ON EQUALITY OF ORDER OF A FINITE p-GROUP AND ORDER OF ITS AUTOMORPHISM GROUP

M. SHABANI-ATTAR

Abstract

Let G be a group and let $\operatorname{Aut}(G)$ be the full automorphism of G. The purpose of this paper to consider finite p-groups G for which $|G|=|A u t(G)|$. We classify groups satisfying this condition among those in certain classes of finite p-groups.

1. Introduction

Let G be a group. We denote by $G^{\prime}, \Phi(G), Z(G), \operatorname{Aut}(G)$ and $\operatorname{Inn}(G)$, respectively the commutator subgroup, Frattini subgroup, the centre, the automorphism group and the inner automorphism group of G. An automorphism α of G is called a central automorphism if $x^{-1} \alpha(x) \in Z(G)$ for each $x \in G$. The central automorphisms of G, denoted by $\operatorname{Aut}_{c}(G)$, fix G^{\prime} elementwise and form a normal subgroup of the full automorphism group of G. The group of central automorphisms of a finite group G is of great importance in investigating of $\operatorname{Aut}(G)$, and has been studied by several authors (see, for example, [1, 17, 19, 21]). It is conjectured that if G is a finite noncyclic p-group of order greater than p^{2}, then $|G|$ divides $|\operatorname{Aut}(G)|$. A finite p-group satisfying this conjecture is called a $L A$-group. A. D. Otto [19] first showed that an abelian finite p-group is a $L A$-group. He also showed that if a p-group G is the direct product of a purely non-abelian group B and an abelian group P and $|B|||A u t(B)|$, then $| G|||A u t(G)|$. Finite p-groups of class 2 and finite p-abelian p-groups are $L A$-groups, as was shown by R. Faudree and R. M. Davitt respectively in [11] and [6]. A. D. Otto and R. M. Davitt also showed that a finite metacyclic p-group $(p>2)$, a finite p-group $(p>2)$ with the central quotient metacyclic, a finite modular p-group ($p>2$) and a finite p-group G which satisfies $[G: Z(G)] \leq p^{4}$ are all $L A$-groups ([8], [7], [9], [5]). T. Exarchakos [10] showed that any p-group of maximal class and any p-group with cyclic Frattini subgroup is a $L A$-groups. S. Fouladi, A. R. Jamali and R. Orfi [13] proved that finite p-groups of coclass 2 , are $L A$-groups. This conjecture in full generality is still open ([16], Problem 12.77). Let $|\operatorname{Aut}(G)|_{p}$ be the order of a Sylow p-subgroup of $\operatorname{Aut}(G)$. I. Malinowska [15], characterized the finite p-groups G of maximal class for which $|A u t(G)|_{p}=|G|$, in response to a problem posed by Berkovich in [2]. A similar description has been given by S. Fouladi, A. R. Jamali and R. Orfi [12] for the finite non-abelian p-groups with cyclic Frattini subgroup. The purpose of this paper is to consider p-groups G for which $|G|=|\operatorname{Aut}(G)|$. M. F. Newman and E. A. O'Brien [18] gave (without proof) three infinite families of 2-groups for which $|G|=|\operatorname{Aut}(G)|$. M. J. Curran [3] showed that for each $m \geq 3$, there is a 2-group P with $|P|=2^{m}=|\operatorname{Aut}(P)|$. For p odd, no such examples are known. In this paper we describe completely the p-groups G such that $|G|=|A u t(G)|$ and such that G is of maximal class or with cyclic Frattini subgroup. We show that in every finite non-abelian p-group G such that $|Z(G)|=p$ and $|G|=|\operatorname{Aut}(G)|$, all non-abelian maximal subgroups are characteristic. Also we prove that if G is a finite p-group of class 2 with cyclic centre such that $|\operatorname{Aut}(G)|=|G|$, then

[^0]2010 Mathematics Subject Classification: 20D15, 20D45.
$p=2$ and there exists a cyclic subgroup Σ of $\operatorname{Aut}(G)$ such that $\left[\operatorname{Aut}(G): \operatorname{Aut}_{c}(G) \Sigma\right]=2$ and $\left|A u t_{c}(G) \cap \Sigma\right|=2$.

2. Proofs

Definition 2.1. A finite non-abelian p-group G is called purely non-abelian if it has no nontrivial abelian direct factor.
Proposition 2.2. Let G be a finite non-abelian p-group such that $|G|=|A u t(G)|$. Then
(1) If p is odd, then G is purely non-abelian.
(2) If $p=2$ and $|Z(G)|=4$, then G is purely non-abelian.
(3) If $p=2$, then G cannot have a homocyclic direct factor of rank 2 .

Proof. (1) Suppose, for a contradiction, that $G=A \times B$ where A is a non-trivial abelian group. Since $\exp (A)>2, A$ has an automorphism of order 2 (the inverting map) and hence G has an automorphism of order 2 , which is a contradiction.
(2) Suppose, for a contradiction, that $G=A \times B$ where A is a non-trivial abelian group. Since B is non-abelian, $|\operatorname{Hom}(B, A)|=\left|\operatorname{Hom}\left(B / B^{\prime}, A\right)\right| \geq 2^{2}$ where $\operatorname{Hom}(B, A)$ is the set of all group homomorphisms from B to A. For each non-trivial element α of $\operatorname{Hom}(B, A)$, the map α^{*} defined by $\alpha^{*}(a b)=a b \alpha(b)$ for all $a \in A, b \in B$ defines a non-inner automorphism of G. Hence $[\operatorname{Aut}(G): \operatorname{Inn}(G)] \geq 2^{2}$. Also for each non-trivial element β of $\operatorname{Hom}(A, Z(B))$, the map β^{*} defined by $\beta^{*}(a b)=a \beta(a) b$ for all $a \in A$, $b \in B$ defines a non-inner automorphism of G. Therefore $[\operatorname{Aut}(G): \operatorname{Inn}(G)] \geq 2^{2}+1$ and hence $[\operatorname{Aut}(G): \operatorname{Inn}(G)] \geq 2^{3}$. Since $|Z(G)|=4$, we have $|\operatorname{Aut}(G)|>|G|$ which is a contradiction.
(3) Suppose that G has a direct factor of the form $\langle a\rangle \times\langle b\rangle$, where a and b have the same order (not 1). Hence G has an automorphism of order 3 defined by the mapping a to b and b to $a^{-1} b^{-1}$ which is impossible.
I. Malinowska [15] described completely the p-groups G such that $|A u t(G)|_{p}=|G|$ and such that G is either abelian or of maximal class. In the following we classify the p-groups G such that $|G|=|\operatorname{Aut}(G)|$ and such that G is either abelian or of maximal class.
Proposition 2.3. Let G be an abelian p-group of order $p^{n}(n>2)$. Then $|G|=|A u t(G)|$ if and only if $G \simeq C_{2^{n-1}} \times C_{2}$.
Proof. Suppose first that G is an abelian p-group of order p^{n} and $|G|=|\operatorname{Aut}(G)|$. By Proposition 2.2, we have $p=2$. Let $n=3$. Then $G \simeq C_{8}, G \simeq C_{4} \times C_{2}$ or $G \simeq C_{2} \times C_{2} \times C_{2}$. If $G \simeq C_{8}$, then $|\operatorname{Aut}(G)|=4 \neq|G|$. If $G \simeq C_{4} \times C_{2}$, then $|\operatorname{Aut}(G)|=|G|=2^{3}$. If $G \simeq C_{2} \times C_{2} \times C_{2}$, then by part (3) of Proposition $2.2,|\operatorname{Aut}(G)| \neq|G|$. Now let $n \geq 4$. Since $|G|=|\operatorname{Aut}(G)|$, we have $|G|=|\operatorname{Aut}(G)|_{p}$ and hence by [15, Theorem 2.3] $G \simeq C_{2^{n-1}} \times C_{2}$.

The following proposition is a consequence of [22].
Proposition 2.4. Let G be an extra-special p-group. Then $|G|=|\operatorname{Aut}(G)|$ if and only if $G \simeq D_{8}$.
Proof. Suppose that G is an extra-special p-group and $|G|=|A u t(G)|$. If p is odd, then $p-1$ divides $|G|$ which is impossible. Therefore $p=2$. If G is isomorphic to the central product of $n-1$ copies of D_{8} and one copy of Q_{8}, then $2^{n}+1$ divides $|\operatorname{Aut}(G)|$ and so $|G|$ which is impossible. Thus G is isomorphic to the central product of n copies of D_{8}. Let $n>1$. Then $2^{n}-1$ divides $|\operatorname{Aut}(G)|$ and so $|G|$ which is a contradiction. Hence $n=1$ and $G \simeq D_{8}$.

Proposition 2.5. Let G be a finite p-group of maximal class. Then $|G|=|A u t(G)|$ if and only if $G \simeq D_{8}$ or $G \simeq S_{16}=\left\langle x, y \mid x^{8}=y^{2}=1,[x, y]=x^{2}\right\rangle$.

Proof. Since $|G|=|\operatorname{Aut}(G)|$, we have $|G|=|\operatorname{Aut}(G)|{ }_{p}$. Hence by [15, Theorem 3.4] G is a non-abelian group of order p^{3} or G is isomorphic to one of the following groups of order p^{4} :
(1) $\left\langle x, y, z \mid x^{9}=y^{3}=z^{3}=1,[x, y]=x^{3},[x, z]=y,[y, z]=1\right\rangle$;
(2) $\left\langle x, y, z \mid x^{p^{2}}=y^{p}=[y, z]=1, z^{p}=x^{p},[x, z]=y,[x, y]=x^{p}\right\rangle$, where $p>2$;
(3) $\langle x, y, z| x^{p^{2}}=y^{p}=[y, z]=1,[x, y]=x^{p},[x, z]=y, z^{p}=x^{\alpha p\rangle}$, where $p>3$ and α is a quadratic non-residue for p.
(4) $\left\langle x, y \mid x^{8}=y^{2}=1,[x, y]=x^{2}\right\rangle$.

If G is a non-abelian group of order p^{3}, then, by Proposition $2.4, G \simeq D_{8}$.
If G is as (1), (2) or (3), then the map x to x^{-1}, y to $y x^{p}$ and z to z^{-1} ($p=3$ for the group in (1)) can be extended to an automorphism of order 2, which is a contradiction. Therefore $G \simeq S_{16}=\left\langle x, y \mid x^{8}=y^{2}=1,[x, y]=x^{2}\right\rangle$.
Theorem 2.6. Let G be a finite non-abelian p-group with cyclic Frattini subgroup. Then $|G|=$ $|\operatorname{Aut}(G)|$ if and only if G is isomorphic to S_{16}, D_{8}, or $M_{2^{n}}$, where

$$
M_{2^{n}}=\left\langle x, y \mid x^{2^{n-1}}=y^{2}=1, y^{-1} x y=x^{1+2^{n-2}}\right\rangle,(n \geq 4) .
$$

Proof. By the hypothesis $|G|=|\operatorname{Aut}(G)|_{p}$ and hence by [12, Theorem 1.1] we have $G \simeq S_{16}$ or $Z(G)$ is cyclic and $|G / Z(G)|=p^{2}$. If $p>2$, then by [4, Lemma 2.3] there exist elements $a, b \in G$ such that, after setting $B=\langle b\rangle Z(G)$, we have $G=B\langle a\rangle$ and $|B \cap\langle a\rangle|=1$. Hence the map α defined on G by $\alpha\left(x a^{i}\right)=x^{-1} a^{i}$ for every $x \in B$ and every $0 \leq i<|a|$ is an automorphism of order 2 which is a contradiction. Therefore $p=2$ and hence by [12, Theorem 1.1] G is one of the groups $S_{16}, D_{8}, M_{2^{n}}$ or $L_{2^{n+2}}$, where

$$
L_{2^{n+2}}=\left\langle x, y, z \mid x^{2}=(x y)^{2}=1, z^{2^{n}}=1,[x, z]=[y, z]=1, z^{z^{n-1}}=y^{2}\right\rangle(n>1) .
$$

If G is isomorphic to one of the groups S_{16}, D_{8}, then $|G|=|A u t(G)|$. If $G \simeq M_{2^{n}}=\langle x, y| x^{2^{n-1}}=$ $\left.y^{2}=1, y^{-1} x y=x^{1+2^{n-2}}\right\rangle,(n \geq 4)$, then the set of all elements of order 2^{n-1} in G is $\left\{x^{i} y^{j} \mid 0 \leq\right.$ $\left.j \leq 1,1 \leq i<2^{n-1},(i, 2)=1\right\}$ and the set of all noncentral elements of order 2 in G is $\left\{y, x^{2^{n-2}} y\right\}$. The map $x \longmapsto x^{i} y^{j}, y \longmapsto y$ for all $0 \leq j \leq 1$ and $1 \leq i<2^{n-1},(i, 2)=1$ can be extended to an automorphism of G. Also the map $x \longmapsto x^{i} y^{j}, y \longmapsto x^{2^{n-2}} y$ for all $0 \leq j \leq 1$ and $1 \leq i<2^{n-1},(i, 2)=1$ can be extended to an automorphism of G. Hence $|\operatorname{Aut}(G)|=2^{n}=|G|$. Now let G be isomorphic to $L_{2^{n+2}}$. Set $t=x z^{2^{n-2}}$. We have $y^{4}=1$, $y^{2}=t^{2}$ and $t^{-1} y t=y^{-1}$. Thus $\langle y, t\rangle \simeq Q_{8}$. Hence G is the nondirect central product $\langle y, t\rangle$ and $\langle z\rangle$. Therefore G has an automorphism of order 3 defined by the mapping y to t, t to $y^{3} t$ and z to z which is impossible.
Proposition 2.7. Let G be a finite non-abelian p-group and $|Z(G)|=p$. If $|G|=|\operatorname{Aut}(G)|$, then every non-abelian maximal subgroup of G is characteristic.
Proof. Suppose that M is a non-abelian maximal subgroup of G. It follows from $Z(G) \subseteq$ $\Phi(G)$ that $C_{G}(M)=Z(M)$. Suppose first that $Z(M)=Z(G)$. Let $x \notin M$ and z be a generator of $Z(G)$. Then the map θ defined on G by $\theta\left(m x^{k}\right)=m x^{k} z^{k}$ for every $m \in M$ and every $k \in\{0,1, \ldots, p-1\}$ is an automorphism of G which is not inner. For, otherwise, if $\theta=\gamma_{a}$ for some $a \in G$, then for all $m \in M$, we have $m=\theta(m)=\gamma_{a}(m)=a^{-1} m a$ whence $a \in C_{G}(M)=Z(M)=Z(G)$. Therefore $x z=\theta(x)=\gamma_{a}(x)=a^{-1} x a=x$ and so $z=1$, which is a contradiction. Thus $\theta \in \operatorname{Aut}(G) \backslash \operatorname{Inn}(G)$. Since $\operatorname{Inn}(G)$ is a maximal subgroup of $\operatorname{Aut}(G)$, we have $\operatorname{Aut}(G)=\langle\theta\rangle \operatorname{Inn}(G)$. Since θ fixes M elementwise and M is
normal in G, M is characteristic in G. Now let $Z(M) \neq Z(G)$. Since M is non-abelian, $Z(G)<Z(M)=C_{G}(M)<M$. Then by [4, Lemma 4.1] G has an outer automorphism β such that $M^{\beta}=M$. Since $\operatorname{Inn}(G)$ is a maximal subgroup of $\operatorname{Aut}(G)$, we have $\operatorname{Aut}(G)=\langle\beta\rangle \operatorname{Inn}(G)$ and therefore M is characteristic in G.

Theorem 2.8. Let G be a finite p-group of class 2 such that $Z(G)$ is cyclic and $|G|=|A u t(G)|$. Then $p=2$ and there exists a cyclic subgroup Σ of $\operatorname{Aut}(G)$ such that $\left[\operatorname{Aut}(G): \operatorname{Aut}_{c}(G) \Sigma\right]=2$ and $\left|A u t_{c}(G) \cap \Sigma\right|=2$.
Proof. Let G be a finite p-group of class 2 such that $Z(G)$ is cyclic and $|G|=|\operatorname{Aut}(G)|$. Since $Z(G)$ is cyclic, G is a central product $\prod_{i=1}^{n} G_{i}$, where each subgroup G_{i} can be written as $\left\langle a_{i}, b_{i}\right\rangle Z(G)$ for suitable a_{i} and b_{i} and $G_{i} \cap G_{j}=Z(G)$ if $i \neq j$. By [4, Lemma 2.3], we may also choose a_{i} and b_{i} such that $G_{i}=\left(\left\langle b_{i}\right\rangle Z(G)\right)\left\langle a_{i}\right\rangle$ and $\left|\left\langle b_{i}\right\rangle Z(G) \cap\left\langle a_{i}\right\rangle\right| \leq 2$ for each i. Then G has an automorphism ϕ that fixes all a_{i} and inverts every b_{i} and all elements of $Z(G)$. Thus $p=2$ (see the proof of Theorem 2.4 of [4]). Suppose that $G^{\prime}=\langle u\rangle$ and $Z(G)=\langle z\rangle$, where $|u|=2^{b}$ and $|z|=2^{a}$. We prove that there are $g, h \in G$ such that $u=[g, h]$ and $h^{2^{b+1}}=1$. Since G is a finite 2 -group and G^{\prime} is cyclic, we have $u=\left[g, h_{1}\right]$ for some $g, h_{1} \in G$. Then $g^{2^{b}}=z^{s}$ and $h_{1}^{2^{b}}=z^{t}$ for some $t, s \in \mathbb{Z}$. If $\left\langle z^{t}\right\rangle \subseteq\left\langle z^{s}\right\rangle$, then $z^{t}=z^{r s}$ for some r. Put $h=g^{-r} h_{1}$. So we have $[g, h]=\left[g, h_{1}\right]=u$ and $2^{2^{b+1}}=\left(g^{-r} h_{1}\right)^{2^{b+1}}=\left(g^{-r}\right)^{2^{b+1}}\left(h_{1}\right)^{2^{b+1}}\left[h_{1}, g^{-r}\right]^{2^{b+1}\left(2^{b+1}-1\right) / 2}=1$. If $\left\langle z^{s}\right\rangle \subseteq\left\langle z^{t}\right\rangle$ then $z^{s}=z^{r_{1} t}$ for some r_{1}. Since $u=\left[g, h_{1}\right]$ is a generator of $G^{\prime}, u^{-1}=\left[h_{1}, g\right]$ is a generator of G^{\prime}. Put $g_{1}=g h_{1}^{-r_{1}}$. So we have $\left[h_{1}, g_{1}\right]=\left[h_{1}, g\right]=u^{-1}$ and $g_{1}^{2 b+1}=1$. Let $H=\langle g, h\rangle$. Then $G=H C_{G}(\langle g, h\rangle)$. Hence by [11, Lemma 2], the correspondence $g \rightarrow g h^{2}$, $h \rightarrow h, x \rightarrow x$ for all $x \in C_{G}(\langle g, h\rangle)$ defines an automorphism σ of G which leaves the elements of $Z(G)$ fixed and $\left|\sigma A u t_{c}(G)\right|=2^{b-1}$. Now we show that $\exp \left(G / G^{\prime}\right) \leq \exp (Z(G))=2^{a}$. Let $x \in G$. Then $x^{2^{b}} \in Z(G)$ and hence $x^{2^{a}}=\left(x^{2^{b}}\right)^{2^{a-b}} \in G^{\prime}$ since, $\left|Z(G) / G^{\prime}\right|=2^{a-b}$. Therefore $\exp \left(G / G^{\prime}\right) \leq \exp (Z(G))=2^{a}$. Since $Z(G)$ is cyclic, G is purely non-abelian and hence $\left|A u t_{c}(G)\right|=\mid \operatorname{Hom}\left(G / G^{\prime}, Z(G)\left|=\left|G / G^{\prime}\right|\right.\right.$. Set $\Sigma=\langle\sigma\rangle$. Then $| \Sigma\left|=|\langle\sigma\rangle|=2^{b}=\left|G^{\prime}\right|\right.$ and $\left|\Sigma \cap A u t_{c}(G)\right|=2$. Also $\left|A u t_{c}(G) \Sigma\right|=\left|A u t_{c}(G)\right||\Sigma| /\left|\Sigma \cap A u t_{c}(G)\right|=\left|G / G^{\prime}\right|\left|G^{\prime}\right| / 2=|G| / 2=$ $|\operatorname{Aut}(G)| / 2$ and so $\left[\operatorname{Aut}(G): \operatorname{Aut}_{c}(G) \Sigma\right]=2$.

Acknowledgment

The author would like to thank the referees and the editor for their comments and suggestions which have improved the original manuscript to its present form.

References

[1] J. E. Adney, T. Yen, Automorphisms of a p-group, Illinois J. Math. 9 (1965), 137-143.
[2] Y. Berkovich, On subgroups of finite p-groups, Journal of Algebra 224 (2000), 198-240.
[3] M. J. Curran, A note on p-groups that are automorphism groups, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 23 (1990), 57-61.
[4] G. Cutolo, On a question about automorphisms of finite p-groups, J. Group Theory 9 (2006), 231-250.
[5] R. M. Davitt, On the automorphism group of a finite p-group with a small central quotient, Can. J. Math., 32 (1980), 1168-1176.
[6] R. M. Davitt, The automorphism group of finite p-abelian p-groups, Illinois J. Math 16 (1972), 76-85.
[7] R. M. Davitt, A. D. Otto, On the automorphism group of a finite p-group with the central quotient metacyclic, Proc. Amer. Math. Soc., 30 (1971), 467-472.
[8] R. M. Davitt, The automorphism group of a finite metacyclic p-group, Proc. Amer. Math. Soc., 25 (1970), 876-879.
[9] R. M. Davitt, A. D. Otto, On the automorphism group of a finite modular p-group , Proc. Amer. Math. Soc., 35 (1972), 399-404.
[10] T. Exarchakos, LA-groups, J. Math. Soc. Japan, 32, 2 (1981), 185-190.
[11] R. Faudree, A note on the automorphism group of a group, Proc. Amer. Math. Soc., 19 (1968), 1379-1382.
[12] S. Fouladi, A. R. Jamali and R. Orfi, On the automorphism group of a finite p-group with cyclic Frattini subgroup, Proc. Roy. Irish Acad, 108A (2), (2008), 165-175.
[13] S. Fouladi, A. R. Jamali and R. Orfi, Automorphism groups of finite p-groups of coclass 2, J. Group Theory 10 (2007), 437-440.
[14] B. Huppert, Endliche Gruppen I, Springer-Verlag, New York, 1967.
[15] I. Malinowska, Finite p-groups with few p-automorphisms, J. Group Theory 4 (2001), 395-400.
[16] V. D. Mazurov, E. I. Khukhro (Eds.), Unsolved problems in group theory, The Kourovka Notebook, vol. 16, Russian Academy of Sciences, Siberian Division, Institue of Mathematics, Novosibirisk, 2006.
[17] H. Mousavi, A. Shomali, Central automorphisms of semidirect products, To appear in Bull. Malays. Math. Sci. Soc.
[18] M. F. Newman, E. A. O'Brien, A CAYLEY library for the groups of order dividing 128, Group theory (Singapore, 1987), de Gruyter, Berlin-New York, (1989), 437-442.
[19] A. D. Otto, Central automorphisms of a finite p-group, Trans. Amer. Math. Soc 125 (1966), 280-287.
[20] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1982.
[21] M. Shabani-Attar, C-Characteristically simple groups, Bull. Malays. Math. Sci. Soc. (2)35(1) (2012), 147-154.
[22] D. L. Winter, The automorphism group of an extraspecial p-group, Rocky Mountain J. Math. 2 (1972), no. 2, 159-168.

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697 Tehran, Iran.
E-mail address: mehdishabani9@yahoo.com , m_shabaniattar@pnu.ac.ir

[^0]: Key words and phrases. Finite p-groups, Automorphisms of p-groups, Central automorphisms.

