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Abstract

In this paper, based on the properties of almost periodic function and exponential
dichotomy of linear system on time scales as well as Krasnoselskii’s fixed point theorem,
some sufficient conditions are established for the existence of almost periodic solutions
of delayed neutral functional differential equations on time scales. Finally, an example
is presented to illustrate the feasibility and effectiveness of the results.
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1 Introduction

Neutral differential and difference equations arise in many areas of applied mathematics,
such as population dynamics [1], stability theory [2], circuit theory [3], bifurcation analysis
[4], dynamical behavior of delayed network systems [5], and so on. Also, qualitative analysis
such as periodicity and almost periodicity of neutral differential and difference equations
received more recently researchers’ special attention due to their applications, see [6-8] and
the references therein.

However, in the real world, there are many systems whose developing processes are both
continuous and discrete. Hence, using the only differential equation or difference equation
can’t accurately describe the law of their developments. Therefore, there is a need to establish
correspondent dynamic models on new time scales.

The theory of calculus on time scales (see [9] and references cited therein) was initiated
by Stefan Hilger in his Ph.D. thesis in 1988 [10] in order to unify continuous and discrete
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analysis, and it has a tremendous potential for applications and has recently received much
attention since his foundational work, one may see [11-15]. Therefore, it is practicable to
study that on time scales which can unify the continuous and discrete situations.

Motivated by the above, in the present paper, we focus on the following neutral delay
functional differential equations on time scales:

x△(t) = A(t)x(t) +Q△(t, xt) +G(t, x(t), xt), t ∈ T. (1.1)

where T is an almost periodic time scale, A(t) is a nonsingular n× n matrix with continuous
real-valued functions as its elements; the functions Q : T×Rn → Rn and G : T×Rn×Rn → Rn

are continuous with their arguments, respectively; xt ∈ C(T,Rn), and xt(s) = x(t+ s), for all
s ∈ T.

Remark 1.1. The neutral differential and difference equations considered in [6-8] are the
special cases of (1.1). To the best knowledge of the authors, there are few papers in literature
dealing with the existence of almost periodic solutions of neutral delayed functional differential
equations on time scales.

The purpose of this paper is to establish the existence of almost periodic solutions of
(1.1) based on the properties of almost periodic function and exponential dichotomy of linear
system on time scales as well as Krasnoselskii’s fixed point theorem.

In this paper, for each ϕ = (ϕ1, ϕ2, · · · , ϕn)
T ∈ C(T,Rn), the norm of ϕ is defined as

∥ϕ∥ = sup
t∈T

|ϕ(t)|0, where |ϕ(t)|0 =
n∑

i=1

|ϕi(t)|; and when it comes to that ϕ is continuous, delta

derivative, delta integrable, and so forth, we mean that each element ϕi is continuous, delta
derivative, delta integrable, and so forth.

2 Preliminaries

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ, ρ : T → T and the graininess µ : T → R+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t,
right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then Tk = T\{m}; otherwise Tk = T. If T has a right-scattered minimum m,
then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous provided it is continuous at right-dense
point in T and its left-side limits exist at left-dense points in T. If f is continuous at each
right-dense point and each left-dense point, then f is said to be a continuous function on T.

The basic theories of calculus on time scales, one can see [9].
A function p : T → R is called regressive provided 1 + µ(t)p(t) ̸= 0 for all t ∈ Tk. The set

of all regressive and rd-continuous functions p : T → R will be denoted by R = R(T,R).
If r is a regressive function, then the generalized exponential function er is defined by

er(t, s) = exp

{∫ t

s

ξµ(τ)(r(τ))∆τ

}
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for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h
, if h ̸= 0,

z, if h = 0.

Let p, q : T → R be two regressive functions, define

p⊕ q = p+ q + µp q, ⊖p = − p

1 + µp
, p⊖ q = p⊕ (⊖q).

Lemma 2.1. (see [9]) Assume that p, q : T → R be two regressive functions, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) =

1
ep(s,t)

= e⊖p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) (e⊖p(t, s))

∆ = (⊖p)(t)e⊖p(t, s).

Lemma 2.2. (see [9]) If p ∈ R be an n× n-matrix-valued function on T and a, b, c ∈ T, then

[ep(c, ·)]∆ = −p[ep(c, ·)]σ and
∫ b

a

p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

The definitions of almost periodic function and uniformly almost periodic function on time
scales can be found in [16,17].

In what follows, we need the following notation. For every real sequence α = (αn) and a
continuous function f : T → Rn, define Tαf = lim

n→∞
f(t+ αn) if lim

n→∞
f(t+ αn) exists.

Lemma 2.3. A function f : T → Rn is almost periodic if and only if f is continuous and for
each α = (αn), there exists a subsequence α

′
of (αn) such that Tα′f = g uniformly on T.

Lemma 2.4. Let f : T → Rn is an almost periodic function, then f(t) is bounded and
uniformly continuous on T.

The proofs of Lemma 2.3 and Lemma 2.4 are similar to the Theorem 3.13 in [18] and the
Theorem 1.1 in [19], respectively. Hence, we omit it.

Lemma 2.5. If f : T × Rn → Rn is an almost periodic function in t uniformly for x ∈ Rn,
then f(t, x) is bounded on T×D, where D is any compact subset of Rn.

Proof. For given ε ≤ 1 and a compact subset D ⊂ Rn, there exists a constant l, such that in
any interval of length l(ε,D), f(t, x) is uniformly continuous on [0, l(ε,D)] × D. Therefore,
there exists a number M > 0, such that

|f(t, x)|0 < M, for (t, x) ∈ [0, l(ε,D)]×D.

For any t ∈ T, we can take τ ∈ E{ε, f} ∩ [−t,−t+ l(ε,D)], then we have t+ τ ∈ [0, l(ε,D)].
Hence, we can obtain

|f(t+ τ, x)|0 < M, ∀ x ∈ D

and

|f(t+ τ, x)− f(t, x)|0 < ε ≤ 1, ∀ (t, x) ∈ T×D.
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Hence, for any (t, x) ∈ T×D, we have

|f(t, x)|0 ≤ |f(t+ τ, x)|0 + |f(t+ τ, x)− f(t, x)|0 < M + 1.

That is, f(t, x) is bounded on T×D. The proof is completed.

Lemma 2.6. If f : T × Rn → Rn is an almost periodic function in t uniformly for x ∈ Rn,
ϕ(t) is also an almost periodic function and ϕ(t) ⊂ S for all t ∈ T, S is a compact subset of
Rn, then f(t, ϕ(t)) is almost periodic.

Proof. For any real sequence α
′
, we can find a subsequence α ⊂ α

′
. Assume that φ(t) is an

almost periodic function, g(t, x) is an almost periodic function in t uniformly for x ∈ Rn,
we make that Tαf(t, x) = g(t, x) uniformly on T and Tαϕ(t) = φ(t) also uniformly on T.
Hence, g(t, x) is uniformly continuous on T×S. For any ε > 0, there exists a positive number
δ( ε

2
) > 0, ∀x1, x2 ∈ S, such that |x1 − x2|0 < δ( ε

2
) implies |g(t, x1) − g(t, x2)|0 < ε

2
, for any

t ∈ T, and there exists a positive integer N0(ε) > 0, when n ≥ N0(ε), we have

|f(t+ αn, x)− g(t, x)|0 <
ε

2
, ∀ (t, x) ∈ T× S

and

|ϕ(t+ αn)− φ(t)|0 < δ(
ε

2
), ∀ t ∈ T.

Moreover, ϕ(t+ αn) ⊂ S,φ(t) ⊂ S for all t ∈ T. Then, when n ≥ N0(ε), it is easy to see that

|f(t+ αn, ϕ(t+ αn))− g(t, φ(t))|0
≤ |f(t+ αn, ϕ(t+ αn))− g(t, ϕ(t+ αn))|0 + |g(t, ϕ(t+ αn))− g(t, φ(t))|0
<

ε

2
+
ε

2
= ε.

Hence, Tαf(t, ϕ(t)) = g(t, φ(t)) uniformly on T. So f(t, ϕ(t)) is an almost periodic function.
The proof is completed.

Lemma 2.7. If u : T → Rn is an almost periodic function, then ut is almost periodic.

Proof. It is clear that ut is continuous for t ∈ T. For any sequence α
′
= (α

′
n). Since u(t) is

an almost periodic function, then there exists a subsequence α = (αn) of (α
′
n), such that

Tαu(t) = u(t) (2.1)

uniformly for t ∈ T. On the other hand, since u(t) is an almost periodic function, it is
uniformly continuous on T. For any ε > 0, there exists a positive number δ(ε), such that
|t1 − t2| < δ implies |u(t1) − u(t2)|0 < ε. From (2.1), there exists a positive integer N , such
that

|u(t+ αn)− u(t)|0 < ε, t ∈ T,

when n > N , we have

|(ut)αn − ut|0 = |u(t+ αn + θ)− u(t+ θ)|0 < ε.

Hence u(t+ αn) converges to ut uniformly on T. So ut is almost periodic. The proof is
completed.
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Definition 2.1. (see [16]) Let x ∈ Rn and A(t) be an n × n rd-continuous matrix on T, the
linear system

x∆(t) = A(t)x(t) (2.2)

is said to admit an exponential dichotomy on T, if there exist positive constants α > 0, k ≥ 1,
projection P and the fundamental solution matrix X(t) of (2.2) satisfying

∥X(t)PX−1(σ(s))∥ ≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s), (2.3)

∥X(t)(I − P )X−1(σ(s))∥ ≤ ke⊖α(σ(s), t) s, t ∈ T, t ≤ σ(s), (2.4)

where ∥ · ∥ is a matrix norm on T.

Remark 2.1. It is clear that when A(t) = diag(1,−1), (2.2) admits exponential dichotomy.
More generally, in the case A(t) ≡ A, a constant matrix, (2.2) admits exponential dichotomy
if and only if the eigenvalues of A have a nonzero real part.

Lemma 2.8. Suppose (2.2) admits exponential dichotomy, that is, there exist constants α >
0, k ≥ 1, such that (2.3), (2.4) hold. If A(t+ tk) converges to A(t) uniformly on any compact
subset of T, then {X(t+ tk)PX

−1(σ(s)+ tk)} and {X(t+ tk)(I−P )X−1(σ(s)+ tk)} converges

to {X(t)P X
−1
(σ(s))} and {X(t)(I −P )X

−1
(σ(s))} uniformly on any compact subset T×T,

respectively. Furthermore, the following inequalities hold:

∥X(t)P X
−1
(σ(s))∥ ≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s),

∥X(t)(I − P )X
−1
(σ(s))∥ ≤ ke⊖α(σ(s), t) s, t ∈ T, t ≤ σ(s),

where X is the fundamental matrix solution of the following equation

x∆(t) = A(t)x. (2.5)

Proof. we first prove that {X(tk)PX
−1(tk)} is convergent. From (2.3), we see that

∥X(tk)PX
−1(tk)∥ ≤ k.

Suppose {X(tk)PX
−1(tk)} is not convergent. Then we can find two subsequence:

{X(tkm)PX
−1(tkm)}, {X(tk′m)PX

−1(tk′m)},

such that

lim
m→∞

X(tkm)PX
−1(tkm) = P, lim

m→∞
X(tk′m)PX

−1(tk′m) = P ,

and P ̸= P .
Then from (2.3) we have

∥X(t+ tkm)PX
−1(σ(s) + tkm)∥ ≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s), (2.6)

and

∥X(t+ tk′m)PX
−1(σ(s) + tk′m)∥ ≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s). (2.7)
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Assume that Xkm(t), Xk′m
(t) are the fundamental matrix solutions of systems

x∆(t) = A(t+ tkm)x, x
∆(t) = A(t+ tk′m)x

respectively, then X(t+ tkm) = Xkm(t)X(tkm), X(t+ tk′m) = Xk
′
m
(t)X(tk′m). Since {A(t+ tk}

converges to A(t) uniformly on any compact subset of T, then {A(t+tk)x} converges to A(t)x
uniformly on any compact subset of T×Rn. It follows that {A(t+ tkm)x} and {A(t+ tk′m)x}
converge to A(t)x uniformly on any compact subset of T × Rn. So Xkm(t), Xk

′
m
(t) converge

to X(t) uniformly on any compact set of T. Furthermore, it follows from (2.6), (2.7) that

∥Xkm(t)X(tkm)PX
−1(tkm)X

−1
km

(σ(s))∥ ≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s)

and

∥Xk′m
(t)X(tk′m)PX

−1(tk′m)X
−1

k
′
m
(σ(s))∥ ≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s).

Let m→ ∞, we have

∥X(t)P X
−1
(σ(s))∥ ≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s) (2.8)

and

∥X(t)P X
−1
(σ(s))∥ ≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s). (2.9)

Similarly, we can obtain

∥X(t)(I − P )X
−1
(σ(s))∥ ≤ ke⊖α(σ(s), t) s, t ∈ T, t ≤ σ(s) (2.10)

and

∥X(t)(I − P )X
−1
(σ(s))∥ ≤ ke⊖α(σ(s), t) s, t ∈ T, t ≤ σ(s). (2.11)

From (2.8)-(2.11), we see that (2.5) admits exponential dichotomy; both P and P are its
projections. So P = P , which is a contradiction. Hence, {X(tk)PX

−1(tk)} is convergent.
Let {X(tk)PX

−1(tk)} → P as k → ∞. Now assume that Xk(t) is the fundamental matrix
solution of the system x∆(t) = A(t + tk)x, then Xk(t) converges to X(t) uniformly on any

compact set of T. It is easy to see that {X−1
k (σ(s))} converges to X

−1
(σ(s)) uniformly on

any compact subset of T. So X(t+ tk)PX
−1(σ(s) + tk) and {X(t+ tk)(I−P )X−1(σ(s)+ tk)}

converges to X(t)P X
−1
(σ(s)) and X(t)(I − P )X

−1
(σ(s)) uniformly on any compact subset

T× T, respectively. Furthermore, from (2.6) and (2.7) we have

∥X(t+ tk)PX
−1(σ(s) + tk)∥ ≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s)

and

∥X(t+ tk)(I − P )X−1(σ(s) + tk)∥ ≤ ke⊖α(σ(s), t) s, t ∈ T, t ≤ σ(s).

That is,

∥Xk(t)X(tk)PX
−1(tk)X

−1
k (σ(s))∥ ≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s)
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and

∥Xk(t)X(tk)(I − P )X−1(tk)X
−1
k (σ(s))∥ ≤ ke⊖α(σ(s), t) s, t ∈ T, t ≤ σ(s).

Let k → ∞, we obtain

∥X(t)P X
−1
(σ(s))∥ ≤ ke⊖α(t, σ(s)) s, t ∈ T, t ≥ σ(s)

and

∥X(t)(I − P )X
−1
(σ(s))∥ ≤ ke⊖α(σ(s), t) s, t ∈ T, t ≤ σ(s).

The proof is completed.

Lemma 2.9. (see [20]) Let M be a closed convex nonempty subset of a Banach space (B, ∥·∥).
Suppose that B and C map M into B, such that
(1) x, y ∈M , implies Bx+ Cy ∈M ,
(2) C is continuous and C(M) is contained in a compact set,
(3) B is a contraction mapping.
Then there exists z ∈M with z = Bz + Cz.

3 Main results

Let AP (T) be the set of all almost periodic functions on almost times scales T, then
(AP (T), ∥ · ∥) is a Banach space with the supremum norm given by ∥ψ∥ = sup

t∈T
|ψ(t)|0, where

|ψ(t)|0 =
n∑

i=1

|ψi(t)|.

Hereafter, we make the following assumptions:

(H1) There exist positive numbers LQ, LG such that

|Q(t, ϕt)−Q(t, φt)|0 ≤ LQ|ϕt − φt|0 (3.1)

for all t ∈ T, ϕt, φt ∈ AP (T), and

|G(t, u, ϕt)−G(t, v, φt)|0 ≤ LG(|u− v|0 + |ϕt − φt|0) (3.2)

for all t ∈ T, (u, ϕt), (v, φt) ∈ Rn × AP (T).

(H2) A(t) is an almost periodic function, Q(t, ut) is an almost periodic function in t uniformly
for ut ∈ AP (T), and G(t, u, ut) is also an almost periodic function in t uniformly for
u, ut ∈ Rn × AP (T).

(H3) System (2.2) admits exponential dichotomy, that is, there exist constants α > 0, k ≥ 1,
such that (2.3) and (2.4) hold.

Define a mapping Φ by

(Φu)(t) = Q(t, ut) +

∫ t

−∞
X(t)PX−1(σ(s))G(s, u(s), us)∆s

−
∫ +∞

t

X(t)(I − P )X−1(σ(s))G(s, u(s), us)∆s. (3.3)
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Lemma 3.1. If u is an almost periodic function, then Φu is an almost periodic function.

Proof. For u(t) is an almost periodic function, from (H2), Lemma 2.4 to Lemma 2.7, then
Q(t, ut), G(t, u(t), ut) are all almost periodic functions, so they are uniformly bounded on T.
Let M1,M2 be positive numbers such that

∥Q(·, u·)∥ ≤M1, ∥G(·, u(·), u·)∥ ≤M2.

Now, we prove that (Φu)(t) is an almost periodic function. First, it is clear that (Φu)(t) is
continuous on T. For any sequence α = (αn), since Q(t, ut), G(t, u(t), ut) are almost periodic
functions, combining with Lemma 2.3 and Lemma 2.8, we can find a common subsequence of
(αn), we still denote it as (αn), such that

TαQ(t, ut) = Q1(t), TαG(t, u(t), ut) = G1(t) (3.4)

uniformly for t ∈ T and

lim
k→∞

X(t+ αk)PX
−1(σ(s) + αk) = X(t)P X

−1
(σ(s)), t ≥ σ(s) (3.5)

lim
k→∞

X(t+ αk)(I − P )X−1(σ(s) + αk) = X(t)(I − P )X
−1
(σ(s)), t ≤ σ(s). (3.6)

Then

(Φu)(t+ αk) = Q(t+ αk, ut+αk
) +

∫ t+αk

−∞
X(t+ αk)PX

−1(σ(s))G(s, u(s), us)∆s

−
∫ +∞

t+αk

X(t+ αk)(I − P )X−1(σ(s))G(s, u(s), us)∆s

= Q(t+ αk, ut+αk
) +

∫ t

−∞
X(t+ αk)PX

−1(σ(s) + αk)

×G(s+ αk, u(s+ αk), us+αk
)∆s

−
∫ +∞

t

X(t+ αk)(I − P )X−1(σ(s) + αk)

×G(s+ αk, u(s+ αk), us+αk
)∆s.

From (3.4)-(3.6) and Lebesgue’s control convergence theorem, we see that (Φu)(t+ αk) con-
verges to

Q1(t) +

∫ t

−∞
X(t)P X

−1
(σ(s))G1(s)∆s−

∫ +∞

t

X(t)(I − P )X
−1
(σ(s))G1(s)∆s

uniformly for t ∈ T. So, (Φu)(t) is an almost periodic function. The proof is completed.

In order to apply Krasnoselskii’s theorm, we need to construct two mappings, one is a
contraction and the other is compact. Let

(Φu)(t)(Bu)(t) + (Cu)(t),

where B,C : AP (T) → AP (T) are given by

(Bu)(t) = Q(t, ut), (3.7)

(Cu)(t) =

∫ t

−∞
X(t)PX−1(σ(s))G(s, u(s), us)∆s

−
∫ +∞

t

X(t)(I − P )X−1(σ(s))G(s, u(s), us)∆s. (3.8)
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Lemma 3.2. (see [7]) The operator B is a contraction provided LQ < 1.

Lemma 3.3. The operator C is continuous and the image C(M) is contained in a compact
set, where M = {u ∈ AP (T) : ∥u∥ ≤ R}, R is a fixed constant.

Proof. First, by (3.8), we have

∥(Cu)(·)∥ ≤
∫ t

−∞
∥X(t)PX−1(σ(s))∥∥G(·, u(·), u·)∥∆s

+

∫ +∞

t

∥X(t)(I − P )X−1(σ(s))∥∥G(·, u(·), u·)∥∆s

≤ ∥G(·, u(·), u·)∥
(∫ t

−∞
∥X(t)PX−1(σ(s))∥∆s

+

∫ +∞

t

∥X(t)(I − P )X−1(σ(s))∥∆s
)

≤ ∥G(·, u(·), u·)∥
(∫ t

−∞
ke⊖α(t, σ(s))∆s+

∫ +∞

t

ke⊖α(σ(s), t)∆s

)
.

By Lemma 2.2, we can get∫ t

−∞
ke⊖α(t, σ(s))∆s+

∫ +∞

t

ke⊖α(σ(s), t)∆s ≤ k(
1

α
− 1

⊖α
).

Therefore,

∥(Cu)(·)∥ ≤ k(
1

α
− 1

⊖α
)∥G(·, u(·), u·)∥. (3.9)

Now, we show that C is continuous. In fact, let u, v ∈ AP (T), for any ε > 0, take
δ = ε/[2kLG(

1
α
− 1

⊖α
)], whenever ∥u− v∥ < δ, we have

∥(Cu)(·)− (Cv)(·)∥

≤
∫ t

−∞
∥X(t)PX−1(σ(s))∥∥G(·, u(·), u·)−G(·, v(·), v·)∥∆s

+

∫ +∞

t

∥X(t)(I − P )X−1(σ(s))∥∥G(·, u(·), u·))−G(·, v(·), v·)∥∆s

≤
∫ t

−∞
ke⊖α(t, σ(s))LG(∥u(·)− v(·)∥+ ∥u· − v·∥)∆s

+

∫ +∞

t

ke⊖α(σ(s), t)LG(∥u(·)− v(·)∥+ ∥u· − v·∥)

≤ 2LG∥u− v∥(
∫ t

−∞
ke⊖α(t, σ(s))∆s+

∫ +∞

t

ke⊖α(σ(s), t)∆s)

≤ 2kLG(
1

α
− 1

⊖α
)∥u− v∥

< ε.

This proves that C is continuous.
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For M = {u ∈ AP (T) : ∥u∥ ≤ R}. Now, we show that the image of C(M) is contained in
a compact set. In fact, let un be a sequence in M . In view of (3.2), we have

∥G(·, u(·), u·)∥ ≤ ∥G(·, u(·), u·)−G(·, 0, 0)∥+ ∥G(·, 0, 0)∥
≤ LG(∥u∥+ ∥u·∥) + a

≤ 2LGR + a, (3.10)

where a = ∥G(·, 0, 0)∥. From (3.9) and (3.10), we have

∥Cun(·)∥ ≤ k(
1

α
− 1

⊖α
)(2LGR + a) := L. (3.11)

Next, we calculate (Cun)
∆(t) and show that it is uniformly bounded. By a direct calculate,

we have

(Cun)
∆(t) = A(t)(Cun)(t) +X(t)PX−1(σ(s))G(t, un(t), (un)t)

−X(t)(I − P )X−1(σ(s))G(t, un(t), (un)t). (3.12)

For A(t) is an almost periodic function, then A(t) is bounded. So, there exists a positive
constant A0, such that ∥A∥ ≤ A0. Together with (3.10), (3.11) and (3.12) implies

∥(Cun)∆(·)∥ ≤ A0L+ (ke⊖α(t, σ(s)) + ke⊖α(σ(s), t))∥G(·, un(·), (un)·)∥
≤ A0L+ (k + k)(2RLG + a)

≤ A0L+ 2k(2RLG + a).

Thus the sequence (Cun) is uniformly bounded and equi-continuous. Hence, by the Arzela-
Ascoli theorem, C(M) is compact. The proof is completed.

Theorem 3.1. Assume that (H1)− (H3) hold. Let a = ∥G(·, 0, 0)∥, b = ∥Q(·, 0)∥. Let R0 be
a positive constant satisfies

LQR0 + b+ k(
1

α
− 1

⊖α
)(2LGR0 + a) ≤ R0. (3.13)

Then (1.1) has an almost periodic solution in M = {u ∈ AP (T) : ∥u∥ ≤ R0}.

Proof. Define M = {u ∈ AP (T) : ∥u∥ ≤ R0}. By Lemma 3.3, the mapping C defined by
(3.8) is continuous and CM is contained in a compact set. By lemma 3.2, the mapping B
defined by (3.7) is a contraction and it is clear that B : AP (T) → AP (T).

Next, we show that if u, v ∈ M , we have ∥Bu + Cv∥ ≤ R0. In fact, let u, v ∈ M with
∥u∥, ∥v∥ ≤ R0. Then

∥(Bu)(·) + (Cv)(·)∥ ≤ ∥Q(·, u·)−Q(·, 0)∥+ ∥Q(·, 0)∥

+

∫ t

−∞
∥X(t)PX−1(σ(s))∥ · ∥G(·, v(·), v·)∥∆s

+

∫ +∞

t

∥X(t)(I − P )X−1(σ(s))∥ · ∥G(·, v(·), v·)∥∆s

≤ LQ∥u∥+ b+ k(
1

α
− 1

⊖α
)(2LGR + a)

≤ LQR0 + b+ k(
1

α
− 1

⊖α
)(2LGR0 + a)

≤ R0.
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Thus Bu+Cv ∈M . Hence all the conditions of Krasnoselskii’s theorem are satisfied. Hence
there exists a fixed point z ∈ M , such that z=Bz+Cz. By Lemma 2.9, (1.1) has an almost
periodic solution. The proof is completed.

Theorem 3.2. Assume that (H1)− (H3) hold. If

LQ + 2kLG(
1

α
− 1

⊖α
) < 1, (3.14)

then (1.1) has a unique almost periodic solution.

Proof. Let the mapping Φ be given by (3.3). For u, v ∈ AP (T), in view of (3.3), we have

∥(Φu)(·)− (Φv)(·)∥
≤ ∥Q(·, u·)−Q(·, v·)∥

+

∫ t

−∞
∥X(t)PX−1(σ(s))∥∥G(·, u(·), u·)−G(·, v(·), v·)∥∆s

+

∫ −∞

t

∥X(t)(I − P )X−1(σ(s))∥∥G(·, u(·), u·)−G(·, v(·), v·)∥∆s

≤ LQ∥u− v∥+ LG(∥u− v∥+ ∥u· − v·∥) · (
∫ t

−∞
ke⊖α(t, σ(s))∆s

+

∫ +∞

t

ke⊖α(σ(s), t)∆s)

≤ LQ∥u− v∥+ 2LG∥u− v∥k( 1
α
− 1

⊖α
)

= (LQ + 2kLG(
1

α
− 1

⊖α
))∥u− v∥.

This completes the proof by invoking the contraction mapping principle.

Remark 3.1. If the conditions of the main result of [7] hold, then (2.2) admits exponential
dichotomy with projection P = I, hence system (1.1) has an almost periodic solution. So our
main result greatly improves the main result of [7].

4 An example

For small positive ε1 and ε2, we consider the perturbed Van Der Pol equation

x∆∆ + (ε2x
2 − 1)x∆ + x− ε1(sin t x

2
t )

∆ − ε2 cos t = 0, (4.1)

where xt is defined by xt(θ) = x(t + θ) for t, θ ∈ T is nonnegative, continuous and almost
periodic function. Using the transformation x∆1 = x2, we can transform the above equation
to (

x1
x2

)∆

=

(
0 1
−1 1

)(
x1
x2

)
+

(
0

ε1 sin tx
2
1t

)∆

+

(
0

ε2 cos t− ε2x2x
2
1

)
,

that is, A =

(
0 1
−1 1

)
, Q(t, xt) =

(
0

ε1 sin tx
2
1t

)
, G(t, x(t), xt) =

(
0

ε2 cos t− ε2x2x
2
1

)
.
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Since the real part of the eigenvalues of A is nonzero, by Remark 2.1, we see that x∆(t) =
A(t)x(t) admits exponential dichotomy. Let ϕ(t) = (ϕ1(t), ϕ2(t)), φ(t) = (φ1(t), φ2(t)). De-
fine M = {u ∈ AP (T) : ∥u∥ ≤ R0}, where R0 is a positive constant.

Then for ϕ, φ ∈M , we have

∥Q(·, ϕ)−Q(·, φ)∥ ≤ 2ε1R0∥ϕ− φ∥,

and

∥G(·), ϕ(·), ϕ·)−G(·, φ(·), φ·)∥

≤ ε2sup
t∈T

∣∣∣∣(ϕ2(t)(ϕ1(t) + φ1(t)), φ
2
1(t))

(
ϕ1(t)− φ1(t)
ϕ2(t)− φ2(t)

)∣∣∣∣
≤ 2ε2R

2
0∥ϕ− φ∥.

Hence, let LQ = 2ε1R0, LG = ε2R
2
0, a = ∥G(t, 0, 0)∥ = ε2 and b = ∥Q(t, 0)∥ = 0. Thus,

inequality (3.13) becomes

2ε1R
2
0 + kε2(

1

α
− 1

⊖α
)(2R3

0 + 1) ≤ R0,

which is satisfied for small ε1 and ε2. By Theorem 3.1, (4.1) has an almost periodic solution.
Moreover,

2ε1R0 + 2kε2R
2
0(
1

α
− 1

⊖α
) < 1

is also satisfied for small ε1 and ε2. By Theorem 3.2, (4.1) has a unique almost periodic
solution.
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