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1 Introduction

The general notion of multipliers on a commutative Banach algebra A (into
itself) was first systematically studied by Wang [24] in 1961. In the non-
commutative setting, Johnson [11] in 1964 introduced the notions of left mul-
tipliers, right multipliers, multipliers, and double multipliers on semigroups,
rings, algebras, Banach algebras and topological algebras. Since then the the-
ory of multipliers has been extensively studied in various settings (see, e.g.,
[3, 7, 10, 16, 20].) We mention that the essential ingredients of arguments used
by Wang [24] and later authors is the assumption of an approximate identity in
the algebra A or a kind of Cohn factorization in A.

Wang [24] showed that if A is taken as the commutative C∗−algebra Co(X)
with X a locally compact Hausdorff space, then M(Co(X)) ∼= Cb(X). A similar
result for a topological algebra A has been obtained by Husain [10] in the fol-
lowing form: ”Let A be a faithful semisimple commutative topological algebra
and ∆(A) the set of non-zero continuous multiplicative linear functionals on A
endowed with the w∗-topology. If ∆(A) is non-empty, then each T ∈ M(A)
can be represented by a continuous map hT ∈ C(∆(A)).” The above result of
Wang has also been generalized to vector-valued functions by several authors
(see, e.g. [3, 8, 18, 19]). For instance, Lai [19] showed that if X is a locally
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compact abelian group and A is a commutative Banach algebra with a bounded
approximate identity, then M(Co(X,A)) ∼= Cb(X,M(A)u).

In this paper, we investigate the extent to which the above study of multipli-
ers for vector-valued functions can be made beyond Banach algebras. We shall
focus mainly on the class of F−algebras, in particular on complete p−normed
algebras, 0 < p ≤ 1, having a minimal approximate identity. We mention that
the arguments of above authors relied heavily on the fact that, in the case of A
a Banach algebra, Co(X,A) is isometrically isomorphic to the completed tensor
product Co(X)⊗λ A with respect to the smallest cross norm λ (see [3, 18, 19]).
We shall avoid the use of this technique as it need not work in our case. In fact,
when A is not locally convex, ⊗λ is no longer appropriate; even for A a complete
p−normed space, many complications arise (see [21], Section 10.4; [23], p. 100).

For a background, the reader is referred to [20] for multipliers on Banach
algebras and to [10, 11, 16] for multipliers on topological algebras

2 Preliminaries

In this section, we give basic definitions and study various classes of topological
algebras considered in this paper.

Definition 1 [17, 22] Let E be a vector space over the field K (= R or C).
(1) A function q : E → R is called an F−seminorm on E if it satisfies

(F1) q(x) ≥ 0 for all x ∈ E;
(F2) q(x) = 0 if x = 0;
(F3) q(αx) ≤ q(x) for all x ∈ E and α ∈ K with |α| ≤ 1;
(F4) q(x+ y) ≤ q(x) + q(y) for all x, y ∈ E;
(F5) if αn → 0 in K, then q(αnx)→ 0 for all x ∈ E.

(2) An F−seminorm q on E is called an F−norm if, for any x ∈ E, q(x) = 0
implies x = 0.

(3) An F−seminorm (or F−norm) q on E is called p−homogeneous, where
0 < p ≤ 1, if it also satisfies

(F´
3) q(αx) = |α|p q(x) for all x ∈ E and α ∈ K.

(4) A p−homogeneous F−seminorm (resp. F−norm) on E is called, in
short, a p−seminorm (resp. p−norm).

Definition 2 (1) A vector space with an F−norm q is called an F−normed
space and is denoted by (E, q); if it is also complete, it is called an F−space.
Clearly, any F−normed space (E, q) is a metrizable TVS with metric given by

d(x, y) = q(x− y), x, y ∈ E.

(2) An F−seminorm (or F−norm) q on an algebra A is called submulti-
plicative if

q(xy) ≤ q(x)q(y) for all x, y ∈ A.
An algebra with a submultiplicative F−norm q is called an F−normed algebra; if
it is also complete it is called an F−algebra. An algebra with a submultiplicative
p−norm q is called a p−normed algebra.
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For the general theory and undefined terms, the reader is referred to [17, 22]
for F−normed and p−normed spaces, and to ([21]; [26], p. 32–35) for various
classes of topological algebras.

If E and F are topological vector spaces over the field K (= R or C), then
the set of all continuous linear mappings T : E → F is denoted by CL(E,F ).
Clearly, CL(E,F ) is a vector space over K with the usual pointwise operations.
Further, if F = E, CL(E) = CL(E,E) is an algebra under composition (i.e.
(ST )(x) = S(T (x)), x ∈ E) and has the identity I : E → E given by I(x) = x
(x ∈ E).

Definition 3 (1) A net {eλ : λ ∈ I} in a topological algebra A is called an
approximate identity, if

lim
λ

eλa = lim
λ

aeλ for all a ∈ A.

(2) An approximate identity {eλ : λ ∈ I} in an F−normed algebra (A, q) is
said to be minimal if q(eλ) ≤ 1 for all λ ∈ I.

(3) An algebra A is said to be left (resp. right) faithful if, for any a ∈ A,
aA = {0} (resp. Aa = {0}) implies that a = 0; A is called faithful if it is both
left and right faithful.

We mention that A is faithful in each of the following cases:
(i) A is a topological algebra with an approximate identity (e.g., A is a locally

C∗-algebra).
(ii) A is a topological algebra with an orthogonal basis [10].

Definition 4 A topological algebra A is called:
(1) factorable if, for each a ∈ A, there exist b, c ∈ A such that a = bc;
(2) strongly factorable if, for any sequence {an} in A with an → 0, there

exist a ∈ A and a sequence {bn} (resp. {cn}) in A with bn → 0 (resp. cn → 0)
such that an = abn (resp. an = cna) for all n ≥ 1.

Clearly, every strongly factorable algebra is factorable. The two notions coincide
on a Banach algebra A having a bounded approximate identity ([5], Corollary 12,
p. 61). Following Ansari-Piri [4], a TVS X is called fundamental, if there exists
a constant M > 1 such that, for every sequence {xn} in X, the convergence of
Mn(xn+1 − xn) to 0 in X implies that {xn} is a Cauchy sequence in X. Every
locally convex and every locally bounded TVS is fundamental.

Theorem 5 [4] Let A be a fundamental F−algebra with a uniformly bounded
left approximate identity. Then A is strongly factorable.

Definition 6 Let (A, q) be an F−normed algebra. For any T ∈ CL(A), let

||T ||Aq : = sup
x∈A,q(x)≤1

q(T (x)). (∗)
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In general, ‖T‖q need not exist since the set {x ∈ A : q(x) ≤ 1} may not be
bounded in an F−algebra (A, q) (see ([2], Remark 2.12; [22]. p. 8) for counter-
examples). However, it exists in the case of q a p−norm (0 < p ≤ 1) or a
seminorm. In the former case, the existence and other useful properties of ||.||q
are summarized in the following theorem (cf. [2, 22]).

Theorem 7 Let (A, q) be a p−normed algebra, where 0 < p ≤ 1. Then:
(a) A linear mapping T : A→ A is continuous ⇔ ||T ||Aq <∞.
(b) ‖.‖q is a p−norm on CL(A).
(c) For any T ∈ CL(A), q(T (x)) ≤ ||T ||Aq .q(x) for all x ∈ A.
(d) For any S, T ∈ CL(A), ||ST ||Aq ≤ ||S||Aq ||T ||Aq ; hence (CL(A), ‖.‖Aq )

is a p−normed algebra.
(e) If A is complete, then (CL(A), ‖.‖Aq ) is also complete.

(f) If A has a minimal approximate identity, then, for any a ∈ A,

||La||Aq = ||Ra||Aq = q(a),

where La, Ra : A → A are the maps given by La(x) = ax and Ra(x) = xa,
x ∈ A.

3 Multipliers on F− normed algebras

In this section, we recall basic definitions and results regarding the study of
multipliers on various classes of topological algebras, as given in [7, 10, 11, 12,
16].

Definition 8 [11] Let A be an algebra over the field K (R or C). A mapping
T : A→ A is called a

(i) multiplier on A if aT (b) = T (a)b for all a, b ∈ A;
(ii) left multplier on A if T (ab) = T (a)b for all a, b ∈ A;
(iii) right multiplier on A if T (ab) = aT (b) for all a, b ∈ A.

Some authors use the term centralizer instead of multiplier (see, e.g. [7, 11]).
Let M(A) (resp. M`(A),Mr(A)) denote the set of all multipliers (resp. left

multipliers, right multipliers) on A. Clearly, M`(A) ∩Mr(A) ⊆ M(A); if A is
faithful, then M(A) = M`(A) ∩Mr(A). Both M`(A) and Mr(A) are algebras
with composition as multiplication (i.e. (T1T2)(x) = T1(T2(x))) and have the
identity I : A → A, I(x) = x (x ∈ A). If A is faithful, then M(A) is a
commutative algebra (without A being commutative) with identity I.

As an example, for any a ∈ A, consider the maps La, Ra : A → A given by
La(x) = ax and Ra(x) = xa, x ∈ A. Then La ∈M`(A) and Ra ∈Mr(A).

Regarding the continuity of multipliers, we state:

Theorem 9 (a) [12, 16] Suppose A is a strongly factorable F− normed algebra.
Then each T ∈M`(A) (resp. Mr(A)) is linear and continuous.

(b) [11, 16] Suppose A is a faithful F− algebra. Then each T ∈ M(A) is
linear and continuous.
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Convention. In the sequel, we shall always assume, unless stated otherwise,
that A is an F−algebra having a bounded approximate identity {eλ : λ ∈ I}.
In view of the above remarks and Theorem 9, M(A) = M`(A) ∩Mr(A) and
M`(A), Mr(A) and M(A)) are algebras consisting of all continuous linear left
multipliers, right multipliers and multipliers, respectively, on A.

Definition 10 Let (A, q) be a p−normed algebra.
(i) The uniform topology u on each of M`(A), Mr(A), M(A) is defined as

the linear topology given by the p−norm

||T ||Aq= sup {q(T (x)) : x ∈ A, q(x) ≤ 1}, T ∈M`(A), Mr(A) or M(A).

(ii) The strong topology (or pointwise topology) s on each of M`(A), Mr(A),
M(A) is defined as the linear topology given by the family {Pa : a ∈ A} of
F−seminorms, where

Pa(T ) = q(T (a)), T ∈M`(A),Mr(A) or M(A).

Clearly, s ≤ u. Further properties are summarized, as follows.

Theorem 11 (cf. [11, 16]) Let A be a faithful p−normed algebra, and let
Mt(A) denote any one of the algebras M`(A), Mr(A) and M(A). Then

(a) If A is complete, (Mt(A), u) and (Mt(A), s) are complete.
(b) s and u have the same bounded sets.
(c) If (Mt(A), s) is metrizable, then s = u on Mt(A).
(d) If A has a two-sided approximate identity, then A can be embedded as

an s-dense set in Mt(A).

4 Multipliers of F−Algebras of Vector-Valued
Functions

We begin by recalling some terminology on vector-valued function spaces.
Let X be a Hausdorff topological space and E a topological vector space

(TVS) over the field K (= R or C) with a base W of neighbourhoods of 0 in E.
A function f : X → E is said to vanishe at infinity if, for each W ∈ W, there
exists a compact set K = KW ⊆ X such that

f(x) ∈W for all x ∈ X\K.

We shall denote by Cb(X,E) the vector space of all continuous bounded E−valued
functions on X and by Co(X,E) the subspace of Cb(X,E) consisting of those
functions which vanish at infinity. When E = K (= R or C), these spaces will
be denoted by Cb(X) and Co(X). Let Cb(X)⊗E denote the vector subspace of
Cb(X,E) spanned by the set of all functions of the form ϕ⊗u, where ϕ ∈ Cb(X),
u ∈ E, and

(ϕ⊗ u)(x) = ϕ(x)u, x ∈ X.
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If E is an algebra, then Cb(X,E) is also an algebra with respect to the
pointwise multiplication defined by

(fg)(x) = f(x)g(x), x ∈ X.

If E is commutative, then Cb(X,E) is also commutative. In particular, Cb(X)
is a commutative algebra. Note that if E is only a vector space, then Cb(X,E)
is a Cb(X)-bimodule with respect to the module multiplications (ϕ, f) → ϕ.f
and (f, ϕ)→ f.ϕ defined by

(ϕ.f)(x) = ϕ(x)f(x) = (f.ϕ)(x), x ∈ X.

We mention that, if X is not locally compact, then Co(X,E) may be the
trivial vector space {0}. For example, if X = Q, the space of rationals, and
E = R, then Co(Q,R) = {0}.

Definition 12 Let X be a Hausdorff space and E a Hausdorff topological vector
space (TVS) over K (= R or C). The uniform topology u on Cb(X,E) is the
linear topology which has a base of neighbourhoods of 0 consisting of all sets of
the form

N(X,G) = {f ∈ Cb(X,E) : f(X) ⊆ G},

where G vareies over W.

In particular, if E is an F−normed space, the u−topology on Cb(X,E) is given
by the F−norm.

‖f‖q,∞ = sup
x∈X

q(f(x)), f ∈ Cb(X,E).

It is easy to see that, if (E, q) is an F−space, then so is (Cb(X,E), ‖·‖q,∞);
further, if (E, q) is an F−normed algebra, then (Cb(X,E), ‖.‖q,∞) is also an
F−normed algebra.

We now state a useful consequence of the vector-valued version of Stone-
Weierstrass theorem [1, 13, 14, 23] for reference purpose.

Theorem 13 Let X be a locally compact Hausdorff space and E a TVS. Then
Co(X)⊗ E is u-dense in Co(X,E) in each of the following cases:

(a) E is locally convex.
(b) Every compact subset of X has a finite covering dimension and E is any

TVS.
(c) E is an F−space with a basis (e.g. E = `p for p > 0)
(d) E has the approximation property.

Remark 14 In view of the above result, we shall always assume in the sequel
that Co(X) ⊗ E is u−dense in Co(X,E). It is well-known that Co(X) has a
minimal approximate identity ([9], p. 75–76). A useful consequence of this
assumption is the following result.
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Lemma 15 Let (A, q) be an F−normed algebra having a minimal approximate
identity {eλ : λ ∈ I}. Then Co(X,A) also has a minimal approximate identity.

Proof. Let {hα : α ∈ J} be a minimal approximate identity in Co(X). We claim
that {hα ⊗ eλ : (α, λ) ∈ J × I) is a minimal approximate identity for Co(X,A).
First we see that, for any α ∈ J and x ∈ X, |hα(x)| ≤ 1 and q(eλ) ≤ 1, and so
by property (F3) of an F−norm

||hα ⊗ eλ||q,∞ = sup
x∈X

q[hα(x)eλ] ≤ q(eλ) ≤ 1; (1)

hence {hα ⊗ eλ : (α, λ) ∈ J × I} is minimal. Next, let f ∈ Co(X,A), and
let ε > 0. Since Co(X) ⊗ A is assumed to be dense in Co(X,A), there exists
g = Σni=1gi ⊗ ai in Co(X)⊗A such that

||g − f ||q,∞ <
ε

3
. (2)

Now

lim
(α,λ)

(hα ⊗ eλ)g = lim
(α,λ)

Σni=1(hαgi ⊗ eλai)

= Σni=1(lim
α
hαgi ⊗ lim

λ
eλai) = Σni=1gi ⊗ ai = g.

So there exists (αo, λo) ∈ J × I such that

||(hα ⊗ eλ)g − g||q,∞ <
ε

3
whenever (α, λ) > (αo, λo). (3)

Hence for (α, λ) > (αo, λo), using (1), (2), (3) and the fact that || · ||q,∞ is
submultiplicative,

||(hα ⊗ eλ)f − f ||q,∞ ≤ ||(hα ⊗ eλ)f − (hα ⊗ eλ)g||q,∞
+||(hα ⊗ eλ)g − g||q,∞ + ||g − f ||q,∞

≤ ||hα ⊗ eλ||q,∞.||f − g||q,∞
+||(hα ⊗ eλ)g − g||q,∞ + ||g − f ||q,∞

<
ε

3
+
ε

3
+
ε

3
= ε.

Thus lim
(α,λ)

(hα ⊗ eλ)f = f .

Recall that, if A is a topological algebra, then Cb(X,A) is a left A-module
with respect to the module multiplication (a, f)→ a · f as pointwise action:

(a · f)(x) = af(x), a ∈ A, f ∈ Cb(X,A), x ∈ X.

In particular, Co(X,A) is a left A-module.

Lemma 16 Let X be a locally compact Hausdorff space and A a topological
algebra. If T ∈ M(Co(X,A)), then T (a · f) = a · T (f) for f ∈ Co(X,A) and
a ∈ A.
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Proof. We note that Co(X) is a Banach algebra with a bounded approximate
identity, {hα} (say). Let g = Σni=1ϕi ⊗ bi ∈ Co(X) ⊗ A. Then, for any a ∈ A
and 1 ≤ i ≤ n,

lim
α

[(hα ⊗ a).(ϕi ⊗ bi)] = lim
α

(hαϕi ⊗ abi) = ϕi ⊗ abi = a(ϕi ⊗ bi).

So

T (a(ϕi ⊗ bi)) = lim
α

T [(hα ⊗ a).(ϕi ⊗ bi)]

= lim
α

(hα ⊗ a) · T (ϕi ⊗ bi) = a · T (ϕi ⊗ bi).

By linearity of T , we have T (a · g) = a ·T (g). Since Co(X)⊗A is assumed to be
u-dense in Co(X,A), T (a · f) = a · T (f) holds for all f ∈ Co(X,A) and a ∈ A.

Before stating the next result, we need to mention that, if (A, q) is an
F−normed algebra having a minimal approximate identity, then, by Lemma 15,
Co(X,A) has an approximate identity and hence it is a faithful topological alge-
bra. Consequently, the results of Section 3 apply also to the multiplier algebras
M(Co(X,A)), M`(Co(X,A)) and Mr(Co(X,A)). In particular, M(Co(X,A)) =
M`(Co(X,A)) ∩ Mr(Co(X,A)) and so for any T ∈ M(Co(X,A)), T (fg) =
fT (g) = T (f)g for all f, g ∈ Co(X,A); we shall write

||T ||Cq := ||T ||Co(X,A)q= sup {q(T (f)) : f ∈ Co(X,A), ||f ||q ≤ 1}.

Lemma 17 Let (A, q) be a complete p−normed algebra with a bounded approx-
imate identity {eλ : λ ∈ I}. Then Cb(X,M(A)u) can be isometrically embedded
in M(Co(X,A)).

Proof. Let F ∈ Cb(X,M(A)u) and f ∈ Co(X,A). Define F ∗ f : X → A by

(F ∗ f)(x) = F (x)[f(x)], x ∈ X.

Then F ∗ f is a continuous function on X vanishing at infinity, that is, F ∗ f ∈
Co(X,A). Therefore the mapping TF ∈ Co(X,A)→ Co(X,A) defined by

TF (f) = F ∗ f, f ∈ Co(X,A)

is well-defined. Clearly, TF is linear. Further, for any f, g ∈ Co(X,A)) and
x ∈ X, since F (x) ∈M(A),

[TF (fg)](x) = F (x)[f(x)g(x)] = f(x)F (x)[g(x)]

= f(x)(TF g)(x) = [fTF (g))](x).

Hence TF ∈M(Co(X,A)). Next, using the argument as in ([18], p. 449),

||TF ||Cq = sup{||TF (f)||q,∞ : f ∈ Co(X,A), ||f ||q,∞ ≤ 1}
= sup{sup

x∈X
q[TF (f)(x)] : f ∈ Co(X,A), ||f ||q,∞ ≤ 1}

= sup{sup
x∈X

q[F (x)(f(x))] : f ∈ Co(X,A), ||f ||q,∞ ≤ 1}

= sup
x∈X
||F (x)||Aq = ||F ||q,∞.
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Theorem 18 Let A = (A, q) be a commutative complete p−normed algebra
with a minimal approximate identity {eλ : λ ∈ I}. Then

M(Co(X,A)) ' Cb(X,M(A)u).

Proof. In view of Lemma 17, we only need to show that

M(Co(X,A)) ⊆ Cb(X,M(A)u).

Since Co(X,A) is faithful, we have

M(Co(X,A)) = M`(Co(X,A)) ∩Mr(Co(X,A)).

Let T ∈ M(Co(X,A))u. For any a ∈ A and ϕ ∈ Co(X), ϕ⊗ a ∈ Co(X,A) and
so T (ϕ⊗ a) ∈ Co(X,A). For any ϕ ∈ Co(X), the mapping hT (x) : A→ L(A)

hT (x)(a) =
T (ϕ⊗ a)(x)

ϕ(x)
, for a ∈ A, (∗∗)

defines an A-valued function whenever ϕ(x) 6= 0.
We claim that hT ∈ Co(X,M(A)u). First, the function hT (x) defined in this

way is independent of the choice of ϕ ∈ Co(X). [Indeed, for any fixed x ∈ X,
let ϕ,ψ ∈ Co(X) such that ϕ(x) 6= 0, ψ(x) 6= 0. We have by commutativity

T [(ϕ⊗ a).(ψ ⊗ eλ)](x) = [(ψ ⊗ eλ).T (ϕ⊗ a)](x) = ψ(x)eλ.T (ϕ⊗ a)(x),

T [(ϕ⊗ a).(ψ ⊗ eλ)](x) = ϕ(x)eλ.T (ψ ⊗ a)(x);

or,

eλ.
T (ϕ⊗ a)(x)

ϕ(x)
= eλ.

T (ψ ⊗ a)(x)

ψ(x)
.

Taking limλ

T (ϕ⊗ a)(x)

ϕ(x)
=
T (ψ ⊗ a)(x)

ψ(x)
.]

Therefore hT (x) is a linear operator on A and, by (∗∗), we can write

[T (ϕ⊗ a)](x) = ϕ(x)hT (x)(a) = hT (x)(ϕ(x)a)

= hT (x)(ϕ⊗ a)(x) for all a ∈ A,ϕ ∈ Co(X);

that is, hT · (ϕ⊗ a) = T (ϕ⊗ a). Moreover, hT is bounded and

||hT · (ϕ⊗ a)||q,∞ = ||T (ϕ⊗ a)||q,∞ ≤ ||T ||Cq .||ϕ⊗ a||q,∞
= ||T ||Cq sup

x∈X
q[ϕ(x)a] ≤ ||T ||Cq . sup

x∈X
|ϕ(x)|pq(a)

= ||T ||Cq .||ϕ||pq,∞.q(a).

This shows that hT : X →M(A)s is bounded.
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Now our main task is to show that hT : X → M(A)u is continuous. Let
xo ∈ X. Then there exists ϕ ∈ Co(X) such that ϕ(xo) 6= 0 and

N = N(xo) = {x ∈ X : ϕ(x) 6= 0} = X\ϕ−1(0)

is an open neighborhood of xo. Thus

hT (x)(a) =
T (ϕ⊗ a)(x)

ϕ(x)
, for x ∈ N,

defines an s continuous function hT (x) : A → A. Let {xα : α ∈ J} ⊆ N with
xα → xo in X. We claim that

||hT (xα)− hT (xo)||Aq = sup
a∈A,q(a)≤1

q[hT (xα)(a)− hT (xo)(a)]→ 0 as xα → xo.

(4)
For any a ∈ A,

q[hT (xα)(a)− hT (xo)(a)] = q

[
T (ϕ⊗ a)(xα)

ϕ(xα)
− T (ϕ⊗ a)(xo)

ϕ(xo)

]
=

1

|ϕ(xα)ϕ(xo)|p
q[ϕ(xo)T (ϕ⊗ a)(xα)− ϕ(xα)T (ϕ⊗ a)(xo)]

=
1

|ϕ(xα)ϕ(xo)|p
{q[ϕ(xo)T (ϕ⊗ a)(xα)]− q[ϕ(xo)T (ϕ⊗ a)(xo)]

+q[ϕ(xo)T (ϕ⊗ a)(xo)− ϕ(xα)T (ϕ⊗ a)(xo)]}

≤ 1

|ϕ(xα)ϕ(xo)|p
{|ϕ(xo)|pq[T (ϕ⊗ a)(xα)− T (ϕ⊗ a)(xo)]

+|ϕ(xo)− ϕ(xα)|p.q[T (ϕ⊗ a)(xo)]}. (5)

Since ϕ ∈ Co(X), ϕ(xα) → ϕ(xo) as xα → xo in X, it follows that the second
term of (5) in the last inequality tends to 0 whenever xα → xo. Therefore, we
need to show that the first term of (5) tends to 0 uniformly on {a ∈ A : q(a) ≤ 1}.

Since {eλ : λ ∈ I} is a bounded approximate identity of A, for any ε > 0,
there exists λo = λo(ε) ∈ I such that

||eλoT (ϕ⊗ a)− T (ϕ⊗ a)||q,∞ <
ε

4
. (6)

Since xα → xo, there exists αo ∈ J such that

q[T (ϕ⊗ eλo)(xα)− T (ϕ⊗ eλo)(xo)] <
ε

2
for all α ≥ αo.

Then, for any a ∈ A with q(a) ≤ 1, using Lemma 16 and the fact that T ∈
M`(Co(X,A)) ∩Mr(Co(X,A)),

q[eλoT (ϕ⊗ a)(xα)− eλoT (ϕ⊗ a)(xo)]

= q[T (ϕ⊗ eλoa)(xα)− T (ϕ⊗ eλoa)(xo)]

= q[T (ϕ⊗ eλo)(xα)a− T (ϕ⊗ eλo)(xo)a]

≤ q[T (ϕ⊗ eλo)(xα)− T (ϕ⊗ eλo)(xo)].q(a) <
ε

2
, (7)
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for all α ≥ αo. Hence, by (6) and (7),

q[T (ϕ⊗ a)(xα)− T (ϕ⊗ a)(xo)]

≤ q[T (ϕ⊗ a)(xα)− eλoT (ϕ⊗ a)(xα)]

+q[eλoT (ϕ⊗ a)(xα)− eλoT (ϕ⊗ a)(xo)]

+q[eλoT (ϕ⊗ a)(xo)− T (ϕ⊗ a)(xo)]

≤ 2||T (ϕ⊗ a)− eλoT (ϕ⊗ a)||q,∞
+q[eλoT (ϕ⊗ a)(xα)− eλoT (ϕ⊗ a)(xo)]

<
ε

2
+
ε

2
= ε,

for all α ≥ αo. Therefore

lim
xα→xo

q[T (ϕ⊗ a)(xα)− T (ϕ⊗ a)(xo)] = 0

uniformly on {a ∈ A : q(a) ≤ 1}. Hence

limxα→xo ||hT (xα)− hT (xo)||Aq = 0,

which proves (4).
Finally, we show that ||T ||Cq = ||hT ||q,∞. First, for any x ∈ X, we have

||hT (x)||Aq = sup{q[hT (x).(ϕ⊗ a)(x))] : ||ϕ⊗ a(x)||A ≤ 1}
= sup{q[T (ϕ⊗ a)(x))] : q[ϕ⊗ a(x)] ≤ 1} ≤ ||T ||Cq ,

and so
||hT ||q,∞ = sup

x∈X
||hT (x)||q ≤ ||T ||Cq .

On the other hand,

||T (ϕ⊗ a)||Aq,∞ = sup
x∈X

q[T (x)(ϕ⊗ a(x))]

≤ sup
x
||hT (x)||q.||ϕ⊗ a||q,∞ = ||hT ||q,∞.||ϕ||∞q(a).

Consequently, ||T ||Cq ≤ ||hT ||q,∞; hence ||T ||Cq = ||hT ||q,∞.

Remark 19 If A has an identity, then A is identical with M(A) and s = u.

Example 20 Let `±p , 0 < p ≤ 1, denote the algebra of all two-sided complex
sequences x = {xn}∞n=−∞ for which :

‖x‖p =

∞∑
n=−∞

|xn|p <∞.

This is a commutative complete p−normed algebra with the multiplication de-
fined as convolution:

{xn}∞n=−∞.{yn}∞n=−∞ =

{ ∞∑
k=−∞

xn−kyk

}∞
n=−∞

,

11



since the p−homogeneous norm ‖.‖p defined above is also submultiplicative ([26],

p. 33). The algebra `±p possesses an identity element, namely the sequence
{δn,0}∞n=−∞, where δn,m is the kronecker symbol defined by δn,m = 0 for n 6= m
and δn,m = 1 for n = m. In this case M(`±p ) ' `±p ; hence M(Co(X, `

±
p )) '

Cb(X,M(`±p )) ' Cb(X, `±p ).

The above example can be generalized by taking `p(G) on any discrete group,
with convolution multiplication ([26], p. 33).

Note that the algebra `p(N), 1 < p <∞), with the norm:

‖{xn}‖p = [

∞∑
n=1

|xn|p]
1
p ,

is a Banach algebra without identity; however, it possesses an ”unbounded”
approximate identity ([26], p. 26). Also, for G a locally compact abelian
group, L1(G) is a Banach algebra under the convolution multiplication and
has a ”bounded” approximate identity ([21], p. 232).

Example 21 Let X be a topological Hausdorff space and k the compact-open
topology on C(X) given by the family {|| · ||K : K ⊆ X, K is compact} of
submultiplicative seminorms, where

||f ||K = sup{|f(x)| : x ∈ K}, f ∈ C(X).

(C(X), k) is a commutative locally C∗- algebra with involution f → f∗ given by
f∗(x) = f(x); hence, by a famous result of Inoue, it has a (minimal) approx-
imate identity {eλ : λ ∈ I} satisfying ||eλ||K ≤ 1 for all λ ∈ I and compact
K ⊆ X (see [21], p. 490). In general, (C(X), k) is not metrizable. In fact,
if X is a locally compact Hausdorff space, then (C(X), k) is metrizable iff X
is hemicompact (i.e. X can be expressed as a countable union of compact sets
Kn such that each compact subset of X is contained in some Kn). Therefore,
in particular, (C(R), k) is a F−algebra. But (C(R), k) is not necessarily a
p−normed algebra; so in this case, any multiplier T ∈ M((C(R), k)) need not
be continuous.

Example 22 Let Ap, 0 < p ≤ 1, denote the algebra of all holomorphic functions
in the unit disc

ϕ(z) =

∞∑
n=0

anz
n,

for which

‖ϕ‖p =

∞∑
n=0

|an|p <∞.

This is a commutative complete p−normed algebra with the pointwise multipli-
cation and has an identity ([25], p. 80; [21], p. 135). In this case,

M(Co(X,Ap)) ' Cb(X,M(Ap)β) ' Cb(X,Ap).
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