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Abstract. Let G be a group and let Aut(G) be the full automorphism of G. The purpose of

this paper to consider finite p-groups G for which |G| = |Aut(G)|. We classify groups satisfying

this condition among those in certain classes of finite p-groups.

1. Introduction

Let G be a group. We denote by G
′
, Φ(G), Z(G), Aut(G) and Inn(G), respectively the

commutator subgroup, Frattini subgroup, the centre, the automorphism group and the in-
ner automorphism group of G. An automorphism α of G is called a central automorphism
if x−1α(x) ∈ Z(G) for each x ∈ G. The central automorphisms of G, denoted by Autc(G), fix
G′ elementwise and form a normal subgroup of the full automorphism group of G. The group of
central automorphisms of a finite group G is of great importance in investigating of Aut(G), and
has been studied by several authors (see, for example, [1, 17, 19, 21]). It is conjectured that if G
is a finite noncyclic p-group of order greater than p2, then |G| divides |Aut(G)|. A finite p-group
satisfying this conjecture is called a LA-group. A. D. Otto [19] first showed that an abelian finite
p-group is a LA-group. He also showed that if a p-group G is the direct product of a purely
non-abelian group B and an abelian group P and |B|

∣∣ |Aut(B)|, then |G|
∣∣ |Aut(G)|. Finite

p-groups of class 2 and finite p-abelian p-groups are LA-groups, as was shown by R. Faudree
and R. M. Davitt respectively in [11] and [6]. A. D. Otto and R. M. Davitt also showed that a
finite metacyclic p-group (p > 2), a finite p-group (p > 2) with the central quotient metacyclic,
a finite modular p-group (p > 2) and a finite p-group G which satisfies [G : Z(G)] ≤ p4 are all
LA-groups ( [8], [7], [9], [5]). T. Exarchakos [10] showed that any p-group of maximal class and
any p-group with cyclic Frattini subgroup is a LA-groups. S. Fouladi, A. R. Jamali and R. Orfi
[13] proved that finite p-groups of coclass 2, are LA-groups. This conjecture in full generality is
still open ([16], Problem 12.77). Let |Aut(G)|p be the order of a Sylow p-subgroup of Aut(G). I.
Malinowska [15], characterized the finite p-groups G of maximal class for which |Aut(G)|p = |G|,
in response to a problem posed by Berkovich in [2]. A similar description has been given by S.
Fouladi, A. R. Jamali and R. Orfi [12] for the finite non-abelian p-groups with cyclic Frattini
subgroup. The purpose of this paper is to consider p-groups G for which |G| = |Aut(G)|. M.
F. Newman and E. A. O’Brien [18] gave (without proof) three infinite families of 2-groups for
which |G| = |Aut(G)|. M. J. Curran [3] showed that for each m ≥ 3, there is a 2-group P
with |P | = 2m = |Aut(P )|. For p odd, no such examples are known. In this paper we describe
completely the p-groups G such that |G| = |Aut(G)| and such that G is of maximal class or
with cyclic Frattini subgroup. We show that in every finite non-abelian p-group G such that
|Z(G)| = p and |G| = |Aut(G)|, all non-abelian maximal subgroups are characteristic. Also we
prove that if G is a finite p-group of class 2 with cyclic centre such that |Aut(G)| = |G|, then
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p = 2 and there exists a cyclic subgroup Σ of Aut(G) such that [Aut(G) : Autc(G)Σ] = 2 and
|Autc(G) ∩ Σ| = 2.

2. Proofs

Definition 2.1. A finite non-abelian p-group G is called purely non-abelian if it has no non-
trivial abelian direct factor.

Proposition 2.2. Let G be a finite non-abelian p-group such that |G| = |Aut(G)|. Then

(1) If p is odd, then G is purely non-abelian.
(2) If p = 2 and |Z(G)| = 4, then G is purely non-abelian.
(3) If p = 2, then G cannot have a homocyclic direct factor of rank 2.

Proof. (1) Suppose, for a contradiction, that G = A × B where A is a non-trivial abelian
group. Since exp(A) > 2, A has an automorphism of order 2 (the inverting map) and
hence G has an automorphism of order 2, which is a contradiction.

(2) Suppose, for a contradiction, that G = A × B where A is a non-trivial abelian group.
Since B is non-abelian, |Hom(B,A)| = |Hom(B/B′, A)| ≥ 22 where Hom(B,A) is
the set of all group homomorphisms from B to A. For each non-trivial element α of
Hom(B,A), the map α∗ defined by α∗(ab) = abα(b) for all a ∈ A, b ∈ B defines a
non-inner automorphism of G. Hence [Aut(G) : Inn(G)] ≥ 22. Also for each non-trivial
element β of Hom(A,Z(B)), the map β∗ defined by β∗(ab) = aβ(a)b for all a ∈ A,
b ∈ B defines a non-inner automorphism of G. Therefore [Aut(G) : Inn(G)] ≥ 22 + 1
and hence [Aut(G) : Inn(G)] ≥ 23. Since |Z(G)| = 4, we have |Aut(G)| > |G| which is
a contradiction.

(3) Suppose that G has a direct factor of the form 〈a〉 × 〈b〉, where a and b have the same
order (not 1). Hence G has an automorphism of order 3 defined by the mapping a to b
and b to a−1b−1 which is impossible.

�

I. Malinowska [15] described completely the p-groups G such that |Aut(G)|p = |G| and such
that G is either abelian or of maximal class. In the following we classify the p-groups G such
that |G| = |Aut(G)| and such that G is either abelian or of maximal class.

Proposition 2.3. Let G be an abelian p-group of order pn (n > 2). Then |G| = |Aut(G)| if
and only if G ' C2n−1 × C2.

Proof. Suppose first that G is an abelian p-group of order pn and |G| = |Aut(G)|. By Proposition
2.2, we have p = 2. Let n = 3. Then G ' C8, G ' C4 × C2 or G ' C2 × C2 × C2. If G ' C8,
then |Aut(G)| = 4 6= |G|. If G ' C4 ×C2, then |Aut(G)| = |G| = 23. If G ' C2 ×C2 ×C2, then
by part (3) of Proposition 2.2, |Aut(G)| 6= |G|. Now let n ≥ 4. Since |G| = |Aut(G)|, we have
|G| = |Aut(G)|p and hence by [15, Theorem 2.3] G ' C2n−1 × C2.

�

The following proposition is a consequence of [22].

Proposition 2.4. Let G be an extra-special p-group. Then |G| = |Aut(G)| if and only if G ' D8.

Proof. Suppose that G is an extra-special p-group and |G| = |Aut(G)|. If p is odd, then p − 1
divides |G| which is impossible. Therefore p = 2. If G is isomorphic to the central product
of n − 1 copies of D8 and one copy of Q8, then 2n + 1 divides |Aut(G)| and so |G| which is
impossible. Thus G is isomorphic to the central product of n copies of D8. Let n > 1. Then
2n − 1 divides |Aut(G)| and so |G| which is a contradiction. Hence n = 1 and G ' D8. �
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Proposition 2.5. Let G be a finite p-group of maximal class. Then |G| = |Aut(G)| if and only
if G ' D8 or G ' S16 = 〈x, y | x8 = y2 = 1, [x, y] = x2〉.

Proof. Since |G| = |Aut(G)|, we have |G| = |Aut(G)|p. Hence by [15, Theorem 3.4] G is a
non-abelian group of order p3 or G is isomorphic to one of the following groups of order p4:

(1) 〈x, y, z | x9 = y3 = z3 = 1, [x, y] = x3, [x, z] = y, [y, z] = 1〉;
(2) 〈x, y, z | xp2

= yp = [y, z] = 1, zp = xp, [x, z] = y, [x, y] = xp〉, where p > 2;
(3) 〈x, y, z | xp2

= yp = [y, z] = 1, [x, y] = xp, [x, z] = y, zp = xαp〉, where p > 3 and α is a
quadratic non-residue for p.

(4) 〈x, y | x8 = y2 = 1, [x, y] = x2〉.
If G is a non-abelian group of order p3, then, by Proposition 2.4, G ' D8.
If G is as (1), (2) or (3), then the map x to x−1, y to yxp and z to z−1 (p = 3 for the group
in (1)) can be extended to an automorphism of order 2, which is a contradiction. Therefore
G ' S16 = 〈x, y | x8 = y2 = 1, [x, y] = x2〉. �

Theorem 2.6. Let G be a finite non-abelian p-group with cyclic Frattini subgroup. Then |G| =
|Aut(G)| if and only if G is isomorphic to S16, D8, or M2n, where

M2n = 〈x, y |x2n−1
= y2 = 1, y−1xy = x1+2n−2〉, (n ≥ 4).

Proof. By the hypothesis |G| = |Aut(G)|p and hence by [12, Theorem 1.1] we have G ' S16 or
Z(G) is cyclic and |G/Z(G)| = p2. If p > 2, then by [4, Lemma 2.3] there exist elements a, b ∈ G
such that, after setting B = 〈b〉Z(G), we have G = B〈a〉 and |B ∩ 〈a〉| = 1. Hence the map α
defined on G by α(xai) = x−1ai for every x ∈ B and every 0 ≤ i < |a| is an automorphism of
order 2 which is a contradiction. Therefore p = 2 and hence by [12, Theorem 1.1] G is one of
the groups S16, D8, M2n or L2n+2 , where

L2n+2 = 〈x, y, z|x2 = (xy)2 = 1, z2n
= 1, [x, z] = [y, z] = 1, z2n−1

= y2〉(n > 1).

If G is isomorphic to one of the groups S16, D8, then |G| = |Aut(G)|. If G ' M2n = 〈x, y |x2n−1
=

y2 = 1, y−1xy = x1+2n−2〉, (n ≥ 4), then the set of all elements of order 2n−1 in G is {xiyj | 0 ≤
j ≤ 1, 1 ≤ i < 2n−1, (i, 2) = 1 } and the set of all noncentral elements of order 2 in G is
{y, x2n−2

y}. The map x 7−→ xiyj , y 7−→ y for all 0 ≤ j ≤ 1 and 1 ≤ i < 2n−1, (i, 2) = 1
can be extended to an automorphism of G. Also the map x 7−→ xiyj , y 7−→ x2n−2

y for all
0 ≤ j ≤ 1 and 1 ≤ i < 2n−1, (i, 2) = 1 can be extended to an automorphism of G. Hence
|Aut(G)| = 2n = |G|. Now let G be isomorphic to L2n+2 . Set t = xz2n−2

. We have y4 = 1,
y2 = t2 and t−1yt = y−1. Thus 〈y, t〉 ' Q8. Hence G is the nondirect central product 〈y, t〉 and
〈z〉. Therefore G has an automorphism of order 3 defined by the mapping y to t, t to y3t and z
to z which is impossible. �

Proposition 2.7. Let G be a finite non-abelian p-group and |Z(G)| = p. If |G| = |Aut(G)|,
then every non-abelian maximal subgroup of G is characteristic.

Proof. Suppose that M is a non-abelian maximal subgroup of G. It follows from Z(G) ⊆
Φ(G) that CG(M) = Z(M). Suppose first that Z(M) = Z(G). Let x /∈ M and z be a
generator of Z(G). Then the map θ defined on G by θ(mxk) = mxkzk for every m ∈ M
and every k ∈ {0, 1, . . . , p − 1} is an automorphism of G which is not inner. For, otherwise,
if θ = γa for some a ∈ G, then for all m ∈ M , we have m = θ(m) = γa(m) = a−1ma
whence a ∈ CG(M) = Z(M) = Z(G). Therefore xz = θ(x) = γa(x) = a−1xa = x and so
z = 1, which is a contradiction. Thus θ ∈ Aut(G) \ Inn(G). Since Inn(G) is a maximal
subgroup of Aut(G), we have Aut(G) = 〈θ〉Inn(G). Since θ fixes M elementwise and M is
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normal in G, M is characteristic in G. Now let Z(M) 6= Z(G). Since M is non-abelian,
Z(G) < Z(M) = CG(M) < M . Then by [4, Lemma 4.1] G has an outer automorphism β such
that Mβ = M . Since Inn(G) is a maximal subgroup of Aut(G), we have Aut(G) = 〈β〉Inn(G)
and therefore M is characteristic in G. �

Theorem 2.8. Let G be a finite p-group of class 2 such that Z(G) is cyclic and |G| = |Aut(G)|.
Then p = 2 and there exists a cyclic subgroup Σ of Aut(G) such that [Aut(G) : Autc(G)Σ] = 2
and |Autc(G) ∩ Σ| = 2.

Proof. Let G be a finite p-group of class 2 such that Z(G) is cyclic and |G| = |Aut(G)|. Since
Z(G) is cyclic, G is a central product

∏n
i=1 Gi, where each subgroup Gi can be written as

〈ai, bi〉Z(G) for suitable ai and bi and Gi ∩Gj = Z(G) if i 6= j. By [4, Lemma 2.3], we may also
choose ai and bi such that Gi = (〈bi〉Z(G))〈ai〉 and |〈bi〉Z(G)∩ 〈ai〉| ≤ 2 for each i. Then G has
an automorphism φ that fixes all ai and inverts every bi and all elements of Z(G). Thus p = 2
(see the proof of Theorem 2.4 of [4]). Suppose that G′ = 〈u〉 and Z(G) = 〈z〉, where |u| = 2b

and |z| = 2a. We prove that there are g, h ∈ G such that u = [g, h] and h2b+1
= 1. Since G is

a finite 2-group and G′ is cyclic, we have u = [g, h1] for some g, h1 ∈ G. Then g2b
= zs and

h2b

1 = zt for some t, s ∈ Z. If 〈zt〉 ⊆ 〈zs〉, then zt = zrs for some r. Put h = g−rh1. So we
have [g, h] = [g, h1] = u and h2b+1

= (g−rh1)2
b+1

= (g−r)2
b+1

(h1)2
b+1

[h1, g
−r]2

b+1(2b+1−1)/2 = 1.
If 〈zs〉 ⊆ 〈zt〉 then zs = zr1t for some r1. Since u = [g, h1] is a generator of G′, u−1 = [h1, g]
is a generator of G′. Put g1 = gh1

−r1 . So we have [h1, g1] = [h1, g] = u−1 and g2b+1

1 = 1. Let
H = 〈g, h〉. Then G = HCG(〈g, h〉). Hence by [11, Lemma 2], the correspondence g → gh2,
h → h, x → x for all x ∈ CG(〈g, h〉) defines an automorphism σ of G which leaves the elements
of Z(G) fixed and |σAutc(G)| = 2b−1. Now we show that exp(G/G′) ≤ exp(Z(G)) = 2a.
Let x ∈ G. Then x2b ∈ Z(G) and hence x2a

= (x2b
)2

a−b ∈ G′ since, |Z(G)/G′| = 2a−b.
Therefore exp(G/G′) ≤ exp(Z(G)) = 2a. Since Z(G) is cyclic, G is purely non-abelian and
hence |Autc(G)| = |Hom(G/G′, Z(G)| = |G/G′|. Set Σ = 〈σ〉. Then |Σ| = |〈σ〉| = 2b = |G′| and
|Σ ∩ Autc(G)| = 2 . Also |Autc(G)Σ| = |Autc(G)||Σ|/|Σ ∩ Autc(G)| = |G/G′||G′|/2 = |G|/2 =
|Aut(G)|/2 and so [Aut(G) : Autc(G)Σ] = 2. �
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