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 Abstract: According to the principle of the three-dimensional linearized theory of elastic 

waves in initially stressed bodies (TLTEWISB), a dynamical stress field in a pre-stressed bi-

layered plate-strip under the action of an arbitrary inclined force resting on a rigid foundation 

is studied. It is assumed that the force applied to upper free surface of the plate-strip is time-

harmonic and the materials used are linearly elastic, homogenous and isotropic. By employing 

Finite Element Method (FEM) the governing system of partial differential equations of 

motion is approximately solved. The different dependencies of the problem such as the ratio 

of height of plates and initial stress of the materials are numerically investigated. Particularly 

the effect of arbitrary inclined force is analyzed. It is observed that the numerical results 

obtained according to various angles converge to the ones in the previous studies. 

1.  Introduction 

Theory of elasticity is concerned with the determination of the stresses and displacements in a 

body due to applied mechanical or thermal loads. It is therefore one of the most important and 

curious subject areas in modern sciences and has been widely studied. From the inception of 

the theory of elasticity, the subject of wave propagations in elastic bodies has been under 

dense study by a great number of researchers. In particular, elastodynamics problems arise in 

almost all areas of applied sciences and engineering. The demands for economical uses of 

materials in space technology, underground explosions, and important problems in the oil 

industry have encouraged dense research in finite deformation theories, propagation of shock 

waves in solids, diffraction theory, dynamic stress concentrations, and wave propagations in 

inhomogeneous and anisotropic materials. Considerable attention is therefore given to the 

theory of elastodynamics. There also exist investigations on the nonlinear effects in the 

dynamic of the elastic medium. However the problems in this case cannot be solved by using 

the conventional methods since the finite motions of elastic bodies under initial and boundary 

conditions are generally governed by a set of nonlinear partial differential equations for which 

no rigorous and systematic theory has been developed. These problems have been 

theoretically and experimentally investigated over the last century. Frankly many of these 

investigations are made for dynamic problems consisting of the elastic bodies with initial 

stresses, which is so-called the three-dimensional linearized theory of elastic waves in initially 

stressed bodies (TLTEWISB). The monographs [1-3] present well-known systematic 

investigations. The most comprehensive reviews of the studies on the subject are made in 

[4,5]. Some of the important studies concerned with the field are given by the references [6-
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10]. It follows from the analysis of the aforementioned and many other related references 

which are not given here that, almost all of these investigations were made within the 

framework of TLTEWISB and under the two fundamental assumptions such (i) the pre-

stressed state (or initial stress-state) is exactly homogeneous and static; and (ii) the amplitudes 

of the deformations superimposed on the pre-stressed medium are significantly smaller than 

the magnitudes of the initial deformations. 

In [6], an initially stressed stratified half-plane whose free surface is under a normal harmonic 

point force is considered. In [7], effect of initial stresses on dynamic stress fields within an 

elastic stratified half plane is investigated. The result obtained in [6,7] are also extended to a 

half-space covered with a single layer in [8]. The case such a half-plane covered with a pre-

stretched layer under the action of a periodic dynamic (harmonic) lineal load applied to the 

free surface of the layer is studied in [9]. The investigations started in [6-9] are also developed 

for the cases where on the free face plane of the covering layer the arbitrary inclined lineal 

located time-harmonic forces act in [10]. While these results are found, the exponential 

Fourier transform (in some cases the double-exponential Fourier transform) is widely 

employed because of the cases considered in the investigations mentioned are generally that 

the only width or both the length and width of one or all of the layer(s) and half-plane are 

assumed to be infinite. The numerical solutions of the corresponding problems converge to 

the exact solutions under this assumption. However, in the finite length and width, these 

results cannot exactly be correct. Moreover, the method cannot be applied in such cases. 

Hence in [11-13], the time-harmonic stress field problem in the pre-stressed bi-layered slab 

with finite length resting on a rigid foundation, the time-harmonic dynamical stress field 

problem for the pre-stressed plate-strip with finite length resting on a rigid foundation and the 

dynamical stress field problem for the pre-stressed plate-strip with finite length resting on a 

rigid foundation under the action of an inclined time-harmonic external force are investigated, 

respectively. 

Consequently, an investigation on the case in which the arbitrary inclined lineal located time-

harmonic force on the free-face plane of a body consisting of two layers is applied has not 

been carried out so far. Considering this expression, the first attempt is made in this field. 

Then some special cases in the analyses of the different types of dependent variables within 

the problem are discussed. It is also shown that the numerical results obtained in the present 

paper converge to the values in [11-13] for those which are the certain special cases.  

It should be noted that throughout the paper, repeated indices are summed over their ranges 

unless otherwise specified. 

2.  Problem Formulation  

An initially stressed bi-layered plate-strip being under the influence of an arbitrary inclined 

time-harmonic lineal load applied to the free surface as shown in Fig. 1 is considered. The 

Cartesian coordinates denoted by ix  are assumed to be associated with the initial state and in 

the natural state coincide with the Lagrange coordinates. It is assumed that the length of the 

plate in the direction of 3Ox
 
axis is infinite. Since linearly located time-harmonic load 
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extending to infinity in the direction of 3Ox
 
axis which is inclined to the 2 0x   plane is 

applied to the free face plane of the layer, the plane deformation state arises in the 1 2Ox x  

plane according to all the foregoing assumptions. All investigations for the present case are 

therefore made in the 1 2Ox x  plane. Hereafter, the superscripts “(1)” and “(2)” refer to the 

upper and lower plate, respectively, and the subscript “0” to the initial state. The plates 

occupy the domains 

 
    1

1 2 3 1 1 2 3, , : , 0,D x x x a x a h x x           (1) 

and 

 
    2

1 2 3 1 2 1 3, , : , ,D x x x a x a h x h x           , (2) 

respectively. The linear elastic material of the layer is assumed to be both homogenous and 

isotropic.  ,0
11

m
  indicates the unique non-zero component of the corresponding initial stress 

tensor, which is constant and written in the form  
0

m
 for short.  

According to Guz [1-3], the equations of motion of TLTEWISB for the present case are 

 
         
, 0 ,11

m m m m m

ij j i iu u    , (3) 

where  m
  is a density of the mth material in the natural state and the other representations in 

Eq. (3) are conventional notations. For an isotropic compressible material, the mechanic 

relations  

 
         

2
m m m m m

ij ij ij        (4) 

are also well-known, where       , ,

1

2

m m m

ij i j j iu u   , 
 m

  and  m
  are the Lamé constants, ij  

is the Kronecker delta,  11 22 12, ,
T

  ε  and  11 22 12, ,
T

  σ show the deformation and the  

stress tensor, and the notation 
 k

iu  to the perturbations of the components of the displacement 

vector. 

It should be noted out that the following contact conditions at the interface must be satisfied: 

 
   

2 1 2 1

1 2

2 2i i
x h x h

 
 

  and 
   

2 1 2 1

1 2

i i
x h x h

u u
 

 . (5) 

The following boundary conditions also exist: 
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2 1

2 2

2

0 ,1 1

1 1i i

21 0 1 22 0 1
0 0

0, 0,

e cos , e sin ,

; 1,2 ,

m m m

j j j
x h x a

t t

x x

u u

p x p x

j m

 

 

     

 

 

  

   



 (6) 

where     is the Dirac delta function. 

With the above-mentioned, the formulation of the problem and the investigation of the 

governing field equations are thus exhausted. 

3.  Method of Solution 

The solution of the problem (3-6) is now considered. According to the assumptions accepted 

in Section 2, the point load is harmonic in time. It is therefore sufficient to investigate only the 

stationary case. All the dependent variables consisting of the problem are then harmonic-time 

and can be written in the form 

                 i

1 2 1 2, , , , , , , e
m m m m m m t

i ij ij i ij iju x x t u x x     , (7) 

where the conventional notation is used. The dimensionless coordinate system can be 

constituted by the coordinate transformation 

 1
1̂

x
x

h


 
and 2

2
ˆ

x
x

h
 .  (8) 

Considering the transformation (8), the domains in (1-2) can be rewritten in the form  

 

    
    

1

1 2 1 2

2

1 2 1 2

ˆ ˆ ˆ ˆ ˆ, : , 0 ,

ˆ ˆ ˆ ˆ ˆ, : , 1 ,

D x x a x a h x

D x x a x a x h

        

         
 (9) 

and substituting Eq. (7) into (3-6) and applying the coordinate transformation in (8), the 

present governing equation and the corresponding conditions for the amplitudes take the form 

 
         2 2

, 0 ,11 0
m m m m m

ij j i iu h u       (10) 

 

         

       

      

2 2 2 2 2

2 2

1

1 2 1 2 2

2 2
ˆ ˆ ˆ ˆ ˆ 1

1 1

21 1 22 1
ˆ ˆ0 0

0 ,1 1
ˆ

, , 0,

ˆ ˆcos , sin ,

0,

, 1,2,

j j j j j
x h x h x h x h x

o o
x x

m m m

j j
x a

u u u

p hx p hx

u

i j

 

     

 

       

 



  

   

 



 (11) 

where new terms a  and h  show a h and 1h h , respectively. Hereafter, the superimposed 

dashes and hats and the primes will be omitted until specified otherwise. 
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Multiplying Eqs. (10) with the test functions  1 1 1 2,v v x x
 
and  2 2 1 2,v v x x

 
respectively, 

summing them side-by-side, integrating the resultant equation over the domain 
   1 2

D D D   and after some mathematical operations such as applying partial integration, 

the following equation is obtained: 

 

 

 

 

 
 

 

 
         

 
 

 

   
 

 

 
 

 

   

 

 

       

0
1,1 2,2 1,1 1,2 2,1 1,2

0
1,2 2,1 2,1 1,1 2,2 2,2

2 2

1 1 2 2

2

1 2

mm m
m m m m m m

m m m

m m m
m m m m m m

m m m

m m m m m

m

u u v u u v

u u v u u v

h
u v u v

 

  

  

  






   
           

    
 

       
              

        
 
   

  
 

 

                   

         

11 0 1,1 1 21 0 2,1 2 1

12 1 22 2 2

cos ,1
,

cos ,

D

m m m m m m m m

m
m m m m

D

dA

h u v h u v n x
ds

h v v n x

   

  

    
  

  
   
  





 (12) 

where D  represents the boundary consisting of  1
D  enclosing the domain 

 1
D  and  2

D  

enclosing the domain 
 2

D .  

The integral over the boundary D  in Eq. (12) must be calculated. To do this, Fig. 2 is 

considered. D  can easily be written as the form 
, 1,2

ij

i j

D 


  . Note that 14  is the same but 

counter-wise curve with 22 . The boundaries ij  
are explicitly 

 

     

     

     

     

11 1 2 1 2 12 1 2 1 2

13 1 2 1 2 14 1 2 1 2

21 1 2 1 2 22 1 2 1 2

23 1 2 1 2 24 1 2 1 2

, : , 0 , , : , 0 ,

, : , 0 , , : , ,

, : , 1 , , : , ,

, : , 1 , , : , 1 .

x x x a h x x x a x a x

x x x a h x x x a x a x h

x x x a x h x x a x a x h

x x x a x h x x a x a x

 

 

 

 

         

           

           

            

 (13) 

Considering these definitions, the boundary conditions in (11) and the property 

      f x x f x   , where    f x df x dx  , the non-zero components in the right side 

of Eq. (12) are 

 
 
 

    
2

1 11

0 1 2 11
0

cos sin


 
 



 
a

x
a

x
p v v dx . (14) 

Consequently, Eq. (12) can be written as 
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0
1,1 2,2 1,1 1,2 2,1 1,2

0
1,2 2,1 2,1 1,1 2,2 2,2

2 2

1 1 2 2

2

1 2

mm m
m m m m m m

m m m

m m m
m m m m m m

m m m

m m m m m

m

u u v u u v

u u v u u v

h
u v u v

 

  

  

  






   
           

    
 

       
              

        
 
   

  
 

 
 

    
2

1 11

0 1 2 11
0

cos sin .

D

a

x
a

dA

x
p v v dx


 
 



  





 (15) 

Denoting the terms in the left and right side of Eq. (15), respectively, by     ,B u v
m m

 and 

  v
m

,  the equation  based  on  the bilinear and linear form such as         ,B u v v
m m m

  

has been obtained, where       1 2,u
m m

u u
m

 and       1 2,
m m

v vv
m

. Introducing these notations  

 
               

 

     
1 2 2 0

2

2 , , and ,
m m m m m m m m m m m

m

h
c c

c


              (16)         

where 
 
1

m
c , 

     
2 2,  and
m m m

c    represent the speed of dilatation waves, the speed of 

distortion wave, the dimensionless frequency, and  the parameter related to the pre-stress 

intensities, respectively, the total energy functional           , 2J B u u u u
m m m m

 can be 

written as follows: 

 

  

 

 

     

 

       

 
   

        

 
 

2 2 2 2

1 1 2 1 2 1 2

1 2 1 2 2 12

2 2
2 2 2

1 2
2 1 1

1 1

1

0 1

2

1

2

m m m m m m m m

m m

m mD
m m m m

c u u u u u u

x x x x x xc
J dA

u u
u u

x x

x
p











              
                                  

  
                               



u
m

    
2

1 1

1 2 1
0

cos sin .

a

x
a

u u dx 






(17) 

Note that the equations of motion in (10) and boundary conditions in (11) can immediately be 

derived by using the total energy functional   J u
m

 in (17). To do this, as known the 

principle of calculus of variation, its first variation must be equalized to zero, which is 

denoted by 

    0J u
m

, (18) 
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and then the coefficients of the terms 1u  and 2u  must separately be equalized to zero. 

Following this procedure, Eqs. (10) and boundary-contact conditions (11) can be obtained. 

The FEM modeling for Eq. (18) is now considered. The displacement-based finite element 

method is employed here. For this purpose, the domain D  is divided into a number of sub-

domains whose numbers are finite. The functions which are investigated in each sub-domain 

must therefore be displacements. Thus, 

      1

1

,
M

k k

i i

i

u c N r s


  and      2

1

,
M

k k

i i

i

u d N r s


  (19) 

can be written, where M  is the number of the nodes over k th element,  ,jN r s  stands for 

the shape functions over the thk  element, and r  and s  are its local normalized coordinate 

components in the local coordinate system associated with the corresponding element as 

shown Fig. 3. It should be pointed out that the shape functions   1

2,jN r s L , where 1

2L  

represents a set of the functions such as the squares of them and their first order partial 

differentials are integrable in the sense of Lebesque. The each of the shape functions  ,jN r s , 

on the other hand, is defined over the domain    1,1 1,1     and can be found in [14]. 

According to the Rayleigh-Ritz method [14], substituting the approximate solutions (19) into 

the total energy functional (17), and considering the boundary and contact conditions in (11), 

the system of algebraic equations 

  2 K- M u F  (20) 

is obtained, where K  is the stiffness matrix, M  is the mass matrix, u  is the column vector of 

unknown displacements at the nodes in the direction of 1Ox  and 2Ox  axes, and F  is the force 

vector. They are in the form 

 

   

   

11 12

21 22

 
  
  

K

k k

k k

K K

K K
, (21) 

 

   

   

11 12

21 22

k k

k k

M M

M M

 
  
  

M , (22) 

 
    ,

T
k k

i ic d   
   

u , (23) 

and 

 
    1 2,   

   
F

T
k k

f f , (24) 

where 
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2

0
2

1
11 2 1 2

1 1 2 2 1 11 2

a m
k m ij ij ij mk k k

ij km

a

N N NN N c N
K N N dx dx

x x x x x xc


 

      
               

  , (25) 

 
 

 

 

0

12 1 2

1 2 2 11

a m
k ij ijk k

m

a

N NN N
K dx dx

x x x x



 

   
  

    
  , (26) 

 
 

 

 

0

21 1 2

1 2 2 11

a m
k ij ijk k

m

a

N NN N
K dx dx

x x x x



 

   
  

    
  , (27) 

    
 

 

  
2

0
2

1
22 2 1 2

1 1 1 1 2 21 2

a m
k m ij ij ij mk k k

ij km

a

N N NN N c N
K N N dx dx

x x x x x xc


 

      
               

  , (28) 

  
k

T
k k k

k

D

M N N dD  , (29) 

  

  1 2

0
1 1 0

cos
k

k x x

p
f N 

  
  , (30) 

and 

  

  1 2

0
2 1 0

sin
k

k x x

p
f N 

  
  . (31) 

The other components of the force vector except for the components in (30) and (31) are 

equal to zero due to the boundary conditions. When the matrix equation in (20) is solved, the 

displacements at the nodes are obtained. Then considering these values, the stresses can easily 

be calculated using the stress-displacement relation 

 
     

σ u
m m m
D B , (32) 

where 
 m
D  and B  are defined by 

  
 

     

   

   

 

1 0

1 0
1 2 1

0 0 1 2

m m

m
m m m

m m

m

E
 

 
 



 
 

  
   

  

D  (33) 

and  
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0

0 .

i

i

i i

N

r

N

s

N N

s r

 
 
 

 
 
 
  
   

B  (34) 

Note that in Eq. (32), 
 m

E  is the modulus of elasticity and 
 m

  is the Poisson coefficient of 

the thm  layer. 

So with the above-stated the FEM modeling of the problem being considered is exhausted. 

4.  Numerical Findings and Discussions 

Beginning of this section, first, it is useful to make some explanations. The present plate-strip 

is divided into 80 parts of equal length in the direction 1Ox and into 8 parts of equal length in 

the direction 2Ox . Introduce the notation    1 2
e E E . It should be noted that all 

investigations in this study are made for the case where 2 0.2h a   and 1 2h h  unless 

otherwise specified. All investigations made in this paper are at the interface  where two plate 

strips contact each other and on the bottom surface where plate strip contacts with the rigid 

fondation. Note that the letters a  and b in figures show the graphs plotted at interface and on 

the bottom surface, respectively. 

Now the validity of algorithm and programs submitted by the authors in this study must be 

justified. To do this, the fundamental investigations such (i) for the case where 90   the 

numerical results for the 22  coincide with the corresponding ones obtained in the paper [11] 

and (ii) in the cases where both materials are specially selected the values of 22  approach the 

corresponding ones for the same dynamical loading under various inclined angle obtained in 

the paper [10] will be analyzed separately. 

Fig. 4 shows the distribution of 22 0h p  with respect to 1x h  under the cases considered in 

the reference [11] along the corresponding lines. The graphs in Fig. 4 coincide with the ones 

given in [11]. In this way, the algorithm and programs have been verified. It follows from 

these graphs that the  absolute values of the considered stress along the corresponding lines 

decreases with e . This result is explained by the fact that Young’s modulus of lower plate is 

smaller than that of upper plate. Moreover, it can be said from the numerical results given in 

Fig. 4 that, with increasing e , the oscillating character of distribution of 22 0h p  disappears.  

In Fig. 5, the distribution of 22 0h p  with respect to 1x h  for a pair of Aluminium (Al) with 

properties 
 

0.35
Al

v   and  
32.7 10

Al
    

3kg m  and Steel (St) with properties 
 

0.29
St

   

and  
37.86 10

St
    

3kg m  under 90  , 
   1 2

2 2 0    and 2 0.2h a   is given. It can be 
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seen from these graphs that the maximal absolute values of the stress 22 0h p  increase with 

 . Figs. 6 and 7 demonstrate how the distribution of 22 0h p  with respect to 1x h  for a pair 

of Al+St similar to Fig. 5 is under 45   and 0  , respectively. From these figures it can 

be seen that the absolute values of the stress along the corresponding lines decrease with the 

dimensionless frequency  . It follows from these distributions that there are some interface 

points at which 22 0   and their locations depend on  . Moreover, the comparison of the 

graphs given in Figs. 5-7 reveals that the absolute values of 22 obtained increase with   

around the points  0, 2h  and  0, h . As the graphs in Figs. 5-7 show, it is clear that they 

are to be similar to those in [10] (in the qualitative sense). These results confirm again the 

validity and trustiness of the used algorithm and programmes constructed for PC. Note that 

the above discussed results are observed daily in the engineering practice under an impact 

treatment of metals which lie on the others. 

The variation of 22 0h p  with the dimensionless frequency  , at interface and on the 

bottom surface, for the various angles under 1e  , 
   1 2

2 2 0   , 
   1 2

0.33    and 

2 0.2h a   is shown in Fig. 8. As can be seen from the graphs in Fig. 8, the absolute values of 

22 0h p  decrease with the angle  . There exists such a value of   for which 22 0h p  has 

its absolute maximum for the considered range of the change of  , which is called 

“resonance” value. Moreover the dependence between 22 0h p  and   is non-monotonic. 

Also for 1.2 , the oscillating character of distribution of 22 0h p becomes more sensitive. 

It follows from Fig. 8 that for certain values of  , the values of  the normal stress 22 0h p  

are independent of the selected angle . 

The following materials are selected to investigate the effect of the initial stresses for 

numerical consideration: Nickel (Ni) with properties  
0.31

Ni
   and  

38.89 10
Ni

    

3kg m , and Titanium (Ti) with properties 
 

0.33
Ti

   and  
34.54 10

Ti
    3kg m . The 

numerical investigation is performed for the following cases: 

 Case I: (Ni+Ti), Upper plate=Nickel, Lower plate=Titanium 

 Case II: (Ti+Ni), Upper plate=Titanium, Lower plate=Nickel 

For the both cases the investigations desired are made in  0, 2h  and  0, h  because of the 

corresponding influence is of great importance at these points. In Fig. 9, the variation of the 

distribution of 22 0h p  with respect to the corresponding values 
 
2

m
  under 

   1 2
0.2, 0.3, 2 0.2h a      and 

   1 2

2 2   in Case I is displayed for various angles. It 

concludes from these graphs that when the initial stress increases, the absolute values of 

22 0h p  decrease for a fixed value of the angle  . As a natural result of the selection of 

plates, this effect on the bottom surface is less than that at the interface. By the same token the 
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effect of the choice of materials of plates and the values of 22 0h p  increase with the angle 

 . On the other hand, Fig. 10 demonstrates how the distribution of 22 0h p  with respect to 

the corresponding values 
 
2

m
  in Case II under the same assumptions is. As expected, the 

absolute values of 22 0h p  decrease with the selection of plates. The result is a natural 

consequence of the increase in the ratio e . The change of the normal stress 22 0h p  at the 

point  0, 2h  is greater than that at the point  0, h . But the main features and results in 

Fig. 9 do not change in Fig. 10. 

In order to reduce the extent of the present paper, contrary to the previous cases, the influence 

of the various ratios of 1 2h h  is only investigated on the bottom surface for 90  and 45 , 

separately, in Figs. 11 and 12, respectively. For 90  , the absolute values of 22 0h p  

decrease with increasing 1x h . In the other case, the oscillation of 22 0h p  becomes unstable 

around the side edges of plate-strips. For 1 2 1h h  , the normal stress 22 0h p  gets higher 

values, but it gets lower values for 1 2 1h h  . Clearly, for all considered cases, the absolute 

values of 22 0h p  decrease with the ratio of 1 2h h . This investigation is very important 

because the results obtained shall be practically important in applications to architecture, 

engineering, and all other useful arts in which the material of construction is solid, i.e. 

composite materials. 

In Fig. 13, the distribution of 12 0h p  with respect to 1x h  at the interface an on the bottom 

surface under 
       1 2 1 2

2 20, 0.33, 0, 2 0.2h a           and 90   is displayed. 

As shown in Fig. 13, the absolute value of the shear stress 12 0h p  decrease with increasing 

e . Also the shear stress 12  posesses the maximum value at the point 1 0.3x h  for both 

cases. Fig. 14 displays the distribution of 12 0h p  with respect to 1x h  at the interface and on 

the bottom surface under the same conditions in Fig. 13 but for 45  . The absolute values 

of the shear stress 12 0h p  decrease with increasing e . 

Now the effect of the dimensionless frequency   on the shear stress 12 0h p  along the 1Ox  

axis is given in Fig. 15 under the assumptions given in Fig 5. As shown in Fig. 15, the 

absolute values of the shear stress 12 0h p  decrease with the dimensionless frequency  . 

Around the points  0, 2h  and  0, h , the shear stress 12 0h p  gets values which are so 

close to zero. In Fig. 16, the distribution of the shear stress 12 0h p  with respect to 1x h  is 

displayed under the same assumptions given in Fig. 7 but for 45  . The absolute values of 

the shear stress 12 0h p  increase with the dimensionless frequency   for 1 . Since 1   is 

close to the value of the resonance frequency 
* 1.2  , the character of the oscillation of the 

shear stress 12 0h p  obtained for 1   is not similar to the ones given for 1 . Fig. 17 
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shows the same graph in Figs. 15-16 under the same assumptions but for 
00  . The similar 

comments given above also hold for this case. 

Fig. 18 displays the effect of the initial stress 
 
2

m
  on the distribution of the shear stress 

12 0h p  for Ni+Ti under the same assumptions in  Fig. 9. From Fig. 18, it can be said that the 

values of the shear stress 12 0h p  decrease with increasing  
2

m
  for a fixed value of the 

inclined angle  . Moreover, the shear stress 12 0h p  decreases with increasing angle   for 

a fixed value of  
2

m
 . 

5. Conclusion 

In this paper, the dynamical problem, which has usage areas in the daily life, for the pre-

stressed bi-layered plate-strip with the finite length under the action of arbitrary inclined time-

harmonic forces resting on a rigid foundation is investigated. The FEM modeling of the 

corresponding problem is developed. After then, the numerical results obtained are discussed. 

The effects of the various quantities contributing to the problem are examined. Also, it is 

observed that the numerical results obtained by using the programs and algorithm coincide 

with those in the previous studies. According to all these investigations, some of the important 

results obtained are listed: 

 The absolute values of the stress 22 0h p  decrease with the angle  . 

 The initial stress of the lower plate is more effective than that of the upper plate on the 

normal stress distribution. 

 The effect of 1 2h h  on the distribution of the normal stress 22 0h p  decreases with 

the angle  . 

 The absolute values of normal stress 22 0h p  decrease with the ratio of 1 2h h around 

the point  0, h . 

 The absolute value of the shear stress 12 0h p  decrease with increasing e .  

 The shear stress 12 0h p  decreases with increasing angle  . 

Although some of the results listed above are obtained for the concrete pair of materials, they 

also have a general validity in a qualitative sense. Moreover, the results presented in this study 

are also significant in the linear theory of elastodynamics under the absence of initial 

stretching of the covering layer. 
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Figure Captions 

Figure 1. The geometry of the problem. 

Figure 2. The components of the domain D . 

Figure 3. The order of the nodes of a selected finite element. 

Figure 4a. The distribution of 22 0h p  with respect to 1x h  for various e  in the case where 

0,   
   1 2

2 2 0    and 90   at the interface. 

Figure 4b. The distribution of 22 0h p  with respect to 1x h  for various e  in the case where 

0,   
   1 2

2 2 0    and 90   on the bottom surface. 

Figure 5a. The distribution of 22 0h p  with respect to 1x h  for various   in the case where 

Al+St, 
   1 2

2 2 0    and 90   at the interface. 

Figure 5b. The distribution of 22 0h p  with respect to 1x h  for various   in the case where 

Al+St, 
   1 2

2 2 0    and 90   on the bottom surface. 

Figure 6a. The distribution of 22 0h p  with respect to 1x h  for various   in the case where 

Al+St, 
   1 2

2 2 0    and 45   at the interface. 

Figure 6b. The distribution of 22 0h p  with respect to 1x h  for various   in the case where 

Al+St, 
   1 2

2 2 0    and 45   on the bottom surface. 

Figure 7a. The distribution of 22 0h p  with respect to 1x h  for various   in the case where 

Al+St, 
   1 2

2 2 0    and 0   at the interface. 

Figure 7b. The distribution of 22 0h p  with respect to 1x h  for various   in the case where 

Al+St, 
   1 2

2 2 0    and 0   on the bottom surface. 

Figure 8a. The influence of the angle on the value of 22 0h p  at 1 0x   under 1e  , 

   1 2

2 2 0   , 
   1 2

0.33    and 2 0.2h a   at the interface. 

Figure 8b. The influence of the angle on the value of 22 0h p  at 1 0x   under 1e  , 

   1 2

2 2 0   , 
   1 2

0.33    and 2 0.2h a   on the bottom surface. 

Figure 9a. The effect of the initial stress on the stress 22 0h p  for a pair of Ni+Ti at the 

interface. 
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Figure 9b. The effect of the initial stress on the stress 22 0h p  for a pair of Ni+Ti on the 

bottom surface. 

Figure 10a. The effect of the initial stress on the stress 22 0h p  for a pair of Ti+Ni at the 

interface. 

Figure 10b. The effect of the initial stress on the stress 22 0h p  for a pair of Ti+Ni on the 

bottom surface. 

Figure 11. The stress 22 0h p  as a function of 1x h  for various ratios 1 2h h  under a pair of 

Al+St, 90   and 
   1 2

2 2 0    on the bottom surface. 

Figure 12. The stress 22 0h p  as a function of 1x h  for various ratios 1 2h h  under a pair of 

Al+St, 45   and 
   1 2

2 2 0    on the bottom surface. 

Figure 13a. The distribution of 12 0h p  with respect to 1x h  for various e  in the case where 

0,      1 2
0.33   , 

   1 2

2 2 0    and 90   at the interface. 

Figure 13b. The distribution of 12 0h p  with respect to 1x h  for various e  in the case where 

0,      1 2
0.33   , 

   1 2

2 2 0    and 90   on the bottom surface. 

Figure 14a. The distribution of 12 0h p  with respect to 1x h  for various e  in the case where 

0,      1 2
0.33   , 

   1 2

2 2 0    and 45   at the interface. 

Figure 14b. The distribution of 12 0h p  with respect to 1x h  for various e  in the case where 

0,      1 2
0.33   , 

   1 2

2 2 0    and 45   on the bottom surface. 

Figure 15a. The distribution of 12 0h p  with respect to 1x h  for various   in the case 

where Al+St, 
   1 2

2 2 0    and 90   at the interface. 

Figure 15b. The distribution of 12 0h p  with respect to 1x h  for various   in the case 

where Al+St, 
   1 2

2 2 0    and 90   on the bottom surface. 

Figure 16a. The distribution of 12 0h p  with respect to 1x h  for various   in the case 

where Al+St, 
   1 2

2 2 0    and 45   at the interface. 

Figure 16b. The distribution of 12 0h p  with respect to 1x h  for various   in the case 

where Al+St, 
   1 2

2 2 0    and 45   on the bottom surface. 
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Figure 17a. The distribution of 12 0h p  with respect to 1x h  for various   in the case 

where Al+St, 
   1 2

2 2 0    and 0   at the interface. 

Figure 17b. The distribution of 12 0h p  with respect to 1x h  for various   in the case 

where Al+St, 
   1 2

2 2 0    and 0   on the bottom surface. 

Figure 18a. The effect of the initial stress on the shear stress 12 0h p  for a pair of Ni+Ti at 

the interface. 

Figure 18b. The effect of the initial stress on the shear stress 12 0h p  for a pair of Ni+Ti on 

the bottom surface.  
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