g share

the value a or a is a shared value of f and g. For families of meromorphic functions,

the connection between normality and shared values has been studied frequently following
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Schwick’s initial paper [10]. Some recent theorems in this area appear in [5, 6, 8,

12, 14].

The starting point of this paper is the following result.

Thoerem A([3, Theorem 2]) Let F be a family of meromorphic functions on a domain

D, k be a positive integer, and let a ̸= 0 and b be two finite values. If, for every f ∈ F , all

zeros of f have multiplicity at least k and f(z)f (k)(z) = a ⇔ f (k)(z) = b, then the family

F is normal on D.

In this paper, we prove the following result.

Theorem 1.1 Let k be a positive integer, and let a(z)(̸≡ 0) and b(z) be two functions

meromorphic on D such that

(i) all zeros of a have multiplicity at most k−1 and all poles of a have multiplicity at most

k;

(ii) each pole of b that is not a zeroe of a has multiplicity at most ⌈k2⌉ − 1; and each pole

of b that is a zero of a with multiplicity m has multiplicity at most ⌈k−m
2 ⌉ − 1.

Then the family F of meromorphic functions on a domain D, all of whose zeros have

multiplicity at least k, such that f(z)f (k)(z) = a(z) ⇔ f (k)(z) = b(z) for every f ∈ F , is

normal on D.

Here, ⌈x⌉ denotes the smallest integer that is not less than x. For example, ⌈2.1⌉ = 3

and ⌈2⌉ = 2.

Example 1.1 Let D = {z : |z| < 1} and F = {fn}, where

fn(z) = enz − 1

n
.

Then f ′
n(z) = nenz, and fn(z)f

′
n(z) = n(enz − 1

n)e
nz. It follows that fn(z)f

′
n(z) = 0 ⇔

f ′
n(z) = 1, but F is not normal at 0. This shows that the condition a(z) ̸≡ 0 is necessary

in Theorem 1.1.

Example 1.2 Let D = {z : |z| < 1} and F = {fn}, where

fn(z) = z +
1

nz
,

and let a(z) = z and b = 1. We see that f ′
n(z) = 1 − 1

nz2
̸= 1 and fn(z)f

′
n(z) =

z
(
1− 1

n2z4

)
̸= z. So for every fn ∈ {fn} satisfies that fn(z)f

′
n(z) = a(z) ⇔ f ′

n(z) =
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b(z). But F is not normal at 0. This shows that the condition that every zero of a has

multiplicity at most k − 1 (at least for k = 1) is sharp in Theorem 1.1.

Example 1.3 Let D = {z : |z| < 1} and F = {fn}, where fn(z) = nzk+1, and let

a(z) = zk+2 and b(z) = z. We see that f
(k)
n (z) = n(k + 1)!z and fn(z)f

(k)
n (z) = n2(k +

1)!zk+2. So for every fn ∈ {fn} satisfies that fn(z)f
(k)
n (z) = a(z) ⇔ f

(k)
n (z) = b(z). But

F is not normal at 0. This shows that the condition that every zero of a has multiplicity

at most k − 1 is necessary in Theorem 1.1.

Example 1.4 Let D = {z : |z| < 1} and F = {fn}, where fn(z) = 1/nz, and let

a(z) = 1/zk+2 and b = 1/zk+1. We see that f
(k)
n (z) = (−1)kk!/nzk+1 and fn(z)f

′
n(z) =

(−1)kk!/n2zk+2. So for every fn ∈ {fn} satisfies that fn(z)f
′
n(z) = a(z) ⇔ f ′

n(z) =

b(z). But F is not normal at 0. This shows that the condition that every pole of a has

multiplicity at most k is necessary in Theorem 1.1.

2 Some lemmas

In order to prove our theorem, we require the following results. We assume the standard

notations of value distribution theory, as presented and used in [6]. In particular, we write

fn
χ−−→ f on D to denote that the sequence {fn} converges spherically locally uniformly

to f on D and denote fn → f on D if the convergence is in Euclidean metric.

Lemma 2.1 ([2, Theorem 2],[7, Lemma 2]) Let F be a family of functions meromorphic

on D, all of whose zeros have multiplicity at least k. Then if F is not normal at some

point z0 in D, there exist, for each 0 ≤ α < k, points zn in D with zn → z0, positive

numbers ρn → 0 and functions fn ∈ F such that gn(ζ) = ρ−α
n fn(zn + ρnζ)

χ−−→ g(ζ) on C,

where g is a nonconstant meromorphic function on C, all of whose zeros have multiplicity

at least k, such that g♯(ζ) ≤ g♯(0) = 1. In particular, g has order at most two.

Here, as usual, g♯(ζ) = |g′(ζ)|/(1 + |g(ζ)|2) is the spherical derivative.

Lemma 2.2 ([3, Lemmas 9 and 10]) Let g be a nonconstant meromorphic function in

C, and a be a nonzero constant. If all zeros of g have multiplicity at least k and g(k) ̸= 0,

then the equation gg(k) = a has solutions on C, where k is a positive integer.

3



Lemma 2.3 ([11, Lemma 8]) Let f be a nonplolynomial rational function such that

f ′(z) ̸= 1 for z ∈ C. Then

f(z) = z + c+
a

(z + b)m
,

where a ̸= 0, b, c are constants and m is a positive integer.

Lemma 2.4 ([1, Theorem 1.1]) Let g be a transcendental meromorphic function on C,

and R ̸≡ 0 be a rational function. If all zeros and poles of g are multiple except possibly

finitely many, then g′ −R has infinitely many zeros on C.

Lemma 2.5 Let k ≥ 2 and m be two integers, and let g be a meromorphic function on

C, all of whose zeros have multiplicity at least k. If g(ζ)g(k)(ζ) ̸= γζm on C \ {0} and

g(k)(ζ) ̸= 0 on C \ {0}, where γ is a given nonzero constant, then m ≥ k or m ≤ −(k+2),

and g must be a rational function of the form g(ζ) = Cζ
m+k

2 for some nonzero constant

C.

Proof. Without loss of generality, we may assume that γ = 1. If not, we can use

G(ζ) = γ−
1
2 g to replace g. The conditions guarantee that all zeros of g, possibly except

ζ = 0, have multiplicity k exactly.

Suppose first that g is transcendental. Then by Nevanlinna’s second fundamental

theorem, we have

T

(
r,
gg(k)

ζm

)
≤ N

(
r,
gg(k)

ζm

)
+N

r,
1

gg(k)

ζm

+N

r,
1

gg(k)

ζm − 1

+ S(r, g)

= N(r, g) +N

(
r,
1

g

)
+ S(r, g). (2.1)

where S(r, g) = o(T (r, g)) as r → ∞, possibly outside a set of finite measure. On the

other hand, we have by Nevanlinna’s first fundamental theorem

T

(
r,
gg(k)

ζm

)
≥ N

(
r,
gg(k)

ζm

)
≥ N(r, g) +N(r, g(k)) + S(r, g)

= 2N(r, g) + kN(r, g) + S(r, g)

≥ (k + 2)N(r, g) + S(r, g) (2.2)
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and

T

(
r,
gg(k)

ζm

)
≥ N

(
r,

ζm

gg(k)

)
≥ N

(
r,
1

g

)
+N

(
r,

1

g(k)

)
+ S(r, g)

= kN

(
r,
1

g

)
+ S(r, g). (2.3)

Then by (2.1)–(2.3), we have

T

(
r,
gg(k)

ζm

)
≤
(

1

k + 2
+

1

k

)
T

(
r,
gg(k)

ζm

)
+ S(r, g). (2.4)

Since k ≥ 2, we see from (2.4) that

T

(
r,
gg(k)

ζm

)
= S(r, g). (2.5)

Then by (2.2) and (2.3), we have

N(r, g) = S(r, g), N(r,
1

g
) = S(r, g). (2.6)

Thus

T

(
r,

g

g(k)

)
= T

(
r,
g(k)

g

)
+O(1) = N

(
r,
g(k)

g

)
+ S(r, g) = S(r, g), (2.7)

and hence by (2.5) and (2.7),

2T (r, g) = T

(
r, ζm · gg

(k)

ζm
· g

g(k)

)
= S(r, g). (2.8)

This is a contradiction. Hence there is no transcendental function that satisfies the con-

ditions of the lemma.

Now we consider the case that g is a rational function.

Case 1. g has at least one nonzero pole. We denote by ζi(i = 1, 2, · · · , n) all distinct

poles of g on C \ {0}, and pi(i = 1, 2, · · · , n) their corresponding multiplicities. Since

g(k) ̸= 0 on C \ {0}, g(k) has the form

g(k)(ζ) =
λζs∏n

i=1(ζ − ζi)pi+k
, (2.9)

where s ∈ Z is an integer and λ is a nonzero constant. And since g(ζ)g(k)(ζ) ̸= ζm on

C \ {0}, we have

g(ζ)g(k)(ζ) = ζm +
µζ l∏n

i=1(ζ − ζi)2pi+k
=

ζm
∏n

i=1(ζ − ζi)
2pi+k + µζ l∏n

i=1(ζ − ζi)2pi+k
(2.10)
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for some integer l ∈ Z and nonzero constant µ. So, by (2.9) and (2.10),

g(ζ) =
ζm
∏n

i=1(ζ − ζi)
2pi+k + µζ l

λζs
∏n

i=1(ζ − ζi)pi
. (2.11)

Next, we consider three cases according to m > l, m = l and m < l.

Case 1.1. Suppose that m > l. Then as all zeros of g, possibly except ζ = 0, have

multiplicity k exactly, we see from (2.11) that all zeros of the polynomial

P1(ζ) = ζm−l
n∏

i=1

(ζ − ζi)
2pi+k + µ (2.12)

on C\{0}, and hence on C since P1(0) = µ ̸= 0, have exact multiplicity k ≥ 2. This shows

that P1 has

τ1 =
degP1

k
=

m− l +
∑n

i=1(2pi + k)

k
> n (2.13)

distinct zeros, and each zero of P1 is a zero of P ′
1 with multiplicity k − 1.

By computation, we have

P ′
1(ζ) = ζm−l−1

n∏
i=1

(ζ − ζi)
2pi+k−1

(m− l)

n∏
i=1

(ζ − ζi) + ζ

n∑
i=1

(2pi + k)
∏
j ̸=i

(ζ − ζj)

 .

(2.14)

Since P1(ζi) ̸= 0 and P1(0) ̸= 0, it follows that the polynomial

Q1(ζ) = (m− l)
n∏

i=1

(ζ − ζi) + ζ
n∑

i=1

(2pi + k)
∏
j ̸=i

(ζ − ζj) (2.15)

has at least τ1 distinct zeros with multiplicity k − 1. Thus,

n = degQ1 ≥ (k − 1)τ1 > (k − 1)n. (2.16)

This is impossible, since k ≥ 2.

Case 1.2. Suppose that m = l. Then as showed in Case 1, all zeros of the polynomial

P2(ζ) =
n∏

i=1

(ζ − ζi)
2pi+k + µ (2.17)

on C \ {0} have exact multiplicity k ≥ 2. Denote by α the multiplicity if 0 is a zero of P2,

and say α = 0 if P2(0) ̸= 0. This shows that P2 has

τ2 =
degP2 − α

k
=

∑n
i=1(2pi + k)− α

k
(2.18)
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distinct zeros on C \ {0}, and each zero of P2 on C \ {0} is a zero of P ′
2 with multiplicity

k − 1.

We have

P ′
2(ζ) =

n∏
i=1

(ζ − ζi)
2pi+k−1Q2(ζ), where Q2(ζ) =

n∑
i=1

(2pi + k)
∏
j ̸=i

(ζ − ζj). (2.19)

Since P2(ζi) ̸= 0, the polynomial Q2 has at least τ2 distinct zeros on C \ {0} with multi-

plicity k−1. Further, if α ≥ 2, then 0 is a zero of Q2 with multiplicity α−1. Let β = α−1

if α ≥ 2, and β = 0 if α = 0 or α = 1. Thus, we see that

n−1 = degQ2 ≥ (k−1)τ2+β =
k − 1

k

n∑
i=1

(2pi+k)+β− k − 1

k
α ≥ (k − 1)(k + 2)n

k
+β−α.

(2.20)

Then we have

α− 1 ≥ k2 − 2

k
n+ β > β, (2.21)

which is a contradiction.

Case 1.3. Suppose that m < l. Then as showed in Case 1, all zeros of the polynomial

P3(ζ) =

n∏
i=1

(ζ − ζi)
2pi+k + µζ l−m (2.22)

on C \ {0} have exact multiplicity k ≥ 2. Note that P3(0) ̸= 0. This shows that P3 has

τ3 =
degP3

k
(2.23)

distinct zeros on C \ {0}, and each zero of P3 is a zero of P ′
3 with multiplicity k − 1.

We have (
ζm−lP3(ζ)

)′
= ζm−l−1

n∏
i=1

(ζ − ζi)
2pi+k−1Q3(ζ), (2.24)

where

Q3(ζ) = (m− l)

n∏
i=1

(ζ − ζi) + ζ

n∑
i=1

(2pi + k)
∏
j ̸=i

(ζ − ζj). (2.25)

Since P3(ζi) ̸= 0 and P3(0) ̸= 0, it follows that the polynomial Q3 has at least τ3 distinct

zeros with multiplicity k − 1. Thus,

degQ3 ≥ (k − 1)τ3. (2.26)

If degP3 ≥
∑n

i=1(2pi + k), then τ3 ≥
∑n

i=1(2pi + k)/k ≥ (k + 2)n/k. This, together

with (2.26) and the fact degQ3 ≤ n, leads to a contradiction.
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Thus degP3 <
∑n

i=1(2pi+k). Since degP3 = max{
∑n

i=1(2pi+k), l−m} if
∑n

i=1(2pi+

k) ̸= l −m, we see that
n∑

i=1

(2pi + k) = l −m (2.27)

and µ = −1. Hence degQ3 ≤ n− 1, so that by (2.26)

τ3 ≤
n− 1

k − 1
. (2.28)

Now since P3 has τ3 distinct zeros with exact multiplicity k, we can obtain that

n∏
i=1

(ζ − ζi)
2pi+k − ζ l−m = c

[
τ3∏
i=1

(ζ − wi)

]k
(2.29)

for some nonzero constant c and τ3 distinct nonzero points wi. It follows from (2.29) with

the transformation ζ → 1/z that

R(z) :=

n∏
i=1

(1− ζiz)
2pi+k − 1 = czl−m−τ3k

[
τ3∏
i=1

(1− wiz)

]k
. (2.30)

Thus 0 is a zero of R with multiplicity l −m− τ3k. Since

R′(z) =
n∏

i=1

(1− ζiz)
2pi+k−1

 n∑
i=1

(2pi + k)(−ζi)
∏
j ̸=i

(1− ζjz)

 , (2.31)

we see that 0 is a zero of R′ with multiplicity at most n− 1. Hence

l −m− 1− τ3k ≤ n− 1. (2.32)

This with (2.27) and (2.28) shows that

(k + 2)n ≤
n∑

i=1

(2pi + k) = l −m ≤ τ3k + n ≤ k(n− 1)

k − 1
+ n, (2.33)

which is impossible.

Case 2. g has no nonzero poles. Then as g(k)ζ ̸= 0 on C \ {0}, we have g(k)(ζ) = cζs

for some constant c ̸= 0 and integer s ∈ Z.

If s ≥ 0, then g is a polynomial with deg g = s + k. And since g(ζ)g(k)(ζ) ̸= ζm on

C \ {0}, we also have g(ζ)g(k)(ζ) = ζm + λζt for some constant λ ̸= 0 and integer t. Thus

g(ζ) =
1

c
ζm−s +

λ

c
ζt−s. (2.34)
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Ifm ̸= t, then it can be seen that g has at least one simple zero on C\{0}, which contradicts

that all zeros of g on C \ {0} have multiplicity k ≥ 2. Thus m = t, then λ + 1 ̸= 0 and

g(ζ) = (λ+1)ζm−s/c. Thus m− s = deg g = s+ k, and hence m− s = (m+ k)/2, so that

g(ζ) = Cζ
m+k

2 for some nonzero constant C and m ≥ k.

If s < 0, then ζ = 0 is the pole of g with multiplicity −s − k > 0. And since

g(ζ)g(k)(ζ) ̸= ζm on C \ {0}, we also have g(ζ)g(k)(ζ) = ζm + λζt for some constant λ ̸= 0

and integer t. Thus

g(ζ) =
1

c
ζm−s +

λ

c
ζt−s. (2.35)

Ifm ̸= t, then it can be seen that g has at least one simple zero on C\{0}, which contradicts

that all zeros of g on C \ {0} have multiplicity k ≥ 2. Thus m = t, then λ + 1 ̸= 0 and

g(ζ) = (λ+1)ζm−s/c. Thus −m+ s = −s− k, and hence m− s = (m+ k)/2 < 0, so that

g(ζ) = Cζ
m+k

2 for some nonzero constant C. Note, m = 2s+k ≤ −2(k+1)+k ≤ −(k+2).

The lemma is proved.

Lemma 2.6 Let g be a meromorphic function on C. If g′(ζ) ̸= 0 on C \ {0}, then the

equation g(ζ)g′(ζ) = γ/ζ has solutions on C \ {0}, where γ is a given nonzero constant.

Proof. Without loss of generality, we may assume that γ = 1.

Suppose first that g is transcendental. Then by Lemma 2.4, 1
2(g

2)′−ζ−1 has infinitely

many zeros on C, hence g(ζ)g′(ζ) = ζ−1 has infinitely many zeros on C \ {0}.

Next we suppose that g is a polynomial. Since g′(ζ) ̸= 0 on C \ {0}, we have g(ζ) =

aζn + b, where a ̸= 0. Then g(ζ)g′(ζ) − ζ−1 = nζ−1(aζ2n + bζn + 1) must has zero on

C \ {0}.

Finally, we suppose that g is non-polynomial rational function.

Case 1. If g′(ζ) ̸= 0 on C, then by Lemma 2.3, g(ζ) = B+A/(z+a)n, where A ̸= 0, B

are two constants. Then

g(ζ)g′(ζ)− ζ−1 =
−An[A+B(ζ + a)n]ζ − (ζ + a)2n+1

ζ(ζ + a)2n+1
. (2.36)

If a ̸= 0, we see that g(ζ)g′(ζ)− ζ−1 must have zeros on C \ {0}. If a = 0, then

g(ζ)g′(ζ)− ζ−1 =
−An(A+Bζn)− ζ2n

ζ2n+1
(2.37)

also has zeros on C \ {0}.
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Case 2. If g′(ζ) ̸= 0 on C \ {0} and g′(0) = 0, then we can suppose that

g′(ζ) =
µζ l∏n

i=1(ζ − ζi)pi+1
, (2.38)

where ζi ̸= 0(i = 1, 2, · · · , n) are all distinct poles of g and l ∈ Z is a positive integer. If

g(ζ)g′(ζ) ̸= ζ−1 on C \ {0}, then we can suppose that

g(ζ)g′(ζ) = ζ−1 +
λζs∏n

i=1(ζ − ζi)2pi+1
. (2.39)

We see that s = −1, otherwise ζ = 0 would be a pole of gg′, hence of g, which contradicts

that g′(0) = 0. Then we have

g(ζ)g′(ζ) =

∏n
i=1(ζ − ζi)

2pi+1 + λ

ζ
∏n

i=1(ζ − ζi)2pi+1
, (2.40)

hence

g(ζ) =
Q(ζ)

µζ l+1
∏n

i=1(ζ − ζi)pi
, where Q(ζ) =

n∏
i=1

(ζ − ζi)
2pi+1 + λ. (2.41)

Case 2.1. If g(0) = 0, then ζ = 0 is a zero of Q(ζ) with multiplicity 2(l + 1) and

g(ζ) =
ζ l+1P (ζ)

µ
∏n

i=1(ζ − ζi)pi
, (2.42)

where P (ζ) is a monic polynomial and

degP = degQ− 2(l + 1) =

n∑
i=1

(2pi + 1)− 2(l + 1) ≥ 0. (2.43)

Then we have

g′(ζ) =
ζ lP1(ζ)

µ
∏n

i=1(ζ − ζi)pi+1,
(2.44)

where P1(ζ) = [(l + 1)P (ζ) + ζP ′(ζ)]
∏n

i=1(ζ − ζi) − ζP (ζ)
∑n

i=1 pi
∏

j ̸=i(ζ − ζj). We see

that the polynomial P1(ζ) is not a constant, since the first coefficient of P1(ζ) is

l + 1 + degP −
n∑

i=1

pi =

n∑
i=1

(pi + 1)− (l + 1) ≥ n

2
> 0. (2.45)

Hence comparing with (2.44) and (2.38), it is a contradiction.

Case 2.2. If g(0) ̸= 0, then ζ = 0 is a zero of Q(ζ) with multiplicity l + 1 and

g(ζ) =
P (ζ)

µ
∏n

i=1(ζ − ζi)pi
, (2.46)
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where P (ζ) is a monic polynomial and

degP = degQ− (l + 1) =

n∑
i=1

(2pi + 1)− (l + 1) ≥ 0. (2.47)

Then we have

g′(ζ) =
P2(ζ)

µ
∏n

i=1(ζ − ζi)pi+1,
(2.48)

where P2(ζ) = P ′(ζ)
∏n

i=1(ζ − ζi) − P (ζ)
∑n

i=1 pi
∏

j ̸=i(ζ − ζj). We see that the leading

term of P2(ζ) is[
degP −

n∑
i=1

pi

]
ζdegP+n−1 =

[
n∑

i=1

(pi + 1)− (l + 1)

]
ζ
∑n

i=1(2pi+2)−(l+2). (2.49)

If
∑n

i=1(pi +1)− (l+1) ̸= 0, then
∑n

i=1(2pi +2)− (l+2) ̸= l. Hence comparing with

(2.48) and (2.38), it is a contradiction.

If
∑n

i=1(pi +1)− (l+1) = 0, then
∑n

i=1(2pi +2)− (l+2) = l. Hence comparing with

(2.48) and (2.38), it is also a contradiction.

The lemma is proved.

3 Proof of Theorem 1.1

In this section, we first prove the following theorem.

Theorem 3.1 Let {fn} be a sequence of meromorphic functions on D whose zeros have

multiplicity at least k, where k is a positive integer. Let {an} and {hn} be two sequences

of meromorphic functions on D such that an(z)
χ−−→ a(z) and hn(z)

χ−−→ h(z) on D, where

a(z) ̸= 0,∞, h(z) ̸= 0,∞ on D, and let l ∈ Z be an integer such that 2l < k. Then the

family {fn} is normal on D provided that fn(z)f
(k)
n (z) = an(z) ⇔ f

(k)
n (z) = z−lhn(z) for

every fn ∈ {fn}.

Proof. Suppose that {fn} is not normal at some point z0 ∈ D. Then by Lemma

2.1, there exist points zn → z0, a subsequence of {fn} (we still denote {fn}) and positive

numbers ρn → 0, such that

gn(ζ) = ρ
− k

2
n fn(zn + ρnζ)

χ−−→ g(ζ) (3.1)
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on D, where g a nonconstant meromorphic function with bounded spherical derivative

(and hence of order at most two), all of whose zeros are of multiplicity at least k. We

denote a0 = a(z0)( ̸= 0,∞).

Case 1. l ≤ 0, or l > 0 with z0 ̸= 0.

We claim that (i) gg(k) ̸≡ a0, and (ii) g(k) ̸≡ 0.

In fact, if gg(k) ≡ a0, then g is a nonconstant entire function (and hence of exponential

type) and g ̸= 0. Hence g(ζ) = ecζ+d, where c(̸= 0), d ∈ C. But then g(ζ)g(k)(ζ) =

cke2cζ+2d ̸≡ a0 , a contradiction. Similarly, if g(k) ≡ 0, then g is a nonconstant polynomial

of degree less than k. This contradicts that all zeros of g have multiplicity at least k.

We further claim that (iii) gg(k) ̸= a0, and (iv) g(k) ̸= 0.

To prove (iii), suppose that g(ζ0)g
(k)(ζ0) = a0 for some ζ0 ∈ C. Then g is holomorphic

on some close neighborhood U of ζ0, and hence gn(ζ)g
(k)
n (ζ)−an(zn+ρnζ) → g(ζ)g(k)(ζ)−

a0 on U uniformly. Since gg(k) ̸≡ a0, by Hurwitz’s theorem, there exist points ζn → ζ0

such that (for n sufficiently large)

an(zn + ρnζn) = gn(ζn)g
(k)(ζn) = fn(zn + ρnζn)f

(k)
n (zn + ρnζn). (3.2)

Hence by the condition, f
(k)
n (zn + ρnζn) = (zn + ρnζn)

−lhn(zn + ρnζn), so that g
(k)
n (ζn) =

ρ
k
2
n f

(k)
n (zn + ρnζn) = ρ

k
2
n (zn + ρnζn)

−lhn(zn + ρnζn). Thus g
(k)(ζ0) = limn→∞ g(k)(ζn) = 0,

which contradicts that g(ζ0)g
(k)(ζ0) = a0 ̸= 0. This proves (iii).

Next we prove (iv). Suppose that g(k)(ζ0) = 0 for some ζ0 ∈ C. Then g is holomorphic

on some close neighborhood U of ζ0, and hence g
(k)
n (ζ)− ρ

k
2
n (zn + ρnζn)

−lhn(zn + ρnζ) →

g(k)(ζ) on U uniformly. Since g(k)(ζ) ̸≡ 0, by Hurwitz’s theorem, there exist points ζn → ζ0

such that (for n sufficiently large)

g(k)n (ζn)− ρ
k
2
n (zn + ρnζn)

−lhn(zn + ρnζn) = 0.

It follows that f
(k)
n (zn + ρnζn) = (zn + ρnζn)

−lhn(zn + ρnζn), and hence by the condition,

we have

an(zn + ρnζn) = fn(zn + ρnζn)f
(k)
n (zn + ρnζn) = gn(ζn)g

(k)
n (ζn). (3.3)

This leads to a contradiction that

a0 = a(z0) = lim
n→∞

gn(ζn)g
(k)
n (ζn) = g(ζ0)g

(k)(ζ0) = 0. (3.4)

(iv) is also proved.

12



However, by Lemma 2.2, there is no nonconstant meromorphic function g on C with

the properties (iii) and (iv) such that all zeros have multiplicity at least k.

Case 2. l ≥ 1 and z0 = 0. Then we have k > 2 for the condition 2l < k. In this part,

we consider two cases.

Case 2.1. Suppose that zn
ρn

→ ∞. Let

Gn(ζ) = z
− k

2
n fn(zn + znζ). (3.5)

Then we see that

Gn(ζ)G
(k)
n (ζ) = an(zn + znζ) ⇐⇒ G(k)

n (ζ) = z
k
2
−l

n (1 + ζ)−lhn(zn + znζ). (3.6)

By Case 1, we see that {Gn} is normal on ∆(0, 1). Say Gn
χ−−→ G on ∆(0, 1). We claim

that G(0) = 0 and hence G ̸≡ ∞. Suppose G(0) ̸= 0, then by zn
ρn

→ ∞, we have

gn(ζ) = ρ
− k

2
n fn(zn + ρnζ) =

(
zn
ρn

) k
2

Gn

(
ρn
zn

ζ

)
χ−−→ ∞ (3.7)

on C. This is a contradiction. Hence G(0) = 0, so that G
(k)
n → G(k) in some neighborhood

of 0. It follows that

g(k)n (ζ) =

(
ρn
zn

) k
2

G(k)
n

(
ρn
zn

ζ

)
χ−−→ 0 (3.8)

on C. Thus g(k) ≡ 0, which contradicts that all zeros of g have multiplicity at least k and

g is nonconstant.

Case 2.2. So we may assume that zn
ρn

→ c, a finite complex number. Then we have

Hn(ζ) = ρ
− k

2
n fn(ρnζ) = gn

(
ζ − zn

ρn

)
χ−−→ g(ζ − c) := H(ζ) (3.9)

on C, and all zeros of H(ζ) have multiplicity at least k. And since g is nonconstant, we

see that H is also nonconstant. We see from the condition that

Hn(ζ)H
(k)
n (ζ) = an(ρnζ) ⇐⇒ H(k)

n (ζ) = ρ
k
2
−l

n ζ−lhn(ρnζ). (3.10)

We claim that (i) HH(k) ̸≡ a0 and (ii) H(k) ̸≡ 0.

If HH(k) ≡ a0, then H is a zero-free entire function of finite order and H is not a

polynomial. Thus H(ζ) = eQ(ζ), where Q is a nonconstant polynomial, then H(k)(ζ) =

P (ζ)eQ(ζ), where P is a polynomial. It follows that H(ζ)H(k)(ζ) = P (ζ)e2Q(ζ) ̸≡ a0, which

13



is a contradiction. So HH(k) ̸≡ a(0). If H(k) ≡ 0, H would be a polynomial of degree less

than k. Since H is nonconstant, H has at least one zero. The multiplicity of the zero can

not be larger than the degree of the polynomial H. This contradicts that all zeros of H

have multiplicity at least k.

We further claim that (iii) HH(k) ̸= a0 on C \ {0}, and (iv) H(k) ̸= 0 on C \ {0}.

Suppose that H(ζ0)H
(k)(ζ0) = a0 at some point ζ0 ̸= 0. Then H(ζ0) ̸= ∞, and hence

H is holomorphic on some close neighborhood U of ζ0. Thus

Hn(ζ)H
(k)
n (ζ)− an(ρnζ) → H(ζ)H(k)(ζ)− a0, (3.11)

on U uniformly. SinceH(ζ)H(k)(ζ) ̸≡ a0, by Hurwitz’s theorem, there exist points ζn, ζn →

ζ0, such that (for n sufficiently large)

Hn(ζn)H
(k)
n (ζn)− an(ρnζn) = 0. (3.12)

By (3.10), we have H
(k)
n (ζn) = ρ

k
2
−l

n ζ−l
n hn(ρnζn) and hence

H(k)(ζ0) = lim
n→∞

H(k)
n (ζn) = lim

n→∞
ρ

k
2
−l

n ζ−l
n hn(ρnζn) = 0, (3.13)

which contradicts that H(ζ0)H
(k)(ζ0) = a0 ̸= 0. The claim (iii) is proved.

Next we suppose that H(k)(ζ0) = 0 at some point ζ0 ̸= 0. Then H(ζ0) ̸= ∞, so that

H is holomorphic on some close neighborhood U of ζ0, and hence

H(k)
n (ζ)− ρ

k
2
−l

n ζ−lhn(ρnζ) → H(k)(ζ) (3.14)

on U uniformly. Since H(k)(ζ) ̸≡ 0, by Hurwitz’s theorem, there exist points ζn, ζn → ζ0,

such that (for n sufficiently large)

H(k)(ζn)− ρ
k
2
−l

n ζ−l
n hn(ρnζn) = 0. (3.15)

Then by (3.10), we have Hn(ζn)H
(k)
n (ζn) = an(ρnζn), and hence

H(ζ0)H
(k)(ζ0) = lim

n→∞
Hn(ζn)H

(k)
n (ζn) = lim

n→∞
an(ρnζn) = a0. (3.16)

This contradicts the claim (iii). The claim (iv) is also proved.

Thus, by Lemma 2.3 with m = 0, H(ζ) = Cζ
k
2 . This contradicts that all zeros of H

have multiplicity at least k.

Hence F is normal on D. The proof is completed. 2
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Proof of Theorem 1.1. By the proof of Theorem 3.1, we have showed that F is

normal on D \ a−1(0)
∪

a−1(∞), where a−1(0) stands for the set of zeros of a and a−1(∞)

stands for the set of poles of a. Next, we prove that F is also normal at every zero or pole

of a in D.

Suppose that F is not normal at z0 ∈ D, where z0 is a zero or a pole of a. Without

loss of generality, we may say z0 = 0 and assume that a(z) = zmh(z) and b(z) = z−lb1(z),

where m, l ∈ Z, h(z) and b1(z) are holomorphic and zero-free on ∆(0, δ) ⊂ D. We assume

that h(0) = 1. We note by the condition that −k ≤ m ≤ k − 1,m ̸= 0 and l < k−m
2 if

l > 0. In particular, 0 ≤ m+k
2 < k.

Then by Lemma 2.1, there exist points zn → 0, functions fn ∈ F and positive numbers

ρn → 0 such that

gn(ζ) = ρ
−m+k

2
n fn(zn + ρnζ)

χ−−→ g(ζ) (3.17)

on C, where g is a nonconstant meromorphic function of finite order, and all zeros of g

have multiplicity at least k.

Case 1. Suppose that zn
ρn

→ ∞. Let

Gn(ζ) = z
−m+k

2
n fn(zn + znζ). (3.18)

Then by the condition f(z)f (k)(z) = a(z) ⇔ f (k)(z) = b(z), we have

Gn(ζ)G
(k)
n (ζ) = (1 + ζ)mh(zn + znζ) ⇐⇒ G(k)

n (ζ) = z
k−m

2
−l

n (1 + ζ)−lb1(zn + znζ). (3.19)

Since zn → 0 and h(0), b1(0) ̸= 0,∞, by Theorem 3.1, we see that {Gn} is normal on

∆(0, 1). Say Gn
χ−−→ G on ∆(0, 1). We claim that G(0) = 0 and hence G ̸≡ ∞. Suppose

G(0) ̸= 0, then by zn
ρn

→ ∞, we have

gn(ζ) = ρ
−m+k

2
n fn(zn + ρnζ) =

(
zn
ρn

)m+k
2

Gn

(
ρn
zn

ζ

)
χ−−→

 ∞, m+ k > 0,

G(0), m+ k = 0
(3.20)

on C. This is a contradiction. Hence G(0) = 0, so that G
(k)
n → G(k) in some neighborhood

of 0. It follows that

g(k)n (ζ) =

(
ρn
zn

) k−m
2

G(k)
n

(
ρn
zn

ζ

)
χ−−→ 0 (3.21)

on C. Thus g(k) ≡ 0, which contradicts that all zeros of g have multiplicity at least k and

g is nonconstant.
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Case 2. So we may assume that zn
ρn

→ c, a finite complex number. Then we have

Hn(ζ) = ρ
−m+k

2
n fn(ρnζ) = gn

(
ζ − zn

ρn

)
χ−−→ g(ζ − c) := H(ζ) (3.22)

on C, and all zeros of H(ζ) have multiplicity at least k. And since g is nonconstant, we

see that H is also nonconstant. We see from the condition that

Hn(ζ)H
(k)
n (ζ) = ζmh(ρnζ) ⇐⇒ H(k)

n (ζ) = ρ
k−m

2
−l

n ζ−lb1(ρnζ). (3.23)

We claim that (i) H(ζ)H(k)(ζ) ̸≡ ζm and (ii) H(k)(ζ) ̸≡ 0.

In fact, if H(ζ)H(k)(ζ) ≡ ζm, then ζ = 0 is the only possible zero or pole of H. If H is

a transcendental function, then H(ζ) = ζαeQ(ζ) for some α ∈ Z and polynomial Q. Thus

H(k)(ζ) = P (ζ)eQ(ζ), where P (ζ)( ̸≡ 0) is a rational function. It follows that HH(k) is also

a transcendental function, which is a contradiction. If H is a rational function and ζ = 0

is a pole of H, then ζ = 0 is the pole of HH(k) with multiplicity at least k + 2, which

contradicts H(ζ)H(k)(ζ) ≡ ζm,−k ≤ m ≤ k − 1. If H is a rational function and ζ = 0 is

not a pole of H, then H is a polynomial. If degH ≥ k, then deg(HH(k)) ≥ k. Otherwise,

HH(k) ≡ 0. Both cases contradicts that H(ζ)H(k)(ζ) ≡ ζm. So H(ζ)H(k)(ζ) ̸≡ ζm.

If H(k) ≡ 0, H would be a polynomial of degree less than k. Since H is nonconstant,

H has at least one zero. The multiplicity of the zero can not be larger than the degree of

the polynomial H. This contradicts that all zeros of H have multiplicity at least k.

We further claim that (iii) H(ζ)H(k)(ζ) ̸= ζm on C \ {0}, and (iv) H(k)(ζ) ̸= 0 on

C \ {0}.

Suppose that H(ζ0)H
(k)(ζ0) = ζm0 , ζ0 ̸= 0. Then H(ζ0) ̸= ∞. H is holomorphic on

some close neighborhood U of ζ0, and hence

Hn(ζ)H
(k)
n (ζ)− ζmh(ρnζ) → H(ζ)H(k)(ζ)− ζm, (3.24)

on U uniformly. Since H(ζ)H(k)(ζ) ̸≡ ζm, by Hurwitz’s theorem, there exist points

ζn, ζn → ζ0, such that (for n sufficiently large)

Hn(ζn)H
(k)
n (ζn)− ζmn h(ρnζn) = 0.

By (3.23), we have

H(k)
n (ρnζn) = ρ

k−m
2

−l
n ζ−l

n b1(ρnζn). (3.25)
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By the condition k−m
2 − l > 0 and ζn → ζ0 ̸= 0, we have

H(k)(ζ0) = lim
n→∞

H(k)
n (ζn) = lim

n→∞
ρ

k−m
2

−l
n ζ−l

n b1(ρnζn) = 0, (3.26)

which contradicts that H(ζ0)H
(k)(ζ0) = ζm0 ̸= 0. Then (iii) is proved.

Next we suppose that H(k)(ζ0) = 0, ζ0 ̸= 0. Thus H(ζ0) ̸= ∞. H is holomorphic on

some close neighborhood U of ζ0, and hence

H(k)
n (ζ)− ρ

k−m
2

−l
n ζ−lb1(ρζ) → H(k)(ζ), (3.27)

on U uniformly. Since H(k)(ζ) ̸≡ 0, by Hurwitz’s theorem, there exist points ζn, ζn → ζ0,

such that (for n sufficiently large )

H(k)(ζn)− ρ
k−m

2
−l

n ζ−l
n b1(ρζn) = 0. (3.28)

Then we have Hn(ζn)H
(k)
n (ζn) = ζmn h(ρnζn), thus

H(ζ0)H
(k)(ζ0) = lim

n→∞
Hn(ζn)H

(k)
n (ζn) = lim

n→∞
ζmn h(ρnζn) = ζm0 . (3.29)

This contradicts to claim (iii). So (iv) is proved.

If k ≥ 2, then by Lemma 2.5 and claims (iii) and (iv), we get m ≥ k or m ≤ −(k+2),

wih are ruled out by the assumption.

If k = 1, then m = −1. By Lemma 2.6, there is no meromorphic function satisfying

claims (iii) and (iv).

The proof of Theorem 1.1 is completed.
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