FILTER REGULAR SEQUENCES AND GENERALIZED LOCAL COHOMOLOGY MODULES

ALI FATHI, ABOLFAZL TEHRANIAN, AND HOSSEIN ZAKERI

ABSTRACT. Let \mathfrak{a} , \mathfrak{b} be ideals of a commutative Noetherian ring R and let M, N be finite R-modules. The concept of an \mathfrak{a} -filter grade of \mathfrak{b} on M is introduced and several characterizations and properties of this notion are given. Then, using the above characterizations, we obtain some results on generalized local cohomology modules $\mathrm{H}^{i}_{\mathfrak{a}}(M,N)$. In particular, first we determine the least integer i for which $\mathrm{H}^{i}_{\mathfrak{a}}(M,N)$ is not Artinian. Then we prove that $\mathrm{H}^{i}_{\mathfrak{a}}(M,N)$ is Artinian for all $i \in \mathbb{N}_{0}$ if and only if $\dim R/(\mathfrak{a} + \operatorname{Ann} M + \operatorname{Ann} N) = 0$. Also, we establish the Nagel-Schenzel formula for generalized local cohomology modules. Finally, in a certain case, the set of attached primes of $\mathrm{H}^{i}_{\mathfrak{a}}(M,N)$ is given.

1. INTRODUCTION

Throughout this paper, R is a commutative Noetherian ring with nonzero identity, \mathfrak{a} , \mathfrak{b} are ideals of R and M, N, L are finite R-modules. We will use \mathbb{N} (respectively \mathbb{N}_0) to denote the set of positive (respectively non-negative) integers.

The theory of local cohomology, which was introduced by Grothendieck, is a useful tool for attacking problems in commutative algebra and algebraic geometry. The reader is referred to [6] for basic facts concerning local cohomology modules. It is an interesting problem [12, third problem] to determine if a given local cohomology module is Artinian. In recent years there have appeared many papers in this area (see [2, 23, 28], for example). In this paper, among other things, we provide some results on Artinianness of local cohomology modules and, furthermore, we identify the least integer i such that the i-th local cohomology module is not Artinian.

Indeed, in this paper, we consider the concept of generalized local cohomology functor which was first introduced, in the local case, by Herzog [11] and, in the general case, by Bijan-Zadeh [4]. The *i*-th generalized local cohomology functor $H^i_{\mathfrak{a}}(\cdot, \cdot)$ is defined by

$$\mathrm{H}^{i}_{\mathfrak{a}}(X,Y) = \varinjlim_{n} \mathrm{Ext}^{i}_{R}(X/\mathfrak{a}^{n}X,Y)$$

for all *R*-modules X, Y and $i \in \mathbb{N}_0$. Clearly, this notion is a natural generalization of the ordinary local cohomology functor.

There is a lot of current interest in the theory of filter regular sequences in commutative algebra; and, in recent years, there have appeared many papers concerned with the role of these sequences in the theory of local cohomology. In particular case, when one works on a local ring, the concept of a filter regular sequence has

²⁰¹⁰ Mathematics Subject Classification. 13D45, 13E10.

Key words and phrases. generalized local cohomology module, filter regular sequence, Nagel-Schenzel formula, Artinianness, Attached prime.

been studied in [26, 29] and has led to some interesting results. We will denote the supremum of all numbers $n \in \mathbb{N}_0$ for which there exists an \mathfrak{a} -filter regular Msequence of length n in \mathfrak{b} by f-grad($\mathfrak{a}, \mathfrak{b}, M$). In a local ring (R, \mathfrak{m}) , f-grad($\mathfrak{m}, \mathfrak{a}, M$) is known as f-depth(\mathfrak{a}, M). Lü and Tang [15] proved that

f-depth(\mathfrak{a}, M) = inf{ $i \in \mathbb{N}_0$ | dim Ext $^i_B(R/\mathfrak{a}, M) > 0$ }

and that f-depth(\mathfrak{a}, M) is the least integer *i* such that $\mathrm{H}^{i}_{\mathfrak{a}}(M)$ is not Artinian. As a theorem, we generalize their results and characterize f-grad($\mathfrak{a}, \mathfrak{b}, M$) to non local cases as follows.

$$\begin{aligned} \text{f-grad}(\mathfrak{a},\mathfrak{b},M) &= \inf\{i \in \mathbb{N}_0 | \text{ Supp } \text{Ext}_R^i(R/\mathfrak{b},M) \nsubseteq V(\mathfrak{a}) \} \\ &= \inf\{i \in \mathbb{N}_0 | \text{ Supp } \text{H}_{\mathfrak{b}}^i(M) \nsubseteq V(\mathfrak{a}) \}, \\ \text{f-grad}(\mathfrak{a},\mathfrak{b} + \text{Ann } N,M) &= \inf\{i \in \mathbb{N}_0 | \text{ Supp } \text{H}_{\mathfrak{b}}^i(N,M) \nsubseteq V(\mathfrak{a}) \}, \end{aligned}$$

and

$$\sup_{A \in \mathcal{M}} \operatorname{f-grad}(\bigcap_{\mathfrak{m} \in A} \mathfrak{m}, \mathfrak{a} + \operatorname{Ann} M, N)$$

$$= \inf\{i \in \mathbb{N}_0 | \operatorname{H}^i_{\mathfrak{a}}(M, N) \text{ is not Artinian}\}$$

$$= \inf\{i \in \mathbb{N}_0 | \operatorname{Supp} \operatorname{H}^i_{\mathfrak{a}}(M, N) \nsubseteq \operatorname{max}(R)\}$$

$$= \inf\{i \in \mathbb{N}_0 | \operatorname{Supp} \operatorname{H}^i_{\mathfrak{a}}(M, N) \nsubseteq A \text{ for all } A \in \mathcal{M}\}$$

$$= \inf\{i \in \mathbb{N}_0 | \operatorname{dim} \operatorname{Ext}^i_B(M/\mathfrak{a} M, N) > 0\},$$

where \mathcal{M} is the set of all finite subsets of $\max(R)$.

As an application of this theorem, we show that, if $n \in \mathbb{N}$, then $\mathrm{H}^{i}_{\mathfrak{a}}(M, N)$ is Artinian for all i < n if and only if $\mathrm{H}^{i}_{\mathfrak{a}R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$ is Artinian for all i < n and all prime ideals \mathfrak{p} . Also, we prove that $\mathrm{H}^{i}_{\mathfrak{a}}(M, N)$ is an Artinian *R*-module for all $i \in \mathbb{N}_{0}$ if and only if $\dim R/(\mathfrak{a} + \operatorname{Ann} M + \operatorname{Ann} N) = 0$. In particular, $\operatorname{Ext}^{i}_{R}(M, N)$ has finite length for all $i \in \mathbb{N}_{0}$ if and only if $\dim R/(\operatorname{Ann} M + \operatorname{Ann} N) = 0$.

Let x_1, \ldots, x_n be an \mathfrak{a} -filter regular N-sequence in \mathfrak{a} . Then the formula

$$\mathbf{H}_{\mathfrak{a}}^{i}(N) = \begin{cases} \mathbf{H}_{(x_{1},...,x_{n})}^{i}(N) & \text{if } i < n \,, \\ \mathbf{H}_{\mathfrak{a}}^{i-n}(\mathbf{H}_{(x_{1},...,x_{n})}^{n}(N)) & \text{if } i \geq n \,, \end{cases}$$

is known as Nagel-Schenzel formula (see [22] and [13]). We generalize the above formula for the generalized local cohomology modules. Indeed, we prove that:

(i) $\operatorname{H}^{i}_{\mathfrak{a}}(M, N) \cong \operatorname{H}^{i}_{(x_1, \dots, x_n)}(M, N)$ for all i < n;

(ii) if $\operatorname{proj} \dim M = d$ and L is projective, then

$$\mathrm{H}^{i+n}_{\mathfrak{a}}(M \otimes_{R} L, N) \cong \mathrm{H}^{i}_{\mathfrak{a}}(M, \mathrm{H}^{n}_{(x_{1}, \dots, x_{n})}(L, N))$$

for all $i \geq d$.

Assume that $\overline{R} = R/(\mathfrak{a} + \operatorname{Ann} M + \operatorname{Ann} N)$ and that the ideal \mathfrak{r} is the inverse image of the Jacobson radical of \overline{R} in R. If \overline{R} is semi local, then, by using the isomorphisms described in (i) and Theorem 4.2, we prove that

$$f\operatorname{-grad}(\mathfrak{r},\mathfrak{a} + \operatorname{Ann} M, N) = \inf\{i \in \mathbb{N}_0 | \operatorname{H}^i_{\mathfrak{a}}(M, N) \text{ is not Artinian}\} \\ = \inf\{i \in \mathbb{N}_0 | \operatorname{H}^i_{\mathfrak{a}}(M, N) \ncong \operatorname{H}^i_{\mathfrak{r}}(M, N)\}.$$

Let (R, \mathfrak{m}) be a local ring and dim N = n. Macdonald and Sharp [17, Theorem 2.2] show that

$$\operatorname{Att} \operatorname{H}^{n}_{\mathfrak{m}}(N) = \{ \mathfrak{p} \in \operatorname{Ass} N | \dim R / \mathfrak{p} = n \}$$

As an extension of this result, Dibaei and Yassemi [9, Theorem A] proved

$$\operatorname{Att} \operatorname{H}^{n}_{\mathfrak{a}}(N) = \{ \mathfrak{p} \in \operatorname{Ass} N | \operatorname{cd}_{\mathfrak{a}}(R/\mathfrak{p}) = n \},\$$

where $\operatorname{cd}_{\mathfrak{a}}(M)$ is the greatest integer *i* such that $\operatorname{H}^{i}_{\mathfrak{a}}(M) \neq 0$. Finally, if $d = \operatorname{projdim} M < \infty$, then Gu and Chu [10, Theorem 2.3] proved that $\operatorname{H}^{n+d}_{\mathfrak{a}}(M, N)$ is Artinian and

Att
$$\operatorname{H}^{n+d}_{\mathfrak{a}}(M, N) = \{\mathfrak{p} \in \operatorname{Ass} N | \operatorname{cd}_{\mathfrak{a}}(M, R/\mathfrak{p}) = n + d\},\$$

where, for an *R*-module *Y*, $\operatorname{cd}_{\mathfrak{a}}(M, Y)$ is the greatest integer *i* such that $\operatorname{H}^{i}_{\mathfrak{a}}(M, Y) \neq 0$. Notice that $\operatorname{cd}_{\mathfrak{a}}(M, N) \leq d + n$ [4, Lemma 5.1]. We prove the above result in general case where *R* is not necessarily local. As a corollary we deduce that $\operatorname{Att} \operatorname{H}^{n+d}_{\mathfrak{a}}(M, N) \subseteq \operatorname{Att} \operatorname{H}^{n}_{\mathfrak{a}}(N)$. Also, we give an example to show that this inclusion may be strict. Indeed, our example not only show that the Theorem 2.1 of [19] is not true, but it also rejects all of the following conclusions in [19].

Finally, Let proj dim $M = d < \infty$ and dim $N = n < \infty$ and $\mathfrak{b} = Ann \operatorname{H}^{n}_{\mathfrak{a}}(N)$. We prove that, if R/\mathfrak{b} is a complete semilocal ring, then

Att
$$\operatorname{H}^{n+d}_{\mathfrak{a}}(M, N) = \operatorname{Supp} \operatorname{Ext}^{d}_{B}(M, R) \cap \operatorname{Att} \operatorname{H}^{n}_{\mathfrak{a}}(N).$$

In particular, if in addition, $\operatorname{proj} \dim_{R_p} M_p = \operatorname{proj} \dim M$ for all $p \in \operatorname{Supp} M$, then

$$\operatorname{Att} \operatorname{H}^{n+d}_{\mathfrak{a}}(M, N) = \operatorname{Supp} M \cap \operatorname{Att} \operatorname{H}^{n}_{\mathfrak{a}}(N).$$

2. Filter regular sequences

We say that a sequence x_1, \ldots, x_n of elements of R is an \mathfrak{a} -filter regular M-sequence, if $x_i \notin \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass} M/(x_1, \ldots, x_{i-1})M \setminus V(\mathfrak{a})$ and for all $i = 1, \ldots, n$. In addition, if x_1, \ldots, x_n belong to \mathfrak{b} , then we say that x_1, \ldots, x_n is an \mathfrak{a} -filter regular M-sequence in \mathfrak{b} . Note that x_1, \ldots, x_n is an R-filter regular M-sequence if and only if it is a weak M-sequence in the sense of [7, Definition 1.1.1].

Some parts of the next elementary proposition are included in [22, Proposition 2.2] in the case where (R, \mathfrak{m}) is local and $\mathfrak{a} = \mathfrak{m}$.

Proposition 2.1. Let x_1, \ldots, x_n be a sequence of elements of R and $n \in \mathbb{N}$. Then the following statements are equivalent.

- (i) x_1, \ldots, x_n is an \mathfrak{a} -filter regular M-sequence.
- (ii) $\text{Supp}((x_1, \dots, x_{i-1})M :_M x_i)/(x_1, \dots, x_{i-1})M \subseteq V(\mathfrak{a}) \text{ for all } i = 1, \dots, n.$
- (iii) $x_1/1, \ldots, x_n/1$ is a weak $M_{\mathfrak{p}}$ -sequence for all $\mathfrak{p} \in \operatorname{Supp} M \setminus V(\mathfrak{a})$.
- (iv) $x_1^{\alpha_1}, \ldots, x_n^{\alpha_n}$ is an \mathfrak{a} -filter regular *M*-sequence for all positive integers $\alpha_1, \ldots, \alpha_n$.
- (v) x_i is a weak $(M/(x_1, \ldots, x_{i-1})M)/\Gamma_{\mathfrak{a}}(M/(x_1, \ldots, x_{i-1})M)$ -sequence for all $i = 1, \ldots, n$.
- (vi) $(x_1, \ldots, x_{i-1})M :_M x_i \subseteq (x_1, \ldots, x_{i-1})M :_M \langle \mathfrak{a} \rangle$ for all $i = 1, \ldots, n$, where $N :_M \langle \mathfrak{a} \rangle = \{x \in M | \mathfrak{a}^m x \subseteq N \text{ for some } m \in \mathbb{N}\}$ for any submodule N of M.

It is clear from definition, that, for a given $n \in \mathbb{N}$, one can find an \mathfrak{a} -filter regular M-sequence of length n. The following theorem characterizes the existence of an \mathfrak{a} -filter regular M-sequence of length n in \mathfrak{b} .

Theorem 2.2. Let $n \in \mathbb{N}$. Then the following statements are equivalent.

- (i) \mathfrak{b} contains an \mathfrak{a} -filter regular M-sequence of length n.
- (ii) Any a-filter regular M-sequence in b of length less than n can be extended to an a-filter regular M-sequence of length n in b.
- (iii) Supp $\operatorname{Ext}_{R}^{i}(R/\mathfrak{b}, M) \subseteq V(\mathfrak{a})$ for all i < n.
- (iv) If Supp $N = V(\mathfrak{b})$, then Supp $\operatorname{Ext}_{R}^{i}(N, M) \subseteq V(\mathfrak{a})$ for all i < n.
- (v) Supp $\mathrm{H}^{i}_{\mathfrak{h}}(M) \subseteq V(\mathfrak{a})$ for all i < n.
- (vi) If Ann $N \subseteq \mathfrak{b}$, then Supp $\mathrm{H}^{i}_{\mathfrak{b}}(N, M) \subseteq V(\mathfrak{a})$ for all i < n.

Proof. The implications (ii) \Rightarrow (i), (iv) \Rightarrow (iii) and (vi) \Rightarrow (v) are clear.

(i) \Rightarrow (ii). Assume the contrary that x_1, \ldots, x_t is an \mathfrak{a} -filter regular M-sequence in \mathfrak{b} such that t < n and that it can not be extended to an \mathfrak{a} -filter regular M-sequence of length n in \mathfrak{b} . Then $\mathfrak{b} \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Ass} M/(x_1, \ldots, x_t)M \setminus V(\mathfrak{a})$. So that $\mathfrak{b}R_{\mathfrak{p}} \subseteq \mathfrak{p}R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}} M_{\mathfrak{p}}/(x_1/1, \ldots, x_t/1)M_{\mathfrak{p}}$. It follows that $x_1/1, \ldots, x_t/1$ is a maximal $M_{\mathfrak{p}}$ -sequence in $\mathfrak{b}R_{\mathfrak{p}}$, which is a contradiction in view of the hypothesis, Proposition 2.1 and [7, Theorem 1.2.5].

(i) \Rightarrow (iv) Suppose that x_1, \ldots, x_n is an \mathfrak{a} -filter regular M-sequence in \mathfrak{b} . Let $t \in \mathbb{N}$ be such that $x_i^t \in \operatorname{Ann} N$ for all $i = 1, \ldots, n$. By Proposition 2.1, for any $\mathfrak{p} \in \operatorname{Supp} M \setminus V(\mathfrak{a}), x_1^t/1, \ldots, x_n^t/1$ is a weak $M_{\mathfrak{p}}$ -sequence in $\operatorname{Ann}_{R_{\mathfrak{p}}} N_{\mathfrak{p}}$. So that, for all i < n, we have $\operatorname{Ext}_{R_{\mathfrak{p}}}^i(N_{\mathfrak{p}}, M_{\mathfrak{p}}) = 0$. Therefore (iv) holds.

(i) \Rightarrow (vi) Suppose that x_1, \ldots, x_n is an \mathfrak{a} -filter regular M-sequence in \mathfrak{b} . For any $\mathfrak{p} \in \operatorname{Supp} M \setminus V(\mathfrak{a}), x_1/1, \ldots, x_n/1$ is a weak $M_{\mathfrak{p}}$ -sequence in $\mathfrak{b}R_{\mathfrak{p}}$. So that, by [4, Proposition 5.5], $\operatorname{H}^i_{\mathfrak{b}R_{\mathfrak{p}}}(N_{\mathfrak{p}}, M_{\mathfrak{p}}) = 0$ for all i < n. This proves the implication (i) \Rightarrow (vi).

Next we prove the implications (iii) \Rightarrow (i) and (v) \Rightarrow (i) by induction on n. Let n = 1. In either cases Supp Hom_R($R/\mathfrak{b}, M) \subseteq V(\mathfrak{a})$. Therefore (i) holds. Suppose that, for all $i \in \mathbb{N}_0$, $T^i(\cdot)$ is either $\operatorname{Ext}_R^i(R/\mathfrak{b}, \cdot)$ or $\operatorname{H}^i_{\mathfrak{b}}(\cdot)$. Assume that n > 1 and Supp $T^i(M) \subseteq V(\mathfrak{a})$ for all i < n. Then \mathfrak{b} contains an \mathfrak{a} -filter regular M-sequence, say x_1 . The exact sequences

$$0 \longrightarrow 0 :_M x_1 \longrightarrow M \xrightarrow{x_1} x_1 M \longrightarrow 0$$

and

$$0 \longrightarrow x_1 M \longrightarrow M \longrightarrow M/x_1 M \longrightarrow 0$$

induce the long exact sequences

$$\cdots \longrightarrow T^{i}(0:_{M} x_{1}) \longrightarrow T^{i}(M) \longrightarrow T^{i}(x_{1}M) \longrightarrow T^{i+1}(0:_{M} x_{1}) \longrightarrow \cdots$$

and

$$\cdots \longrightarrow T^{i}(x_{1}M) \longrightarrow T^{i}(M) \longrightarrow T^{i}(M/x_{1}M) \longrightarrow T^{i+1}(x_{1}M) \longrightarrow \cdots$$

Since $\operatorname{Supp} 0:_M x_1 \subseteq V(\mathfrak{a})$, by Proposition 2.1, it follows that $\operatorname{Supp} T^i(0:_M x_1) \subseteq V(\mathfrak{a})$ for all $i \in \mathbb{N}_0$. Therefore, using the above long exact sequences, we have $\operatorname{Supp} T^i(M/x_1M) \subseteq V(\mathfrak{a})$ for all i < n-1. Hence, by inductive hypothesis, \mathfrak{b} contains an \mathfrak{a} -filter regular M/x_1M -sequence of length n-1 such as x_2, \ldots, x_n . This completes the inductive step, since x_1, \ldots, x_n is an \mathfrak{a} -filter regular M-sequence in \mathfrak{b} .

Remark 2.3. One may use Theorem 2.2 (iii) \Rightarrow (ii) and Proposition 2.1 to see that Supp $M/\mathfrak{b}M \subseteq V(\mathfrak{a})$ if and only if, for each $n \in \mathbb{N}$, there exists an \mathfrak{a} -filter regular M-sequence of length n in \mathfrak{b} . Moreover, if Supp $M/\mathfrak{b}M \not\subseteq V(\mathfrak{a})$, then it follows from

Theorem 2.2 that any two maximal \mathfrak{a} -filter regular *M*-sequences in \mathfrak{b} have the same length. Therefore, we may give the following.

Definition 1. Let $\operatorname{Supp} M/\mathfrak{b}M \notin V(\mathfrak{a})$. Then the common length of all maximal \mathfrak{a} -filter regular *M*-sequences in \mathfrak{b} is denoted by f-grad($\mathfrak{a}, \mathfrak{b}, M$) and is called the \mathfrak{a} -filter grade of \mathfrak{b} on *M*. We set f-grad($\mathfrak{a}, \mathfrak{b}, M$) = ∞ whenever $\operatorname{Supp} M/\mathfrak{b}M \subseteq V(\mathfrak{a})$.

Let (R, \mathfrak{m}) be a local ring. Then the \mathfrak{m} -filter grade of \mathfrak{b} on M is called the filter depth of \mathfrak{b} on M and is denoted by f-depth (\mathfrak{b}, M) . Notice that, by Remark 2.3, f-depth $(\mathfrak{b}, M) < \infty$ if and only if $M/\mathfrak{b}M$ has finite length.

Remark 2.4. The following equalities follows immediately from Theorem 2.2.

f-grad(\mathfrak{a} , Ann N, M) = inf{ $i \in \mathbb{N}_0$ | Supp Ext $^i_R(N, M) \nsubseteq V(\mathfrak{a})$ },

$$\operatorname{f-grad}(\mathfrak{a},\mathfrak{b}+\operatorname{Ann} N,M)=\inf\{i\in\mathbb{N}_0|\operatorname{Supp}\operatorname{H}^i_{\mathfrak{b}}(N,M)\nsubseteq V(\mathfrak{a})\}.$$

In particular,

$$f\text{-}grad(\mathfrak{a},\mathfrak{b},M) = \inf\{i \in \mathbb{N}_0 | \text{ Supp Ext}_R^i(R/\mathfrak{b},M) \nsubseteq V(\mathfrak{a})\} \\ = \inf\{i \in \mathbb{N}_0 | \text{ Supp H}_{\mathfrak{b}}^i(M) \nsubseteq V(\mathfrak{a})\}.$$

Suppose in addition that (R, \mathfrak{m}) is local. Then

$$\begin{aligned} \text{f-depth}(\mathfrak{b}, M) &= \inf\{i \in \mathbb{N}_0 | \dim \operatorname{Ext}^i_R(R/\mathfrak{b}, M) > 0\} \\ &= \inf\{i \in \mathbb{N}_0 | \operatorname{Supp} \operatorname{H}^i_{\mathfrak{b}}(M) \nsubseteq \{\mathfrak{m}\} \}. \end{aligned}$$

3. A GENERALIZATION OF NAGEL-SCHENZEL FORMULA

Let x_1, \ldots, x_n be an \mathfrak{a} -filter regular *M*-sequence in \mathfrak{a} . Then, by [13, Proposition 1.2],

$$\mathbf{H}_{\mathfrak{a}}^{i}(M) = \begin{cases} \mathbf{H}_{(x_{1},...,x_{n})}^{i}(M) & \text{ if } i < n \,, \\ \mathbf{H}_{\mathfrak{a}}^{i-n}(\mathbf{H}_{(x_{1},...,x_{n})}^{n}(M)) & \text{ if } i \geq n \,. \end{cases}$$

This formula was first obtained by Nagel and Schenzel, in [22, Lemma 3.4], in the case where (R, \mathfrak{m}) is a local ring and $\mathfrak{a} = \mathfrak{m}$. Afterwards Khashyarmanesh, Yassi and Abbasi [14, Theorem 3.2] and Mafi [18, Lemma 2.8] generalized the second part of this formula for the generalized local cohomology modules as follows.

Suppose that M has finite projective dimension d and that x_1, \ldots, x_n is an \mathfrak{a} -filter regular N-sequence in \mathfrak{a} . Then

$$\mathrm{H}^{i+n}_{\mathfrak{a}}(M,N) \cong \mathrm{H}^{i}_{\mathfrak{a}}(M,\mathrm{H}^{n}_{(x_{1},\ldots,x_{n})}(N))$$

for all $i \geq d$.

The following theorem establishes the Nagel-Schenzel formula for the generalized local cohomology modules. The first part of the following theorem is needed in the proof of the Corollary 4.5.

Theorem 3.1. Let x_1, \ldots, x_n be an \mathfrak{a} -filter regular N-sequence in \mathfrak{a} . Then the following statements hold.

(i)
$$\operatorname{H}^{i}_{\mathfrak{a}}(M, N) \cong \operatorname{H}^{i}_{(x_{1}, \dots, x_{n})}(M, N)$$
 for all $i < n$.

(ii) If proj dim $M = d < \infty$ and L is projective, then

$$\mathrm{H}^{i+n}_{\mathfrak{a}}(M \otimes_{R} L, N) \cong \mathrm{H}^{i}_{\mathfrak{a}}(M, \mathrm{H}^{n}_{(x_{1}, \dots, x_{n})}(L, N))$$

for all $i \geq d$.

Proof. (i) Set $\mathbf{x} = x_1, \ldots, x_n$. Since $\Gamma_{\mathfrak{a}}(N) \subseteq \Gamma_{(\mathbf{x})}(N)$ we have a natural monomorphism $\varphi_{M,N} : \operatorname{H}^0_{\mathfrak{a}}(M,N) \to \operatorname{H}^0_{(\mathbf{x})}(M,N)$. Now, let $\mu_i(\mathfrak{p},N)$ be the *i*-th Bass number of N with respect to a prime ideal \mathfrak{p} and let $0 \longrightarrow E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} E^2 \longrightarrow \cdots$ be the minimal injective resolution of N. Then, by Proposition 2.1, $\mu_i(\mathfrak{p},N) = 0$ for all $\mathfrak{p} \in \operatorname{Supp} N \cap V(\mathbf{x}) \setminus V(\mathfrak{a})$ and all i < n. So

$$\Gamma_{\mathfrak{a}}(E^{i}) = \bigoplus_{\mathfrak{p}\in \text{Supp } N\cap V(\mathfrak{a})} E(R/\mathfrak{p})^{\mu_{i}(\mathfrak{p},N)}$$
$$= \bigoplus_{\mathfrak{p}\in \text{Supp } N\cap V(\boldsymbol{x})} E(R/\mathfrak{p})^{\mu_{i}(\mathfrak{p},N)} = \Gamma_{(\boldsymbol{x})}(E^{i})$$

for all i < n. Therefore φ_{M,E^i} is an isomorphism for all i < n. Now let i < n. Since $\varphi_{M,E^{i-1}}$ and φ_{M,E^i} are isomorphisms and $\varphi_{M,E^{i+1}}$ is a monomorphism, one can use the following commutative diagram

$$\begin{split} \mathrm{H}^{0}_{\mathfrak{a}}(M, E^{i-1}) & \longrightarrow \mathrm{H}^{0}_{\mathfrak{a}}(M, E^{i}) \longrightarrow \mathrm{H}^{0}_{\mathfrak{a}}(M, E^{i+1}) \\ & \bigvee \varphi_{M, E^{i-1}} & \bigvee \varphi_{M, E^{i}} & \bigvee \varphi_{M, E^{i+1}} \\ \mathrm{H}^{0}_{(\boldsymbol{x})}(M, E^{i-1}) & \longrightarrow \mathrm{H}^{0}_{(\boldsymbol{x})}(M, E^{i}) \longrightarrow \mathrm{H}^{0}_{(\boldsymbol{x})}(M, E^{i+1}) \end{split}$$

to see that the induced homomorphism

$$\bar{\varphi}_{M,E^{i}}: \mathrm{H}^{i}_{\mathfrak{a}}(M,N) = \frac{\ker \mathrm{H}^{0}_{\mathfrak{a}}(M,d^{i})}{\operatorname{im} \mathrm{H}^{0}_{\mathfrak{a}}(M,d^{i-1})} \to \frac{\ker \mathrm{H}^{0}_{(\boldsymbol{x})}(M,d^{i})}{\operatorname{im} \mathrm{H}^{0}_{(\boldsymbol{x})}(M,d^{i-1})} = \mathrm{H}^{i}_{(\boldsymbol{x})}(M,N)\,,$$

is an isomorphism.

(ii) Set $F(\cdot) = \operatorname{H}^{0}_{\mathfrak{a}}(M, \cdot)$ and $G(\cdot) = \operatorname{H}^{0}_{(\boldsymbol{x})}(L, \cdot)$. Then F and G are left exact functors and $FG(\cdot) \cong \operatorname{H}^{0}_{\mathfrak{a}}(M \otimes_{R} L, \cdot)$. Furthermore if E is an injective R-module and $\mathbb{R}^{p}F$ ($p \in \mathbb{N}_{0}$) is the p-th right derived functor of F, then it follows from [30, Lemma 1.1] and(i) that

$$\mathsf{R}^{p}F(G(E)) = \mathrm{H}^{p}_{\mathfrak{a}}(M, \mathrm{H}^{0}_{(\boldsymbol{x})}(L, E)) \cong \mathrm{H}^{p}_{\mathfrak{a}}(M, \mathrm{H}^{0}_{\mathfrak{a}}(L, E))$$
$$\cong \mathrm{Ext}^{p}_{R}(M, \mathrm{Hom}_{R}(L, \Gamma_{\mathfrak{a}}(E))) = 0$$

for all $p \geq 1$. This yields the following spectral sequence

$$E_2^{p,q} = \mathrm{H}^p_{\mathfrak{a}}(M, \mathrm{H}^q_{(\boldsymbol{x})}(L, N)) \Longrightarrow_p \mathrm{H}^{p+q}_{\mathfrak{a}}(M \otimes_R L, N)$$

(see for example [24, Theorem 11.38]). Let $t = p + q \ge d + n$. If q > n, then $H^q_{(\boldsymbol{x})}(N) = 0$ by [6, Corollary 3.3.3]. Since *L* is projective, it therefore follows that $H^q_{(\boldsymbol{x})}(L,N) = 0$. On the other hand if q < n, then $p > d = \text{proj} \dim M$. Hence

$$E_2^{p,q} = \mathrm{H}^p_{\mathfrak{a}}(M, \mathrm{H}^q_{(\boldsymbol{x})}(L,N)) \cong \mathrm{H}^p_{\mathfrak{a}}(M, \mathrm{H}^q_{\mathfrak{a}}(L,N)) \cong \mathrm{Ext}^p_R(M, \mathrm{H}^q_{\mathfrak{a}}(L,N)) = 0.$$

Therefore, for $t \ge n + d$, there is a collapsing on the line q = n. Thus, there are isomorphisms

$$\mathrm{H}^{t-n}_{\mathfrak{a}}(M,\mathrm{H}^{n}_{(\boldsymbol{x})}(L,N)) \cong \mathrm{H}^{t}_{\mathfrak{a}}(M \otimes_{R} L,N)$$

for all $t \ge n + d$.

4. Artinianness of generalized local cohomology modules

Let (R, \mathfrak{m}) be a Noetherian local ring. In view of [21, Theorem 3.1] and [15, Theorem 3.10], one can see that f-depth(\mathfrak{a}, M) is the least integer *i* for which $\mathrm{H}^{i}_{\mathfrak{a}}(M)$ is not Artinian. Also, as a main result, it was proved in [8, Theorem 2.2] that f-depth($\mathfrak{a} + \operatorname{Ann} M, N$) is the least integer *i* such that $\mathrm{H}^{i}_{\mathfrak{a}}(M, N)$ is not Artinian. We use rather a short argument to generalize this to the case in which R is not necessarily a local ring. The following lemma is elementary.

Lemma 4.1 ([25] Exercise 8.49). Let X be an Artinian R-module, then Ass X = Supp X is a finite subset of max(R).

Theorem 4.2. Let \mathcal{M} be the set of all finite subsets of $\max(R)$. Then

 $\sup_{A \in \mathcal{M}} \operatorname{f-grad}(\cap_{\mathfrak{m} \in A} \mathfrak{m}, \mathfrak{a} + \operatorname{Ann} M, N)$

$$= \inf\{i \in \mathbb{N}_0 | \operatorname{H}^i_{\mathfrak{a}}(M, N) \text{ is not Artinian}\}\$$

$$= \inf\{i \in \mathbb{N}_0 | \operatorname{Supp} \operatorname{H}^i_{\mathfrak{a}}(M, N) \nsubseteq \max(R)\}\$$

$$= \inf\{i \in \mathbb{N}_0 | \operatorname{Supp} \operatorname{H}^i_{\mathfrak{a}}(M, N) \nsubseteq A \text{ for all } A \in \mathcal{M}\}\$$

Proof. Since $\mathrm{H}^{i}_{\mathfrak{a}}(M, N) \cong \mathrm{H}^{i}_{\mathfrak{a}+\mathrm{Ann}\,M}(M, N)$, we can assume that $\mathrm{Ann}\,M \subseteq \mathfrak{a}$. It is clear that

 $\sup_{A \in \mathcal{M}} \operatorname{f-grad}(\cap_{\mathfrak{m} \in A} \mathfrak{m}, \mathfrak{a}, N) = \inf\{i \in \mathbb{N}_0 | \operatorname{Supp} \operatorname{H}^i_{\mathfrak{a}}(M, N) \nsubseteq A \text{ for all } A \in \mathcal{M}\}.$

Let S be either $\{X \in C_R | \text{Supp } X \subseteq \max(R)\}$ or $\{X \in C_R | \text{Supp } X \subseteq A \text{ for some } A \in \mathcal{M}\}$, where C_R is the category of R-modules. Set $r = \inf\{i \in \mathbb{N}_0 | \operatorname{H}^i_{\mathfrak{a}}(M, N) \text{ is not Artinian}\}$ and $s = \inf\{i \in \mathbb{N}_0 | \operatorname{H}^i_{\mathfrak{a}}(M, N) \notin S\}$. By Lemma 4.1, $r \leq s$. If $r = \infty$, there is noting to prove. Assume that $r < \infty$. We show by induction on r, that $\operatorname{H}^r_{\mathfrak{a}}(M, N) \notin S$.

If r = 0, then $\operatorname{H}^{0}_{\mathfrak{a}}(M, N) \notin S$. Now suppose, inductively, that r > 0 and that the result has been proved for smaller values of r. In view of [30, Lemma 1.1] the exact sequence

$$0 \longrightarrow \Gamma_{\mathfrak{a}}(N) \longrightarrow N \longrightarrow N/\Gamma_{\mathfrak{a}}(N) \longrightarrow 0$$

induces the following long exact sequence

$$\cdots \longrightarrow \operatorname{Ext}_{R}^{i}(M, \Gamma_{\mathfrak{a}}(N)) \longrightarrow \operatorname{H}_{\mathfrak{a}}^{i}(M, N) \longrightarrow \operatorname{H}_{\mathfrak{a}}^{i}(M, N/\Gamma_{\mathfrak{a}}(N)) \\ \longrightarrow \operatorname{Ext}_{R}^{i+1}(M, \Gamma_{\mathfrak{a}}(N)) \longrightarrow \cdots .$$

Since $H^0_{\mathfrak{a}}(M, N)$ has finite length, we have

$$\operatorname{Supp} \operatorname{H}^{0}_{\mathfrak{a}}(M, N) = \operatorname{Ass} \operatorname{Hom}_{R}(M, \Gamma_{\mathfrak{a}}(N)) = \operatorname{Ass} \Gamma_{\mathfrak{a}}(N);$$

so that $\Gamma_{\mathfrak{a}}(N) \in \mathcal{S}$. Thus $\operatorname{Ext}_{R}^{i}(M, \Gamma_{\mathfrak{a}}(N)) \in \mathcal{S}$ for all $i \in \mathbb{N}_{0}$. It follows that for each $i \in \mathbb{N}_{0}$, $\operatorname{H}_{\mathfrak{a}}^{i}(M, N) \in \mathcal{S}$ if and only if $\operatorname{H}_{\mathfrak{a}}^{i}(M, N/\Gamma_{\mathfrak{a}}(N)) \in \mathcal{S}$. Also we have $\operatorname{H}_{\mathfrak{a}}^{i}(M, N)$ is Artinian if and only if $\operatorname{H}_{\mathfrak{a}}^{i}(M, N/\Gamma_{\mathfrak{a}}(N))$ is Artinian. Hence we can replace N by $N/\Gamma_{\mathfrak{a}}(N)$ and assume that N is an \mathfrak{a} -torsion free R-module. Thus there exists an element $x \in \mathfrak{a}$ which is a non-zero divisor on N. The exact sequence

$$0 \longrightarrow N \xrightarrow{x} N \longrightarrow N/xN \longrightarrow 0$$

induces the long exact sequence

$$\cdots \longrightarrow \mathrm{H}^{i}_{\mathfrak{a}}(M,N) \xrightarrow{x} \mathrm{H}^{i}_{\mathfrak{a}}(M,N) \xrightarrow{f_{i}} \mathrm{H}^{i}_{\mathfrak{a}}(M,N/xN) \longrightarrow \mathrm{H}^{i+1}_{R}(M,N) \longrightarrow \cdots.$$

Since $\operatorname{H}^{i}_{\mathfrak{a}}(M, N)$ is Artinian for all i < r, we may use the above sequence to see that $\operatorname{H}^{i}_{\mathfrak{a}}(M, N/xN)$ is Artinian for all i < r - 1. On the other hand, $\operatorname{H}^{r}_{\mathfrak{a}}(M, N)$ is not Artinian. Hence, using the above exact sequence and [6, Theorem 7.1.2], we see that $0:_{\operatorname{H}^{r}_{\mathfrak{a}}(M,N)} x \cong \operatorname{H}^{r-1}_{\mathfrak{a}}(M, N/xN) / \operatorname{im} f_{r-1}$ is not Artinian. Thus $\operatorname{H}^{r-1}_{\mathfrak{a}}(M, N/xN)$ is not Artinian; and hence, by inductive hypothesis, $\operatorname{H}^{r-1}_{\mathfrak{a}}(M, N/xN) \notin S$. So, again by using the above sequence, we get $\operatorname{H}^{r}_{\mathfrak{a}}(M, N) \notin S$. This completes the inductive step.

Corollary 4.3. Suppose that $\operatorname{Supp} L = \operatorname{Supp} M/\mathfrak{a}M$. Then

 $\inf\{i \in \mathbb{N}_0 | \operatorname{H}^i_{\mathfrak{a}}(M, N) \text{ is not Artinian}\} = \inf\{i \in \mathbb{N}_0 | \dim \operatorname{Ext}^i_R(L, N) > 0\}.$

Proof. Let $n \in \mathbb{N}_0$. Then, by the Theorem 4.2, $\operatorname{H}^i_{\mathfrak{a}}(M, N)$ is an Artinian *R*-module for all $i \leq n$ if and only if $n < \operatorname{f-grad}(\mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_t, \mathfrak{a} + \operatorname{Ann} M, N)$ for some maximal ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_t$ of *R*. By the Remark 2.4, it is equivalent to $\operatorname{Supp} \operatorname{Ext}^i_R(L, N) \subseteq {\mathfrak{m}_1, \ldots, \mathfrak{m}_t}$ for some maximal ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_t$ of *R* and for all $i \leq n$. This proves the assertion. \Box

The following corollary extend the main result of [28] to the generalized local cohomology modules.

Corollary 4.4. Let $n \in \mathbb{N}$. Then $\mathrm{H}^{i}_{\mathfrak{a}}(M, N)$ is Artinian for all i < n if and only if $\mathrm{H}^{i}_{\mathfrak{a}R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$ is Artinian for all i < n and all prime ideal \mathfrak{p} .

Proof. This is immediate by the Corollary 4.3.

Corollary 4.5. Let $\overline{R} = R/(\mathfrak{a} + \operatorname{Ann} M + \operatorname{Ann} N)$ be a semi local ring and let \mathfrak{r} be the inverse image of the Jacobson radical of \overline{R} in R. Then we have

f-grad(
$$\mathfrak{r}, \mathfrak{a} + \operatorname{Ann} M, N$$
) = inf{ $i \in \mathbb{N}_0 | \operatorname{H}^i_{\mathfrak{a}}(M, N)$ is not Artinian}

 $= \inf\{i \in \mathbb{N}_0 | \operatorname{H}^i_{\mathfrak{a}}(M, N) \cong \operatorname{H}^i_{\mathfrak{r}}(M, N)\}$

Proof. The first equality is immediate by Theorem 4.2. To prove the second equality, let $n \leq \text{f-grad}(\mathfrak{r}, \mathfrak{a} + \text{Ann } M, N)$ and let x_1, \ldots, x_n be an \mathfrak{r} -filter regular *N*-sequence in $\mathfrak{a} + \text{Ann } M$. Then x_1, \ldots, x_n is an $\mathfrak{a} + \text{Ann } M$ -filter regular *N*-sequence. So by Theorem 3.1(i),

 $\mathrm{H}^{i}_{\mathfrak{a}}(M,N)\cong\mathrm{H}^{i}_{\mathfrak{a}+\mathrm{Ann}\,M}(M,N)\cong\mathrm{H}^{i}_{(x_{1},...,x_{n})}(M,N)\cong\mathrm{H}^{i}_{\mathfrak{r}}(M,N)$

for all i < n. If f-grad $(\mathfrak{r}, \mathfrak{a} + \operatorname{Ann} M, N) = \infty$, then the above argument shows that, $\inf\{i \in \mathbb{N}_0 | \operatorname{H}^i_{\mathfrak{a}}(M, N) \ncong \operatorname{H}^i_{\mathfrak{r}}(M, N)\} = \infty$ and therefore the required equality holds. Therefore, we may assume that f-grad $(\mathfrak{r}, \mathfrak{a} + \operatorname{Ann} M, N) = n < \infty$. By the first equality, $\operatorname{H}^n_{\mathfrak{a}}(M, N)$ is not Artinian while $\operatorname{H}^n_{\mathfrak{r}}(M, N)$ is Artinian. Hence the second equality holds.

It was shown in [31, Theorem 2.2] that if dim $R/\mathfrak{a} = 0$, then $H^i_\mathfrak{a}(M, N)$ is Artinian for all $i \in \mathbb{N}_0$. The following corollary is a generalization of this.

Corollary 4.6. Let $\overline{R} = R/(\mathfrak{a} + \operatorname{Ann} M + \operatorname{Ann} N)$. Then $\operatorname{H}^{i}_{\mathfrak{a}}(M, N)$ is an Artinian *R*-module for all $i \in \mathbb{N}_{0}$ if and only if $\dim \overline{R} = 0$. In particular, $\operatorname{Ext}^{i}_{R}(M, N)$ has finite length for all $i \in \mathbb{N}_{0}$ if and only if $\dim R/(\operatorname{Ann} M + \operatorname{Ann} N) = 0$.

Proof. Assume that \mathfrak{p} is a prime ideal of R. By the Corollary 4.5, $\operatorname{H}^{i}_{\mathfrak{a}R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$ is Artinian for all i if and only if f-depth($(\mathfrak{a} + \operatorname{Ann} M)R_{\mathfrak{p}}, N_{\mathfrak{p}}$) = ∞ or equivalently $\dim_{R_{\mathfrak{p}}} N_{\mathfrak{p}}/(\mathfrak{a}R_{\mathfrak{p}} + (\operatorname{Ann} M)R_{\mathfrak{p}})N_{\mathfrak{p}} = 0$ (Remark 2.3). Now, the result follows by Corollary 4.4.

5. Attached primes of the top generalized local cohomology modules

Let $X \neq 0$ be an *R*-module. If, for every $x \in R$, the endomorphism on *X* given by multiplication by *x* is either nilpotent or surjective, then $\mathfrak{p} = \sqrt{\operatorname{Ann} X}$ is prime and *X* is called a \mathfrak{p} -secondary *R*-module. If for some secondary submodules X_1, \ldots, X_n of *X* we have $X = X_1 + \ldots + X_n$, then we say that *X* has a secondary representation. One may assume that the prime ideals $\mathfrak{p}_i = \sqrt{\operatorname{Ann} X_i}$, $i = 1, \ldots, n$, are distinct and, by omitting redundant summands, that the representation is minimal. Then the set Att $X = {\mathfrak{p}_1, \ldots, \mathfrak{p}_n}$ does not depend on the choice of a minimal secondary representation of *X*. Every element of Att *X* is called an attached prime ideal of *X*. It is well known that an Artinian *R*-module has a secondary representation. The reader is referred to [16] for more information about the theory of secondary representation.

Let (R, \mathfrak{m}) be a local ring and $n = \dim N < \infty$ and $d = \operatorname{proj} \dim M < \infty$. It was proved in [10, Theorem 2.3] that $\operatorname{H}^{n+d}_{\mathfrak{a}}(M, N)$ is Artinian and that

$$\operatorname{Att} \operatorname{H}^{n+d}_{\mathfrak{a}}(M,N) = \{ \mathfrak{p} \in \operatorname{Ass} N | \operatorname{cd}_{\mathfrak{a}}(M,R/\mathfrak{p}) = n+d \},\$$

where, for an *R*-module *Y*, $\operatorname{cd}_{\mathfrak{a}}(M, Y)$ is the greatest integer *i* such that $\operatorname{H}^{i}_{\mathfrak{a}}(M, Y) \neq 0$. Notice that $\operatorname{cd}_{\mathfrak{a}}(M, N) \leq d + n$ [4, Lemma 5.1]. Next, we prove the above result without the local assumption on *R*. The following lemmas are needed.

Lemma 5.1 ([1] Theorem A and B). Let proj dim $M < \infty$. Then

- (i) $\operatorname{cd}_{\mathfrak{a}}(M, N) \leq \operatorname{cd}_{\mathfrak{a}}(M, L)$ whenever $\operatorname{Supp} N \subseteq \operatorname{Supp} L$.
- (ii) $\operatorname{cd}_{\mathfrak{a}}(M,L) = \max\{\operatorname{cd}_{\mathfrak{a}}(M,N), \operatorname{cd}_{\mathfrak{a}}(M,K)\}\$ whenever $0 \to N \to L \to K \to 0$ is an exact sequence.

Lemma 5.2. Let proj dim $M < \infty$, dim $N < \infty$, $t = cd_{\mathfrak{a}}(M, N) \ge 0$ and

$$\Sigma = \{ L \subsetneqq N | \operatorname{cd}_{\mathfrak{a}}(M, L) < t \}$$

Then Σ has the largest element with respect to inclusion, L say, and the following statements hold.

- (i) If K is a non-zero submodule of N/L, then $cd_{\mathfrak{a}}(M, K) = t$.
- (ii) $\operatorname{H}^{t}_{\mathfrak{a}}(M, N) \cong \operatorname{H}^{t}_{\mathfrak{a}}(M, N/L).$
- (iii) If $t = \operatorname{proj} \dim M + \dim N$, then

Ass
$$N/L = \{ \mathfrak{p} \in \operatorname{Ass} N | \operatorname{cd}_{\mathfrak{a}}(M, R/\mathfrak{p}) = t \}.$$

Proof. Since N is Noetherian, Σ has a maximal element, say L. Now assume that L_1, L_2 are elements of Σ . Using the exact sequence

$$0 \to L_1 \cap L_2 \to L_1 \oplus L_2 \to L_1 + L_2 \to 0$$

and Lemma 5.1 we see that $t > \operatorname{cd}_{\mathfrak{a}}(M, L_1 + L_2)$. Hence the sum of any two elements of Σ is again in Σ . It follows that L contains every element of Σ ; and so it is the largest one.

(i) Let K = K'/L be a non-zero submodule of N/L. Since L is the largest element of Σ , by applying Lemma 5.1 to the exact sequence

$$0 \to L \to K' \to K \to 0$$

we see that $t = \operatorname{cd}_{\mathfrak{a}}(M, K)$.

(ii) The exact sequence $0 \to L \to N \to N/L \to 0$ induces the exact sequence

$$0 = \mathrm{H}^{t}_{\mathfrak{a}}(M, L) \to \mathrm{H}^{t}_{\mathfrak{a}}(M, N) \to \mathrm{H}^{t}_{\mathfrak{a}}(M, N/L) \to \mathrm{H}^{t+1}_{\mathfrak{a}}(M, L) = 0.$$

Thus $\operatorname{H}^{t}_{\mathfrak{a}}(M, N) \cong \operatorname{H}^{t}_{\mathfrak{a}}(M, N/L).$

(iii) Assume that $cd_{\mathfrak{a}}(M, N) = \operatorname{proj} \dim M + \dim N$. For each \mathfrak{p} in Ass L, we have $cd_{\mathfrak{a}}(M, R/\mathfrak{p}) < t$; so that

$$\{\mathfrak{p} \in \operatorname{Ass} N | \operatorname{cd}_{\mathfrak{a}}(M, R/\mathfrak{p}) = t\} \subseteq \operatorname{Ass} N/L$$

To establish the reverse inclusion, let $\mathfrak{p} \in \operatorname{Ass} N/L$. Then by (i) and [4, Lemma 5.1] $t = \operatorname{proj} \dim M + \dim R/\mathfrak{p}$. Therefore $\mathfrak{p} \in \operatorname{Ass} N$ and equality holds.

Theorem 5.3. Let $d = \operatorname{proj} \dim M < \infty$ and $n = \dim N < \infty$. Then the *R*-module $\operatorname{H}^{n+d}_{\mathfrak{a}}(M, N)$ is Artinian and

$$\operatorname{Att} \operatorname{H}^{n+d}_{\mathfrak{a}}(M,N) = \{ \mathfrak{p} \in \operatorname{Ass} N | \operatorname{cd}_{\mathfrak{a}}(M,R/\mathfrak{p}) = n+d \}.$$

Proof. Let $\boldsymbol{x} = x_1, \ldots, x_n$ be an \mathfrak{a} -filter regular N-sequence in \mathfrak{a} and let E^{\bullet} be the minimal injective resolution of $\operatorname{H}^n_{(\boldsymbol{x})}(N)$. Since, by [6, Exercise 7.1.7], $\operatorname{H}^n_{(\boldsymbol{x})}(N)$ is Artinian, every component of E^{\bullet} is Artinian. On the other hand by 3.1

$$\mathrm{H}^{n+d}_{\mathfrak{a}}(M,N) \cong \mathrm{H}^{d}_{\mathfrak{a}}(M,\mathrm{H}^{n}_{(\boldsymbol{x})}(N)) \cong H^{d}(\mathrm{Hom}_{R}(M,\Gamma_{\mathfrak{a}}(E^{\bullet}))).$$

It follows that $\operatorname{H}^{n+d}_{\mathfrak{a}}(M,N)$ is Artinian.

Now we prove that $\operatorname{Att} \operatorname{H}_{\mathfrak{a}}^{n+d}(M,N) = \{\mathfrak{p} \in \operatorname{Ass} N | \operatorname{cd}_{\mathfrak{a}}(M,R/\mathfrak{p}) = n+d\}$. If $\operatorname{cd}_{\mathfrak{a}}(M,N) < n+d$, then $\operatorname{Att} \operatorname{H}_{\mathfrak{a}}^{n+d}(M,N) = \emptyset = \{\mathfrak{p} \in \operatorname{Ass} N | \operatorname{cd}_{\mathfrak{a}}(M,R/\mathfrak{p}) = n+d\}$. So one can assume that $t = \operatorname{cd}_{\mathfrak{a}}(M,N) = n+d$. Let L be the largest submodule of N such that $\operatorname{cd}_{\mathfrak{a}}(M,L) < t$. By Lemma 5.2, there is no non-zero submodule K of N/L such that $\operatorname{cd}_{\mathfrak{a}}(M,K) < t$. Also we have $\operatorname{H}_{\mathfrak{a}}^{t}(M,N) \cong \operatorname{H}_{\mathfrak{a}}^{t}(M,N/L)$ and $\operatorname{Ass} N/L = \{\mathfrak{p} \in \operatorname{Ass} N | \operatorname{cd}_{\mathfrak{a}}(M,R/\mathfrak{p}) = t\}$. Moreover $t = \operatorname{cd}_{\mathfrak{a}}(M,N/L) = \operatorname{proj} \dim M + \dim N/L$. Thus we may replace N by N/L and prove that $\operatorname{Att} \operatorname{H}_{\mathfrak{a}}^{t}(M,N) = \operatorname{Ass} N$. Now, for any non-zero submodule K of N, $\operatorname{cd}_{\mathfrak{a}}(M,K) = t$ and $\dim K = n$.

Assume that $\mathfrak{p} \in \operatorname{Att} \operatorname{H}^{t}_{\mathfrak{a}}(M, N)$. We have $\mathfrak{p} \supseteq \operatorname{Ann} \operatorname{H}^{t}_{\mathfrak{a}}(M, N) \supseteq \operatorname{Ann} N$. Hence $\mathfrak{p} \in \operatorname{Supp} N$. Now Let $x \in R \setminus \bigcup_{\mathfrak{p} \in \operatorname{Ass} N} \mathfrak{p}$. The exact sequence

$$0 \longrightarrow N \xrightarrow{x} N \longrightarrow N/xN \longrightarrow 0$$

induces the exact sequence

$$\mathrm{H}^{t}_{\mathfrak{a}}(M,N) \xrightarrow{x} \mathrm{H}^{t}_{\mathfrak{a}}(M,N) \to \mathrm{H}^{t}_{\mathfrak{a}}(M,N/xN) = 0.$$

Therefore $x \notin \bigcup_{\mathfrak{p}\in \operatorname{Att} \operatorname{H}^t_{\mathfrak{a}}(M,N)} \mathfrak{p}$. So $\bigcup_{\mathfrak{p}\in \operatorname{Att} \operatorname{H}^t_{\mathfrak{a}}(M,N)} \mathfrak{p} \subseteq \bigcup_{\mathfrak{p}\in \operatorname{Ass} N} \mathfrak{p}$. Thus $\mathfrak{p}\subseteq \mathfrak{q}$ for some $\mathfrak{q}\in \operatorname{Ass} N$. Hence $\mathfrak{p}=\mathfrak{q}$ and $\operatorname{Att} \operatorname{H}^t_{\mathfrak{a}}(M,N)\subseteq \operatorname{Ass} N$. Next we prove the reverse inclusion. Let $\mathfrak{p}\in \operatorname{Ass} N$ and let T be a \mathfrak{p} -primary submodule of N. We have $t = \operatorname{cd}_{\mathfrak{a}}(M, R/\mathfrak{p}) = \operatorname{cd}_{\mathfrak{a}}(M, N/T)$. Moreover N/T has no non-zero submodule K such that $\operatorname{cd}_{\mathfrak{a}}(M, K) < t$. Hence, using the above argument, one can show that $\operatorname{Att} \operatorname{H}^t_{\mathfrak{a}}(M, N/T) \subseteq \operatorname{Ass} N/T = \{\mathfrak{p}\}$. It follows that

$$\{\mathfrak{p}\} = \operatorname{Att} \operatorname{H}^{t}_{\mathfrak{a}}(M, N/T) \subseteq \operatorname{Att} \operatorname{H}^{t}_{\mathfrak{a}}(M, N).$$

This completes the proof.

Corollary 5.4. Let $d = \operatorname{proj} \dim M < \infty$ and $n = \dim N < \infty$. Then

Att
$$\operatorname{H}^{n+d}_{\mathfrak{a}}(M, N) \subseteq \operatorname{Supp} M \cap \operatorname{Att} \operatorname{H}^{n}_{\mathfrak{a}}(N).$$

Proof. If Att $\operatorname{H}^{n+d}_{\mathfrak{a}}(M, N) = \emptyset$, there is nothing to prove. Assume that $\mathfrak{p} \in \operatorname{Att} \operatorname{H}^{n+d}_{\mathfrak{a}}(M, N)$. Then, by 5.3, $\mathfrak{p} \in \operatorname{Ass} N$ and $\operatorname{H}^{n+d}_{\mathfrak{a}}(M, R/\mathfrak{p}) \neq 0$. Next one can use the spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_R^p(M, \operatorname{H}^q_{\mathfrak{a}}(R/\mathfrak{p})) \Longrightarrow_p \operatorname{H}^{p+q}_{\mathfrak{a}}(M, R/\mathfrak{p})$$

to see that $\mathrm{H}^{n+d}_{\mathfrak{a}}(M, R/\mathfrak{p}) \cong \mathrm{Ext}^{d}_{R}(M, \mathrm{H}^{n}_{\mathfrak{a}}(R/\mathfrak{p}))$. Therefore $\mathrm{H}^{n}_{\mathfrak{a}}(R/\mathfrak{p}) \neq 0$; and hence $\mathrm{cd}_{\mathfrak{a}}(R/\mathfrak{p}) = n$. Thus, again by 5.3, $\mathfrak{p} \in \mathrm{Att}\,\mathrm{H}^{n}_{\mathfrak{a}}(N)$. Also, we have $\mathfrak{p} \supseteq$ $\mathrm{Ann}\,\mathrm{Ext}^{d}_{R}(M,\mathrm{H}^{n}_{\mathfrak{a}}(N)) \supseteq \mathrm{Ann}\,M$, which completes the proof. \Box

Let X be an R-module. Set $E = \bigoplus_{\mathfrak{m} \in \max R} E(R/\mathfrak{m})$ (minimal injective cogenerator of R) and $D = \operatorname{Hom}_R(\cdot, E)$. We note that the canonical map $X \to DDX$ is an injection. If this map is an isomorphism we say that X is (Matlis) reflexive. The following lemma yields a classification of modules which are reflexive with respect to E.

Lemma 5.5 ([3] Theorem 12). An *R*-module X is reflexive if and only if it has a finite submodule S such that X/S is artinian and that R/AnnX is a complete semilocal ring.

Assume that $\mathfrak{a} \subseteq \mathfrak{b}$ and R/\mathfrak{a} is a complete semilocal ring. By above lemma R/\mathfrak{a} is reflexive as an *R*-module. On the other hand, the category of reflexive *R*-modules is a Serre subcategory of the category of *R*-modules. Therefore R/\mathfrak{b} is reflexive as an *R*-module and hence, by the above lemma, R/\mathfrak{b} is a complete semilocal ring. We shall use the conclusion of this discussion in the proof of the next theorem.

Theorem 5.6. Let M, N be two finite R-modules with proj dim $M = d < \infty$ and dim $N = n < \infty$. Let $\mathfrak{b} = Ann \operatorname{H}^{n}_{\mathfrak{a}}(N)$. If R/\mathfrak{b} is a complete semilocal ring, then

$$\operatorname{Att} \operatorname{H}^{n+d}_{\mathfrak{a}}(M,N) = \operatorname{Supp} \operatorname{Ext}^{d}_{R}(M,R) \cap \operatorname{Att} \operatorname{H}^{n}_{\mathfrak{a}}(N).$$

In particular, if in addition, $\operatorname{proj} \dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \operatorname{proj} \dim M$ for all $\mathfrak{p} \in \operatorname{Supp} M$, then

$$\operatorname{Att} \operatorname{H}^{n+d}_{\mathfrak{a}}(M, N) = \operatorname{Supp} M \cap \operatorname{Att} \operatorname{H}^{n}_{\mathfrak{a}}(N).$$

Proof. Since $\operatorname{Ext}_{R}^{d}(M, \cdot)$ is a right exact *R*-linear covariant functor, we have

$$\mathrm{H}^{n+d}_{\mathfrak{a}}(M,N) \cong \mathrm{Ext}^{d}_{R}(M,\mathrm{H}^{n}_{\mathfrak{a}}(N)) \cong \mathrm{Ext}^{d}_{R}(M,R) \otimes_{R} \mathrm{H}^{n}_{\mathfrak{a}}(N).$$

Set $\mathfrak{c} = \operatorname{Ann} \operatorname{H}^{n+d}_{\mathfrak{a}}(M, N)$. It is clear that $\mathfrak{b} \subseteq \mathfrak{c}$. Therefore R/\mathfrak{c} is a complete semilocal ring. Now, by Lemma 5.5, [6, Exercise 7.2.10] and [5, VI.1.4 Proposition 10] we have

$$\operatorname{Att} \operatorname{H}^{n+d}_{\mathfrak{a}}(M, N) = \operatorname{Att} DD \operatorname{H}^{n+d}_{\mathfrak{a}}(M, N)$$
$$= \operatorname{Ass} D \operatorname{H}^{n+d}_{\mathfrak{a}}(M, N)$$
$$= \operatorname{Ass} D(\operatorname{Ext}^{d}_{R}(M, R) \otimes_{R} \operatorname{H}^{n}_{\mathfrak{a}}(N))$$
$$= \operatorname{Ass} \operatorname{Hom}_{R}(\operatorname{Ext}^{d}_{R}(M, R), D \operatorname{H}^{n}_{\mathfrak{a}}(N))$$
$$= \operatorname{Supp} \operatorname{Ext}^{d}_{R}(M, R) \cap \operatorname{Ass} D \operatorname{H}^{n}_{\mathfrak{a}}(N)$$
$$= \operatorname{Supp} \operatorname{Ext}^{d}_{R}(M, R) \cap \operatorname{Att} DD \operatorname{H}^{n}_{\mathfrak{a}}(N)$$
$$= \operatorname{Supp} \operatorname{Ext}^{d}_{R}(M, R) \cap \operatorname{Att} H^{n}_{\mathfrak{a}}(N)$$

The final assertion follows immediately from the first equality, [20, Lemma 19.1(iii)] and the fact that $\operatorname{Supp}\operatorname{Ext}^d_R(M,R) \subseteq \operatorname{Supp} M$.

By Corollary 5.4 Att $\operatorname{H}^{n+d}_{\mathfrak{a}}(M, N) \subseteq \operatorname{Att} \operatorname{H}^{n}_{\mathfrak{a}}(N)$. Next, we give an example to show that this inclusion may be strict even if (R, \mathfrak{m}) is a complete regular local ring and $\mathfrak{a} = \mathfrak{m}$. Also, this example shows that the following theorem of Mafi is not true.

[19, Theorem 2.1]: Let (R, \mathfrak{m}) be a commutative Notherian local ring and $n = \dim N$, $d = \operatorname{proj} \dim M < \infty$. If $\operatorname{H}^{n+d}_{\mathfrak{m}}(M, N) \neq 0$, then

$$\operatorname{Att} \operatorname{H}^{n+d}_{\mathfrak{m}}(M, N) = \operatorname{Att} \operatorname{H}^{n}_{\mathfrak{m}}(N).$$

Example 5.7. Let (R, \mathfrak{m}) be a complete regular local ring of a dimension $n \ge 2$ and assume that R has two distinct prime ideals $\mathfrak{p}, \mathfrak{q}$ such that $\dim R/\mathfrak{p} = \dim R/\mathfrak{q} = 1$. Set $M = R/\mathfrak{p}$ and $N = R/\mathfrak{p} \oplus R/\mathfrak{q}$. Then, by Theorem 5.3,

$$\operatorname{Att} \operatorname{H}^{1}_{\mathfrak{m}}(N) = \{\mathfrak{p}, \mathfrak{q}\}.$$

On the other hand, $\operatorname{proj} \dim M = \dim R - \operatorname{depth} M = n - 1$ and $\dim N = 1$. Now, by Theorem 5.6,

$$\operatorname{Att} \operatorname{H}^{n}_{\mathfrak{m}}(M, N) = \operatorname{Supp} M \cap \operatorname{Att} \operatorname{H}^{1}_{\mathfrak{m}}(N) = \{\mathfrak{p}\}.$$

Therefore [19, Theorem 2.1] is not true. Also, by [6, Proposition 7.2.11],

$$\sqrt{(Ann\,\mathrm{H}^{n}_{\mathfrak{m}}(M,N))} = \bigcap_{\mathfrak{p}\in\mathrm{Att}\,\mathrm{H}^{n}_{\mathfrak{m}}(M,N)}\mathfrak{p} = \mathfrak{p}$$

and

$$\sqrt{(Ann\,\mathrm{H}^{1}_{\mathfrak{m}}(N))} = \bigcap_{\mathfrak{p}\in\mathrm{Att}\,\mathrm{H}^{1}_{\mathfrak{m}}(N)}\mathfrak{p} = \mathfrak{p}\cap\mathfrak{q}.$$

Hence, again, Corollary 2.2 and Corollary 2.3 of [19] are not true. We note that, the other results of [19] are concluded from [19, Theorem 2.1, Corollary 2.2 and Corollary 2.3].

It is known that if (R, \mathfrak{m}) is a local ring and dim M = n > 0, then $\mathrm{H}^{n}_{\mathfrak{m}}(M)$ is not finite [6, Corollary 7.3.3]. It was proved in [10, Proposition 2.6] that if $d = \operatorname{proj} \dim M < \infty$ and $0 < n = \dim N$, then $\mathrm{H}^{n+d}_{\mathfrak{m}}(M, N)$ is not finite whenever it is non-zero. Next, we provide a generalization of this result. The following lemma, which is needed in the proof of the next proposition, is elementary.

Lemma 5.8. Let X be an R-module. Then X has finite length if and only if X is Artinian and Att $X \subseteq \max R$. Moreover if X has finite length, then Att $X = \operatorname{Supp} X = \operatorname{Ass} X$.

Proposition 5.9. Let $d = \operatorname{proj} \dim M < \infty$, $0 < n = \dim N < \infty$. If $\operatorname{H}^{n+d}_{\mathfrak{a}}(M, N) \neq 0$, then it is not finite.

Proof. Assume that $\mathfrak{p} \in \operatorname{Att} \operatorname{H}^{n+d}_{\mathfrak{a}}(M, N)$. By 5.3, $\operatorname{H}^{n+d}_{\mathfrak{a}}(M, N)$ is an Artinian *R*-module and $n + d = \operatorname{cd}_{\mathfrak{a}}(M, R/\mathfrak{p}) = \operatorname{projdim} M + \dim R/\mathfrak{p}$. Therefore $\dim R/\mathfrak{p} = n > 0$; So that $\operatorname{Att} \operatorname{H}^{n+d}_{\mathfrak{a}}(M, N) \nsubseteq \operatorname{max} R$. It follows that, in view of 5.8, $\operatorname{H}^{n+d}_{\mathfrak{a}}(M, N)$ is not finite. \Box

Acknowledgment

The authors would like to thank the referees for careful reading of the manuscript and for helpful suggestions.

References

- J. Amjadi and R. Naghipour, Cohomological dimension of generalized local cohomology modules, *Algebra Collog.* 15 (2008), no. 2, 303–308.
- [2] A. Bagheri, A non-vanishing Theorem for local cohomology modules, Bull. Malay. Math Sci. Soc. (2), accepted.
- [3] R. G. Belshoff, E. E. Enochs and J. R. García Rozas, Generalized Matlis duality, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1307–1312.
- [4] M. H. Bijan-Zadeh, A common generalization of local cohomology theories, *Glasgow Math. J.* 21 (1980), no. 2, 173–181.
- [5] N. Bourbaki, Commutative Algebra, Chapter 1-7, Elements of Mathematics, Springer-Verlage, Berlin, 1998.
- [6] M. P. Brodmann and R. Y. Sharp, Local Cohomology: an Algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 60. Cambridge University Press, Cambridge, 1998.
- [7] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993.
- [8] L. Chu and Z. Tang, On the Artinianness of generalized local cohomology, Comm. Algebra 35 (2007), no. 12, 3821–3827.
- [9] M. T. Dibaei and S. Yassemi, Attached primes of the top local cohomology modules with respect to an ideal, Arch. Math. (Basel) 84 (2005), no. 4, 292–297.
- [10] Y. Gu and L. Chu, Attached primes of the top generalized local cohomology modules, Bull. Aust. Math. Soc. 79 (2009), no. 1, 59–67.
- [11] J. Herzog, Komplexe, Auflösungen und Dualität in der lokalen Algebra, Habilitationsschrift, Universität Regensburg, 1970.
- [12] C. Huneke, Problems on local cohomology, Free resolutions in commutative algebra and algebraic geometry, Sundance 90 (ed. D. Eisenbud and C. Huneke, Jones and Bartlett, Boston, 1992) 93–108.
- [13] K. Khashyarmanesh and Sh. Salarian, Filter regular sequences and the finiteness of local cohomology modules, *Comm. Algebra* 26 (1998), no. 8, 2483–2490.
- [14] K. Khashyarmanesh, M. Yassi and A. Abbasi, Filter regular sequences and generalized local cohomology modules, *Comm. Algebra* **32** (2004), no. 1, 253–259.
- [15] R. Lü and Z. Tang, The f-depth of an ideal on a module, Proc. Amer. Math. Soc. 130 (2002), no. 7, 1905–1912 (electronic).
- [16] I. G. MacDonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), pp. 23–43. Academic Press, London, 1973.
- [17] I. G. Macdonald and R. Y. Sharp, An elementary proof of the non-vanishing of certain local cohomology modules, *Quart. J. Math. Oxford Ser.* (2) 23 (1972), 197–204.
- [18] A. Mafi, On the associated primes of generalized local cohomology modules, Comm. Algebra 34 (2006), no. 7, 2489–2494.
- [19] A. Mafi, Top generalized local cohomology modules, *Turkish J. Math.* **35** (2011), no. 4, 611–615.
- [20] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1986.
- [21] L. Melkersson, Some applications of a criterion for Artinianness of a module, J. Pure Appl. Algebra 101 (1995), no. 3, 291–303.
- [22] U. Nagel and P. Schenzel, Cohomological annihilators and Castelnuovo-Mumford regularity, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), 307–328, Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994.
- [23] Sh. Payrovi and M. Lotfi Parsa. Artinianness of local cohomology modules defined by a pair of ideals, Bull. Malay. Math Sci. Soc. (2) 35 (2012), no. 4, 877–883.
- [24] J. J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics 85. Academic Press, Inc., New York, 1979.
- [25] R. Y. Sharp, Steps in commutative algebra, London Mathematical Society Student Texts, 19. Cambridge University Press, Cambridge, 1990.
- [26] J. Stückrad and W. Vogel, Buchsbaum rings and applications. An interaction between algebra, geometry and topology, Springer-Verlag, Berlin, 1986.

- [27] N. Suzuki, On the generalized local cohomology and its duality, J. Math. Kyoto Univ. 18 (1978), no. 1, 71–85.
- [28] Z. Tang, Local-global principle for the Artinianness of local cohomology modules, Comm. Algebra 40 (2012), no. 1, 58–63.
- [29] N. V. Trung, Absolutely superficial sequences, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 1, 35–47.
- [30] S. Yassemi, L. Khatami and T. Sharif, Associated primes of generalized local cohomology modules, *Comm. Algebra* **30** (2002), no. 1, 327–330.
- [31] N. Zamani, On graded generalized local cohomology, Arch. Math. (Basel) 86 (2006), no. 4, 321–330.

DEPARTMENT OF MATHEMATICS, SCIENCE AND RESEARCH BRANCH, ISLAMIC AZAD UNIVERSITY, TEHRAN, IRAN.

 $E\text{-}mail\ address:\ \texttt{alif1387}\texttt{@gmail.com}$

DEPARTMENT OF MATHEMATICS, SCIENCE AND RESEARCH BRANCH, ISLAMIC AZAD UNIVERSITY, TEHRAN, IRAN.

 $E\text{-}mail\ address: \texttt{tehranian@srbiau.ac.ir}$

FACULTY OF MATHEMATICAL SCIENCES AND COMPUTER, TARBIAT MOALLEM UNIVERSITY, TEHRAN, IRAN.

 $E\text{-}mail\ address: \texttt{zakeri@tmu.ac.ir}$