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Abstract. In this paper, we apply the fixed point method to investigate the

Hyers-Ulam-Rassias stability of the nth order linear differential equations.

1 Introduction

In 1940, Ulam [27] posed a problem concerning the stability of functional equations:

“Give conditions in order for a linear function near an approximately linear function

to exist.”

A year later, Hyers [8] gave an answer to the problem of Ulam for additive

functions defined on Banach spaces: Let X1 and X2 be real Banach spaces and

ε > 0. Then for every function f : X → Y satisfying

∥f(x + y) − f(x) − f(y)∥ ≤ ε (for x, y ∈ X1),

there exists a unique additive function A : X1 → X2 with the property

∥f(x) −A(x)∥ ≤ ε (for x ∈ X1).

After Hyers’s result, many mathematicians have extended the Ulam’s problem

to other functional equations and generalized the Hyers’s result in various directions
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(see [2, 6, 9, 14]). A generalization of the Ulam’s problem was recently proposed

by replacing functional equations with differential equations: The differential equa-

tion φ
(
f(t), y(t), y′(t), . . . , y(n)(t)

)
= 0 has the Hyers-Ulam stability if, for any given

ε > 0 and any function y satisfying
∣∣φ(f(t), y(t), y′(t), . . . , y(n)(t)

)∣∣ ≤ ε, there ex-

ists a solution y0 of the differential equation such that |y(t) − y0(t)| ≤ K(ε) and

limε→0K(ε) = 0.

Ob loza seems to be the first author who has investigated the Hyers-Ulam stability

of linear differential equations (see [20, 21]). Thereafter, Alsina and Ger published

their paper [1], which handles the Hyers-Ulam stability of the linear differential

equation y′(t) = y(t): If a differentiable function y(t) is a solution of the inequality

|y′(t) − y(t)| ≤ ε for any t ∈ (a,∞), then there exists a constant c such that

|y(t) − cet| ≤ 3ε for all t ∈ (a,∞).

Those previous results were extended to the Hyers-Ulam stability of linear dif-

ferential equations of first order and higher order with constant coefficients in [7,

16, 17, 18, 25, 26] and in [19], respectively. Furthermore, Jung [10, 11, 12] has also

proved the Hyers-Ulam stability of linear differential equations. Rus investigated the

Hyers-Ulam stability of differential and integral equations using Gronwall lemma and

the technique of weakly Picard operators (see [23, 24]). Recently, the Hyers-Ulam

stability problems of linear differential equations of first order and second order

with constant coefficients were studied by using the method of integral factor (see

[15, 28]). The results given in [11, 15, 18] have been generalized by Cimpean and

Popa [5] for the linear differential equations of nth order with constant coefficients.

Definition 1.1 Assume that X is a normed space over a scalar field F and I is an

arbitrary interval. Let p0, p1, . . . , pn : I → F and q : I → X be continuous functions.

Let y : I → X be any n times continuously differentiable function satisfying the

inequality ∥∥∥∥ n∑
k=0

pk(t)y(k)(t) − q(t)

∥∥∥∥ ≤ φ(t)

for all t ∈ I, where φ : I → [0,∞) is an (Lebesgue) integrable function. Then

we say that the differential equation
∑n

k=0 pk(t)y(k)(t) = q(t) has the Hyers-Ulam-

Rassias stability provided there exists a solution y0 : I → X of the differential

equation

(1.1)

n∑
k=0

pk(t)y(k)(t) = q(t)

and

∥y(t) − y0(t)∥ ≤ M∥φ∥1

for any t ∈ I, where M is a positive number and ∥φ∥1 =
∫
I |φ(t)|dt. When φ(t) =

ε > 0 for all t ∈ I, the differential equation is said to have the Hyers-Ulam stability.
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In this paper, we apply the fixed point method used in [3, 4, 13, 22] to investigate

the Hyers-Ulam-Rassias stability of the nth order linear differential equations of the

form (1.1).

2 Preliminaries

Throughout this section, let X be a Banach space over a scalar field F, where F
denotes either R or C. For any interval I of real numbers and any n ∈ N, Cn(I,X)

stands for the set of all n times continuously differentiable functions from I into X.

We denote by f (i) the ith derivative of f with respect to t and we define

Cn
b (I,X) =

{
f ∈ Cn(I,X) : f (i) is bounded for i = 0, 1, . . . , n

}
.

It is easy to see that Cn
b (I,X) equipped with the norm

∥f∥ = max
{∥∥f (i)

∥∥
∞ : i = 0, 1, . . . , n

}
is a Banach space. Note that Cn(I,X) = Cn

b (I,X) provided I is a closed interval.

Following the ideas of Cădariu and Radu [3, 4, 22] and Jung [13], we prove

the Hyers-Ulam-Rassias stability of the nth order linear differential equations of the

form (1.1). Before starting with our main theorem, we need the following fixed point

alternative theorem:

Theorem 2.1 Let (Ω, d) be a generalized complete metric space. Assume that Λ :

Ω → Ω is a strictly contractive operator with the Lipschitz constant L < 1, i.e.,

d(Λf1,Λf2) ≤ Ld(f1, f2)

for all f1, f2 ∈ Ω. If there exists an integer n0 ≥ 0 such that d(Λn0+1y,Λn0y) < ∞
for some y ∈ Ω, then the following statements are true:

(i) The sequence {Λny} converges to a fixed point f of Λ;

(ii) f is the unique fixed point of Λ in Ω∗ = {g ∈ Ω : d(Λn0y, g) < ∞};

(iii) If g ∈ Ω∗, then

d(g, f) ≤ 1

1 − L
d(Λg, g).

For a c ∈ [a, b] and for every integrable function f : [a, b] → X, the Volterra type

operator Vc can be defined by

Vc(f)(t) =

∫ t

c
f(τ)dτ (for t ∈ [a, b]).

Note that (Vc(f))′(t) = f(t) for any c ∈ [a, b].

Let V 0
c = id be the identity operator and V m

c (f)(t) = Vc(V
m−1
c (f))(t) for all

m ∈ N and t ∈ [a, b]. Then, for all integrable and continuous functions

f, g : [a, b] → X, scalars α, β, and for any m ∈ N, it holds that
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(a) Vc(αf + βg) = αVc(f) + βVc(g);

(b) ∥Vc(f)∥ ≤ Vc(∥f∥);

(c) (V m
c (f))′(t) = V m−1

c (f)(t);

(d) (V m
c (f))(i)(t) = V m−i

c (f)(t) for i = 0, 1, . . . ,m;

(e) If I is a closed interval of R and f is integrable on I, then V m
c (f) < ∞.

In what follows, the notation

∥f∥I = sup
{
|f(t)| : t ∈ I

}
is used for every bounded function f : I → F.

Definition 2.2 Given an integer n ≥ 1 and an interval I, let p0, p1, . . . , pn : I → F
be bounded continuous functions, where pn(t) ̸= 0 for t ∈ I. Assume that q ∈
Cb(I,X) and φ : I → [0,∞) is an integrable function. We define

Sn(I, φ) =

{
y ∈ Cn

b (I,X) :

∥∥∥∥ n∑
k=0

pk(t)y(k)(t) − q(t)

∥∥∥∥ ≤ φ(t) for all t ∈ I

}
.

Lemma 2.3 Under the assumptions of Definition 2.2, let I be any interval whose

interior contains the open interval (a, b) with 0 ≤ b − a < 1. Let φ : I → [0,∞) be

a bounded integrable function and

(2.1) La,b = (b− a)

n−1∑
k=0

∥∥∥∥pkpn
∥∥∥∥
I

< 1.

Then it holds:

(i) If either I = [a, b] or I = [a, b) and y ∈ Sn(I, φ), then there exists a unique

solution f ∈ Cn
b (I,X) of Eq. (1.1) such that

f (i)(a) = y(i)(a) (for 1 = 0, 1, . . . , n− 1)

and

(2.2) ∥f(t) − y(t)∥ ≤ ∥1/pn∥I
1 − La,b

∫ b

a
|φ(τ)|dτ.

(ii) If either I = [a, b] or I = (a, b] and y ∈ Sn(I, φ), then there exists a unique

solution f ∈ Cn
b (I,X) of Eq. (1.1) satisfying (2.2) and

f (i)(b) = y(i)(b) (for 1 = 0, 1, . . . , n− 1).

(iii) If I = (a, b) and y ∈ Sn(I, φ), then there exists a unique solution f ∈ Cn
b (I,X)

of Eq. (1.1) satisfying (2.2).
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Proof. Let ∥φ∥1 =
∫ b
a φ(t)dt.

(i) Consider the set

Ωa =
{
f ∈ Cn−1

b (I,X) : f (i)(a) = y(i)(a) for i = 0, 1, . . . , n− 1
}

equipped with the metric d defined by

d(f1, f2) = max

{∥∥∥f (i)
1 − f

(i)
2

∥∥∥
I

: i = 0, 1, . . . , n− 1

}
.

Then it is easy to show that (Ωa, d) is a complete metric space and

(2.3) max

{∥∥∥f (i)
1 (t) − f

(i)
2 (t)

∥∥∥ : i = 0, 1, . . . , n− 1

}
≤ d(f1, f2) (for t ∈ [a, b]).

Now we define the mapping Λa : Ωa → Ωa by

(Λaf)(t) =

n−1∑
k=0

y(k)(a)

k!
(t− a)k − V n

a

( n−1∑
k=0

pk
pn

f (k) − q

pn

)
(t)

for all f ∈ Ωa and t ∈ I. Note that the ith derivative of Λaf is given by

(2.4) (Λaf)(i)(t) =
n−1∑
k=i

y(k)(a)

(k − i)!
(t− a)k−i − V n−i

a

( n−1∑
k=0

pk
pn

f (k) − q

pn

)
(t)

for i = 0, 1, . . . , n− 1. If f1, f2 ∈ Ωa are given, then it follows from (b), (2.1), (2.3),

and (2.4) that

∥∥(Λaf1)
(i)(t) − (Λaf2)

(i)(t)
∥∥ =

∥∥∥∥V n−i
a

( n−1∑
k=0

pk
pn

(
f
(k)
1 − f

(k)
2

))
(t)

∥∥∥∥
≤ V n−i

a

( n−1∑
k=0

∣∣∣∣pkpn
∣∣∣∣∥∥∥f (k)

1 − f
(k)
2

∥∥∥)(t)

≤ V n−i
a

( n−1∑
k=0

∣∣∣∣pkpn
∣∣∣∣d(f1, f2)

)
(t)

≤ (b− a)n−i
n−1∑
k=0

∥∥∥∥pkpn
∥∥∥∥
I

d(f1, f2)

≤ La,bd(f1, f2)

for all t ∈ I and i = 0, 1, . . . , n− 1. Hence, it follows from the definition of d that

(2.5) d(Λaf1,Λaf2) ≤ La,bd(f1, f2),

which implies that Λa is a strict contraction mapping on Ωa.

An easy computation (using induction on i) shows that

(2.6) V n−i
a

(
y(n)

)
(t) = y(i)(t) −

n−1∑
k=i

y(k)(a)

(k − i)!
(t− a)k−i (for i = 0, 1, . . . , n− 1).
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Thus, it follows from (a), (2.4), (2.6), and from the definition of Sn(I, φ) that∥∥y(i)(t) − (Λay)(i)(t)
∥∥

=

∥∥∥∥y(i)(t) − n−1∑
k=i

y(k)(a)

(k − i)!
(t− a)k−i + V n−i

a

( n−1∑
k=0

pk
pn

y(k) − q

pn

)
(t)

∥∥∥∥
=

∥∥∥∥V n−i
a

(
y(n)

)
(t) + V n−i

a

( n−1∑
k=0

pk
pn

y(k) − q

pn

)
(t)

∥∥∥∥
=

∥∥∥∥V n−i
a

(
y(n) +

n−1∑
k=0

pk
pn

y(k) − q

pn

)
(t)

∥∥∥∥
=

∥∥∥∥V n−i
a

(
1

pn

n∑
k=0

pky
(k) − q

pn

)
(t)

∥∥∥∥
≤

∥∥∥∥ 1

pn

∥∥∥∥
I

V n−i
a

(∥∥∥∥ n∑
k=0

pky
(k) − q

∥∥∥∥)(t)

≤
∥∥∥∥ 1

pn

∥∥∥∥
I

V n−i
a (φ)(t)

≤ ∥φ∥1
∥∥∥∥ 1

pn

∥∥∥∥
I

for any i = 0, 1, . . . , n− 1 and t ∈ I, where we note that

Va(φ)(t) =

∫ t

a
φ(τ)dτ ≤

∫ b

a
φ(τ)dτ = ∥φ∥1

and

V n−i
a (φ)(t) ≤ (b− a)n−i−1∥φ∥1 ≤ ∥φ∥1.

Hence, we get

(2.7) d(Λay, y) ≤ ∥φ∥1
∥∥∥∥ 1

pn

∥∥∥∥
I

< ∞.

By Theorem 2.1 (i), there exists a mapping f ∈ Ωa (and so f ∈ Cn−1
b (I,X))

which is a fixed point of Λa, i.e.,

(2.8) f(t) = (Λaf)(t) =

n−1∑
k=0

y(k)(a)

k!
(t− a)k − V n

a

( n−1∑
k=0

pk
pn

f (k) − q

pn

)
(t).

Since V n
a (F ) ∈ Cn

b (I,X) for every function F ∈ Cb(I,X), we conclude that f ∈
Cn
b (I,X). Now by differentiating both sides of (2.8) n times, we obtain

f (n)(t) = (Λaf)(n)(t) = −
n−1∑
k=0

pk(t)

pn(t)
f (k)(t) +

q(t)

pn(t)
,

i.e.,
n∑

k=0

pk(t)f (k)(t) = q(t) (for t ∈ I).
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Therefore, f is a solution of Eq. (1.1). Since f ∈ Ωa, by the definition of Ωa, we

have

f (i)(a) = y(i)(a) (for i = 0, 1, . . . , n− 1).

Moreover, by Theorem 2.1 (ii), f is a unique fixed point of Λa in the set

Ω∗
a = {g ∈ Ωa : d(g, y) < ∞}. Hence, d(y, f) < ∞ and by Theorem 2.1 (iii)

and considering (2.1) and (2.7), we conclude that

d(y, f) ≤ 1

1 − La,b
d(Λay, y) ≤ ∥1/pn∥I

1 − La,b
∥φ∥1.

On the other hand, by (2.3), we have

∥y(t) − f(t)∥ ≤ d(y, f) ≤ ∥1/pn∥I
1 − La,b

∥φ∥1 (for t ∈ [a, b]),

which completes the proof of part (i).

(ii) Let us define

Ωb =
{
f ∈ Cn−1

b (I,X) : f (i)(b) = y(i)(b) for i = 0, 1, . . . , n− 1
}

and

(Λbf)(t) =

n−1∑
k=0

y(k)(b)

k!
(t− b)k − V n

b

( n−1∑
k=0

pk
pn

f (k) − q

pn

)
(t).

Then, we get

(Λbf)(i)(t) =

n−1∑
k=i

y(k)(b)

(k − i)!
(t− b)k−i − V n−i

b

( n−1∑
k=0

pk
pn

f (k) − q

pn

)
(t)

and

V n−i
b

(
y(n)

)
(t) = y(i)(t) −

n−1∑
k=i

y(k)(b)

(k − i)!
(t− b)k−i (for i = 0, 1, . . . , n− 1).

Applying Λb and Ωb instead of Λa and Ωa, we follow the steps in part (i) to show

that there exists a unique solution f ∈ Cn
b (I,X) of Eq. (1.1) satisfying (2.2) and

f (i)(b) = y(i)(b) for every i = 0, 1, . . . , n− 1.

(iii) Write (a, b) = (a, c] ∪ [c, b) for some c ∈ (a, b). Since y ∈ Sn(I, φ), it holds

that y ∈ Sn((a, c], φ) and y ∈ Sn([c, b), φ). Since max{La,c, Lc,b} < La,b < 1, by

parts (i) and (ii), there exist solutions f1 ∈ Cn
b ((a, c], X) and f2 ∈ Cn

b ([c, b), X) of

Eq. (1.1) such that

f
(i)
1 (c) = y(i)(c) = f

(i)
2 (c) (for i = 0, 1, . . . , n− 1),

where f1 and f2 are uniquely determined. We define f : (a, b) → X by f(t) = f1(t)

for t ∈ (a, c] and f(t) = f2(t) for t ∈ [c, b). Then, f is a solution of (1.1) and by the

above relation, f ∈ Cn
b (I,X). Moreover, by (2.2), we have

∥y(t) − f(t)∥ ≤ ∥1/pn∥I
1 − La,b

∥φ∥1 (for t ∈ (a, b)),

which completes the proof. �
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3 Hyers-Ulam-Rassis stability of Eq. (1.1)

We now prove the main theorem of this paper.

Theorem 3.1 Let I be any interval, q ∈ C(I,X), and let p0, p1, . . . , pn : I → F
be continuous functions such that pn(t) ̸= 0 for each t ∈ I. Then the differential

equation
n∑

k=0

pk(t)y(k)(t) = q(t)

has the Hyers-Ulam-Rassias stability.

Proof. Without loss of generality, let I = (a, b) and pn(t) ≡ 1. Assume that

φ : I → [0,∞) is a bounded integrable function and y ∈ Cn
b (I,X) such that

(3.1)

∥∥∥∥y(n)(t) +

n−1∑
k=0

pk(t)y(k)(t) − q(t)

∥∥∥∥ ≤ φ(t) (for t ∈ I).

Let {a0, a1, . . . , am} be a partition of the interval [a, b] with the properties:

(1) a0 = a, am = b, and 0 < aj − aj−1 < 1 for j = 1, 2, . . . ,m;

(2) I1 = (a0, a1], Im = [am−1, am), and Ij = [aj−1, aj ] for j = 2, 3, . . . ,m− 1;

(3) Laj−1,aj = (aj − aj−1)
∑n−1

k=0 ∥pk∥Ij < 1 for j = 1, 2, . . . ,m.

Restricting the inequality (3.1) to the interval I1 = (a0, a1], it follows from

Lemma 2.3 (ii) that there exists a unique solution y1 ∈ Cn
b (I1, X) of Eq. (1.1) such

that

∥y(t) − y1(t)∥ ≤ 1

1 − La0,a1

∫ a1

a0

|φ(τ)|dτ (for t ∈ I1)

and

(3.2) y
(i)
1 (a1) = y(i)(a1) (for i = 0, 1, . . . , n− 1).

If the inequality (3.1) is restricted to I2 = [a1, a2], then Lemma 2.3 (i) and (3.1)

imply that there exists a unique solution y2 ∈ Cn
b (I2, X) of Eq. (1.1) such that

∥y(t) − y2(t)∥ ≤ 1

1 − La1,a2

∫ a2

a1

|φ(τ)|dτ (for t ∈ I2)

and

(3.3) y
(i)
2 (a1) = y(i)(a1) (for i = 0, 1, . . . , n− 1).

Comparing (3.2) and (3.3), we get

y
(i)
2 (a1) = y

(i)
1 (a1) (for i = 0, 1, . . . , n− 1).
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By a similar way, we obtain a solution yj ∈ Cn
b (Ij , X) of Eq. (1.1) on Ij such

that

(3.4) ∥y(t) − yj(t)∥ ≤ 1

1 − Laj−1,aj

∫ aj

aj−1

|φ(τ)|dτ (for t ∈ Ij)

and

y
(i)
j+1(aj) = y

(i)
j (aj) (for j = 1, 2, . . . ,m− 1 and i = 0, 1, . . . , n− 1).

Applying the last relation and using the fact that yj (j = 1, 2, . . . ,m) is a solution

of Eq. (1.1) on Ij , it follows from Eq. (1.1) with pn(t) ≡ 1 that

y
(n)
j+1(aj) = −

n−1∑
k=0

pk(aj)y
(k)
j+1(aj) + q(aj) = −

n−1∑
k=0

pk(aj)y
(k)
j (aj) + q(aj) = y

(n)
j (aj).

Hence

(3.5) y
(i)
j+1(aj) = y

(i)
j (aj) (for j = 1, 2, . . . ,m− 1 and i = 0, 1, . . . , n).

Now, we define ys : I → X by ys(t) = yj(t) for t ∈ Ij . In view of (3.5), the

function ys is well defined and n times continuously differentiable. Let us define

M = max

{
1

1 − Laj−1,aj

: j = 1, 2, . . . ,m

}
.

Then, (3.4) implies that

∥y(t) − ys(t)∥ ≤ M∥φ∥1 (for t ∈ I)

and this completes the proof. �

When φ(t) ≡ ε > 0, we obtain the following corollary.

Corollary 3.2 Under the assumptions of Theorem 3.1, the differential equation

n∑
k=0

pk(t)y(k)(t) = q(t)

has the Hyers-Ulam stability.
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