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Abstract The main results: A ring R is CN if and only if for
any x ∈ N(R) and y ∈ R, ((1+x)y)n+k = (1+x)n+kyn+k, where
n is a fixed positive integer and k = 0, 1, 2; (2) Let R be a CN
ring and n ≥ 1. If for any x, y ∈ R\N(R), (xy)n+k = xn+kyn+k,
where k = 0, 1, 2, then R is commutative; (3) Let R be a ring
and n ≥ 1. If for any x ∈ R\N(R) and y ∈ R, (xy)k = xkyk,
k = n, n + 1, n + 2, then R is commutative; (4) NLI exchange
rings are clean.
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1 Introduction

Throughout this paper, all rings are associative with identity. Let R be
a ring, we use N(R), J(R), E(R), Z(R) and U(R) to denote the set of all
nilpotent elements, the Jacobson radical, the set of all idempotent elements,
the center and the set of all invertible elements of R, respectively. For any
nonempty subset X of a ring R, r(X) = rR(X) and l(X) = lR(X) denote
the right annihilator of X and the left annihilator of X, respectively.

Following [4], a ring R is called CN if N(R) ⊆ Z(R). Clearly, commuta-
tive rings and reduced rings (thai is, a ring R with N(R) = 0) are CN .

A theorem of Herstein [8] stated that a ring R which satisfies the identity
(xy)n = xnyn, where n is a fixed positive integer greater than 1, must
have nil commutator ideal. In [1], Bell proved that if R is an n-torsion-
free ring with identity 1 and satisfies the two identities (xy)n = xnyn and
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(xy)n+1 = xn+1yn+1, then R is commutative. In [9], Khuzam proved that if
R is n(n−1)-torsion-free ring with 1 and satisfies the identity (xy)n = xnyn,
then R is commutative. In [10], Khuzam proved that if R is a semiprime
ring in which for each x in R there exists a positive integer n = n(x) > 1
such that (xy)n = xnyn for all y ∈ R, then R is commutative. In [11], Ligh
and Richou proved that if R is a ring with 1 which satisfies the identities:
(xy)k = xkyk, k = n, n + 1, n + 2, where n is a positive integer, then R is
commutative. The purpose of this note is to generalize these results.

2 Main Results

We begin with the following theorem which generalizes [4, Theorem 5].

Theorem 2.1 The following conditions are equivalent for a ring R:
(1) R is a CN ring;
(2) For any a ∈ N(R), there exists n = n(a) ≥ 2 such that a−an ∈ Z(R);
(3) For any a ∈ N(R) and b ∈ R, there exists c = c(a, b) ∈ R such that

[a− a2c, b] = 0.

Proof (1) =⇒ (i), i = 2, 3 are trivial.
(2) =⇒ (1) Assume that a ∈ N(R) with am = 0 for some m ≥ 2.

By (2), there exists n1 = n1(a) ≥ 2 such that a − an1 ∈ Z(R). Since
an1 ∈ N(R), by (2), there exists n2 = n2(a

n1) ≥ 2 such that an1 − an1n2 ∈
Z(R). Continuing this process, there exists ns = ns(a

n1n2···ns−1) ≥ 2 such
that an1n2···ns−1 − an1n2···ns−1ns ∈ Z(R) and n1n2 · · ·ns−1ns ≥ m. Hence
an1n2···ns−1ns = 0 and a = a − an1n2···ns−1ns = (a − an1) + (an1 − an1n2) +
· · ·+ (an1n2···ns−1 − an1n2···ns−1ns) ∈ Z(R).

(3) =⇒ (1) Assume that a ∈ N(R) with an = 0 for some n ≥ 2. By
induction on n, we claim that a ∈ Z(R). For each x ∈ R, by (3), there exists
c = c(a, x) ∈ R such that [a − a2c, x] = 0. If n = 2, then a ∈ Z(R), we are
done. Now we assume that n > 2 and assume that for each y ∈ N(R) with
the index of nilpotence at most n− 1, we have y ∈ Z(R). Since (a2)n−1 = 0,
by the induction hypothesis, a2 ∈ Z(R). For any z ∈ (a2) = a2R, we have
zn−1 ∈ a2(n−1)R = 0, so z ∈ Z(R) by the induction hypothesis. This implies
a2R ⊆ Z(R). Hence 0 = [a − a2c, x] = [a, x] for any x ∈ R, so a ∈ Z(R),
this shows that R is CN .

A ring R is called NLI if N(R) is a Lie−ideal of R (that is, for any
a ∈ N(R) and b ∈ R, ab− ba ∈ N(R) and N(R) is an additive subgroup of
R). Clearly, NI rings (that is, N(R) forms an ideal of R ) are NLI. A ring
R is called QCN if for any a ∈ N(R) and b ∈ R, there exist n = n(a, b) > 1
and c ∈ R such that ab− ba = (ab− ba)nc. Clearly, CN rings are QCN .
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Theorem 2.2 The following conditions are equivalent for a ring R:
(1) R is a CN ring;
(2) R is a QCN NI ring;
(3) R is a QCN NLI ring.

Proof (1) =⇒ (2) =⇒ (3) is trivial.
(3) =⇒ (1) Assume that a ∈ N(R) and b ∈ R. Since R is a QCN

ring, ab − ba = (ab − ba)nc for some n = n(a, b) and c ∈ R. Since R is an
NLI ring, ab − ba ∈ N(R). Let m ≥ 1 such that (ab − ba)m = 0. Clearly,
(n− 1)m+1 ≥ m. Since ab− ba = (ab− ba)(n−1)m+1cm, ab− ba = 0. Hence
a ∈ Z(R) and R is a CN ring.

In preparation for the proof of our next theorem, we first state the fol-
lowing known lemma ([12, Lemma 2]).

Lemma 2.3 Let x, y ∈ R. Suppose that for some positive integer n, xyn =
0 = x(1 + y)n. Then x = 0.

Theorem 2.4 The following conditions are equivalent for a ring R:
(1) R is a CN ring;
(2) For any x ∈ N(R) and y ∈ R, ((1+x)y)n+k = (1+x)n+kyn+k, where

n is a fixed positive integer and k = 0, 1, 2;
(3) For any x ∈ N(R) and y ∈ R, ((1+x)y)n+k = yn+k(1+x)n+k, where

n is a fixed positive integer and k = 0, 1, 2.

Proof (1) =⇒ (i), i = 2, 3 are trivial.
(2) =⇒ (1) Assume that x ∈ N(R) and y ∈ R. Then by the hypothesis,

(1 + x)n+1yn+1 = (1 + x)nyn(1 + x)y (2.1)

(1 + x)n+2yn+2 = (1 + x)n+1yn+1(1 + x)y (2.2)

Since 1 + x is invertible in R, (2.1) gives

(xyn − ynx)y = 0 (2.3)

(2.2) gives

(xyn+1 − yn+1x)y = 0 (2.4)

Multiply (2.3) on the left by y, one gets

(yxyn − yn+1x)y = 0 (2.5)

From (2.4) and (2.5) we have

3



(xy − yx)yn+1 = 0 (2.6)

Since (2.6) holds for all y ∈ R, substitute y + 1 for y, to get

(xy − yx)(1 + y)n+1 = 0 (2.7)

From (2.6), (2.7) and Lemma 2.3, we have

xy = yx (2.8)

Hence R is CN .
(3) =⇒ (1) Suppose that x ∈ N(R) and y ∈ R. Since ((1 + x)y)n+1 =

(1 + x)y((1 + x)y)n, by the hypothesis, we have

yn+1(1 + x)n+1 = (1 + x)yn+1(1 + x)n (2.9)

yn+2(1 + x)n+2 = (1 + x)yn+2(1 + x)n+1 (2.10)

Since 1 + x is invertible in R, (2.9) gives

xyn+1 = yn+1x (2.11)

(2.10) gives

xyn+2 = yn+2x (2.12)

Multiply (2.11) on the left by y, from (2.12), one gets

(xy − yx)yn+1 = 0 (2.13)

Similar to the proof of (2) =⇒ (1), we have

xy = yx (2.14)

Hence R is CN .

Let R be a CN ring. Then for any n ≥ 2 and any a ∈ N(R) and b ∈ R,
we have (ab)n = anbn = bnan. But the converse is not true in general.

Example 2.5 Let D be a division ring and R =

(
D D
0 D

)
. Then N(R) =(

0 D
0 0

)
with N(R)2 = 0. Since N(R) is an ideal of R, for any n ≥ 2,

any A ∈ N(R) and B ∈ R, we have (AB)n = AnBn = BnAn = 0. But R is
not CN .
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Theorem 2.6 Let R be a CN ring and n ≥ 1. If for any x, y ∈ R\N(R),
(xy)n+k = xn+kyn+k, where k = 0, 1, 2, then R is commutative.

Proof It follows immediately from the result in [11].

Lemma 2.7 Let R be a semiprime ring and n ≥ 2. If for any a ∈ N(R)
and b ∈ R, (ab)n = anbn, then R is reduced.

Proof Let a ∈ R with an = 0. Then (ax)n = 0 for each x ∈ R. If a ̸= 0,
then aR is a nonzero nil right ideal of R satisfying the identity zn = 0 for all
z ∈ aR. Now by [6, Lemma 1.1], R has a nonzero nilpotent ideal which is a
contradiction since R is semiprime. Thus a = 0, this implies R is reduced.

Theorem 2.8 Let R be a semiprime ring and n ≥ 1. If for any x ∈ R\J(R)
and y ∈ R, (xy)n+k = xn+kyn+k, where k = 0, 1, then R is commutative.

Proof If N(R) ∩ J(R) = 0, then by Lemma 2.7, R is reduced. If N(R) ∩
J(R) ̸= 0, then there exists 0 ̸= a ∈ N(R) ∩ J(R) with a2 = 0. By the
hypothesis, for any y ∈ R, we have

(1 + a)n+k(ya)n+k = ((1 + a)ya)n+k (2.15)

Clearly, for any i ≥ 1, one gets

((1 + a)ya)i = (1 + a)(ya)i (2.16)

Hence

(1 + a)n+k(ya)n+k = (1 + a)(ya)n+k (2.17)

Since 1+a is invertible in R and (1+a)i = 1+ ia for each i ≥ 1, we have

(n+ k − 1)a(ya)n+k = 0, k = 0, 1 (2.18)

This implies

a(ya)n+1 = 0 (2.19)

Hence

(ay)n+2 = 0 (2.20)

This leads to aR is a nonzero nil right ideal of R satisfying the identity
zn+2 = 0 for all z ∈ aR. Now by [6, Lemma 1.1], R has a nonzero nilpotent
ideal which is a contradiction since R is semiprime. Thus N(R) ∩ J(R) = 0
and so R is reduced.

Now suppose x, y ∈ R. If x, 1 + x /∈ J(R), then by the hypothesis, we
have
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xn+1yn+1 = xnynxy (2.21)

(x+ 1)n+1yn+1 = (x+ 1)nyn(x+ 1)y (2.22)

They give

xn(xyn − ynx)y = 0 (2.23)

(x+ 1)n(xyn − ynx)y = 0 (2.24)

From Lemma 2.3, (2.23) and (2.24), one gets

(xyn − ynx)y = 0 (2.25)

If x ∈ J(R), then x+ 1 is invertible in R, so

(x+ 1)n+1yn+1 = (x+ 1)nyn(x+ 1)y (2.26)

This gives

(xyn − ynx)y = 0 (2.27)

If x /∈ J(R) and 1+x ∈ J(R), then x is invertible in R, so (2.21) implies

(xyn − ynx)y = 0 (2.28)

Hence, in any case, we have

(xyn − ynx)y = 0 (2.29)

(y(xyn − ynx))2 = 0 (2.30)

Since R is reduced, one gets

y(xyn − ynx) = 0 (2.31)

Clearly, for any r ∈ R, we have

((xyn − ynx)ry)2 = 0 (2.32)

Hence, for any r ∈ R, we have

(xyn − ynx)ry = 0 (2.33)

that is,

(xyn − ynx)Ry = 0 (2.34)
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Thus

(xyn − ynx)R(xyn − ynx) = 0 (2.35)

Since R is semiprime, one gets

xyn = ynx (2.36)

Since R has no nonzero nil ideals, by [7, Theorem ], R is commutative.

Corollary 2.9 Let R be a primitive ring and n ≥ 1. If for any x, y ∈ R,
(xy)k = xkyk, where k = n, n+ 1, then R is a field.

Proof By Theorem 2.8, R is commutative. We claim that R is a division
ring. If not, there exists a subring S of R such that S is isomorphic to 2× 2
full matrix ring M2(D) over a division ring D. Clearly, for any x, y ∈ S,
(xy)k = xkyk, where k = n, n+1, hence M2(D) satisfies the same conditions.

Now let A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
, (AB)n+1 ̸= An+1Bn+1, which is a

contradiction. Hence R is a division ring, and so R is a field.

Theorem 2.10 R is a CN ring if and only if for some positive integer
n ≥ 1,m > 1 and any x ∈ R and y ∈ N(R), [xy − xnym, x] = 0.

Proof One direction is clear.
Now assume that n ≥ 1,m > 1 such that for any x ∈ R and y ∈ N(R),

we have [xy − xnym, x] = 0. Since y ∈ N(R), there exists p ≥ 1 such that
ym

p
= 0. The equation [xy − xnym, x] = 0 gives

x[x, y] = xn[x, ym] (2.37)

Since ym ∈ N(R), substitute ym for y in (2.37), one gets

x2[x, y] = xn+1[x, ym] = xn(x[x, ym]) = x2n[x, ym
2
] (2.38)

Hence

xp[x, y] = xnp[x, ym
p
] (2.39)

This implies

xp[x, y] = 0 (2.40)

Since (2.40) holds for all x ∈ R, substitute x + 1 for x and use Lemma
2.3, we have [x, y] = 0. Hence R is CN .

Theorem 2.11 Let R be a ring and n ≥ 1. If for any x ∈ R\N(R) and
y ∈ R, (xy)k = xkyk, k = n, n+ 1, n+ 2, then R is commutative.
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Proof Suppose that x, y ∈ R. If x ∈ N(R), then 1 + x is invertible. By
the hypothesis,

(1 + x)kyk = ((1 + x)y)k, k = n, n+ 1, n+ 2 (2.41)

Hence, one gets

(1 + x)n−1yn = y((1 + x)y)n−1 (2.42)

(1 + x)nyn+1 = y((1 + x)y)n (2.43)

(1 + x)n+1yn+2 = y((1 + x)y)n+1 (2.44)

Multiply (2.42) on the right by (1 + x)y, from (2.43), one gets

ynxy = xyn+1 (2.45)

Multiply (2.43) on the right by (1 + x)y, from (2.44), one gets

yn+1xy = xyn+2 (2.46)

Multiply (2.45) on the left by y, from (2.46), one gets

(xy − yx)yn+1 = 0 (2.47)

If x /∈ N(R), then by the hypothesis, one gets

(xy)k = xkyk, k = n, n+ 1, n+ 2 (2.48)

If 1 + x ∈ N(R), then x is invertible in R. Similar to the proof of above,
(2.48) implies

(xy − yx)yn+1 = 0 (2.49)

If 1 + x /∈ N(R), then one has

((1 + x)y)k = (1 + x)kyk, k = n, n+ 1, n+ 2 (2.50)

Similar to the proof of Theorem 2.6, (2.48) and (2.50) imply

(xy − yx)yn+1 = 0 (2.51)

Hence, (2.47), (2.49) and (2.51) imply that in any case, one has

(xy − yx)yn+1 = 0 (2.52)

Substitute y + 1 for y in (2.52), one gets
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(xy − yx)(y + 1)n+1 = 0 (2.53)

By Lemma 2.3, (2.52) and (2.53), one obtains xy = yx. Thus R is
commutative.

Following [3], an element x of R is called weakly clean if x = u + e or
x = u− e for some u ∈ U(R) and e ∈ E(R). The ring R is said to be weakly
clean if all of its elements are weakly clean. Clean rings are weakly clean. But
the converse is not true because of the example Z(3)∩Z(5) where Z(p) = { r

s |p
does not divide s}. An element x of R is called weakly exchange if there exists
e ∈ E(R) such that e ∈ xR and 1−e ∈ (1−x)R or 1−e ∈ (1+x)R. The ring
R is said to be weakly exchange if all of its elements are weakly exchange.
Clearly, exchange elements are weakly exchange. Checking carefully the
proof of [3, Theorem 2.1], we find that weakly clean elements are weakly
exchange, so weakly clean rings and exchange rings are all weakly exchange.
In fact, [3, Theorem 2.1] showed that Abel weakly exchange rings are weakly
clean. In this paper, we obtain that NLI weakly exchange rings are weakly
clean.

Theorem 2.12 Let R be an NLI ring and x ∈ R. (1) If x is weakly
exchange, then x is weakly clean.

(2) If x is exchange, then x is clean.
(3) If R is a weakly exchange ring, then R is a weakly clean ring.
(4) If R is an exchange ring, then R is a clean ring.

Proof (1) Let e ∈ E(R) such that e ∈ xR and 1 − e ∈ (1 − x)R or
1−e ∈ (1+x)R. Write e = xy for some y = ye ∈ R. If 1−e ∈ (1−x)R, then
let 1−e = (1−x)z for some z = z(1−e) ∈ R. By computing, we have (x−(1−
e))(y−z) = 1−(1−e)y−ez. Since R is a NLI ring and (1−e)y = (1−e)ye ∈
N(R), (1−e)yez−ez(1−e)y ∈ N(R), that is, (1−e)yz−ezy ∈ N(R). Hence
there exists n ≥ 1 such that ((1− e)yz− ezy)n = 0. By computing, we have
((1−e)yz)n+(−1)n(ezy)n = 0, this leads to ((1−e)yz)n = (ezy)n = 0. Since
(ez+(1−e)y)2 = ezy+(1−e)yz, (ez+(1−e)y)2n = (ezy)n+((1−e)yz)n = 0.
Hence 1−ez−(1−e)y ∈ U(R), that is, (x−(1−e))(y−z) ∈ U(R). Let u ∈ R
such that ((x− (1− e))(y− z))u = 1. Let g = ((y− z)u)(x− (1− e)). Then
(x− (1−e))g = x− (1−e) and g2 = g. Let h = (x− (1−e))−g(x− (1−e)).
Then hg = h, gh = 0 and h2 = 0. Since R is an NLI ring, (y − z))uh −
h(y− z))u ∈ N(R), that is, (y− z))uh− (1− g) ∈ N(R). Hence there exists
n ≥ 1 such that ((y − z))uh − (1 − g))n = 0, this gives 1 − g = d(y − z)uh
for some d ∈ R. Thus 1− g = d(y− z))uh = d(y− z))uhg = (1− g)g = 0, so
((y−z)u)(x−(1−e)) = g = 1. Hence x−(1−e) ∈ U(R). If 1−e ∈ (1+x)R,
then let 1 − e = (1 + x)w for some w = w(1 − e) ∈ R. By computing,
we have (x + (1 − e))(y + w) = 1 + (1 − e)y − ew. Similarly, we obtain
1 + (1− e)y − ew ∈ U(R), this gives x+ (1− e) ∈ U(R). We are done.
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(2) It has been have shown in (1).
(3) and (4) are immediate corollaries of (1) and (2), respectively.

A ring R is called a generalized CN ring if for any a ∈ N(R) and b ∈ R,
ab = 0 implies aRb = 0 or there exists c ∈ R such that 0 ̸= acb ∈ Z(R).
Clearly, CN rings are generalized CN . But the converse is not true. For
example, the ring R in Example 2.5 is a generalized CN ring, but R is not
CN .

A ring R is called left SF if every simple left R−module is flat. In [13,
Remark 3.13], it is shown that if R is a reduced left SF ring, then R is
strongly regular. We can generalize this result as follows.

Proposition 2.13 Let R be a generalized CN ring. If R is a left SF ring,
then R is a strongly regular ring.

Proof Let a ∈ R with aRa = 0. If a ̸= 0, then there exists a maximal left
ideal M of R such that r(aR) ⊆ M . Since R is a left SF ring, R/M is flat as
left R−module. Since a ∈ r(aR) ⊆ M , a = am for some m ∈ M . Since R is
a generalized CN ring and a(1−m) = 0, aR(1−m) = 0, or there exists c ∈ R
such that 0 ̸= ac(1−m) ∈ Z(R). If aR(1−m) = 0, then 1−m ∈ r(aR) ⊆ M ,
this gives 1 = (1−m)+m ∈ M , a contradiction. Thus there exists c ∈ R such
that 0 ̸= ac(1−m) ∈ Z(R). Since (ac(1−m))2 = 0, there exists a maximal
left ideal N of R such that l(ac(1−m)) ⊆ N . Since R is a left SF ring, R/N
is flat as left R−module. Then since ac(1−m) ∈ N , ac(1−m) = ac(1−m)n
for some n ∈ N . Since ac(1 − m) ∈ Z(R), ac(1 − m) = nac(1 − m), this
leads to 1 − n ∈ l(ac(1 − m)) ⊆ N , which implies 1 = (1 − n) + n ∈ N , a
contradiction. Hence a = 0, which implies R is a semiprime ring. Now let
b ∈ R with b2 = 0. Since R is a generalized CN ring, either bRb = 0 or
there exists c ∈ R such that 0 ̸= bab ∈ Z(R). If there exists c ∈ R such
that 0 ̸= bcb ∈ Z(R), then bcbRbcb = bcbbcbR = 0, so bcb = 0 because R is
semiprime, which is a contradiction. Hence bRb = 0, also, the semiprimeness
of R implies b = 0. Hence R is a reduced ring. By [13, Remark 3.13], R is a
strongly regular ring.

Following [2], a ring R is said to be semiperiodic if for each x ∈ R\(J(R)∪
Z(R)), there exist m,n ∈ Z, of opposite parity, such that xn − xm ∈ N(R).
Clearly, the class of semiperiodic rings contains all commutative rings, all
Jacobson radical rings, and certain non-nil periodic rings.

Lemma 2.14 Let R be a generalized CN ring. If R is a semiperiodic ring,
then N(R) ⊆ J(R)

Proof Let a ∈ N(R) with ak = 0, and let x ∈ R. If ax ∈ J(R), then
ax is right quasiregular; and if ax ∈ Z(R), then ax is nilpotent and again
ax is right quasi-regular. Suppose, then, that ax /∈ J(R) ∪ Z(R), in which
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case [2, Lemma 2.3(iii)] gives q ∈ Z+ and an idempotent e of form axy such
that (ax)q = (ax)qe. Since e = axy = eaxy = ea(1 − e)xy + eaexy =
ea(1− e)xy+ ea2(xy)2 = ea(1− e)xy+ ea2(1− e)(xy)2+ ea2e(xy)2 = ea(1−
e)xy+ ea2(1− e)(xy)2 + ea3(xy)3 = · · · = Σk−1

i=1 ea
i(1− e)(xy)i + eak(xy)k =

Σk−1
i=1 ea

i(1− e)(xy)i. For any z ∈ R, ez(1− e) ∈ N(R) and (ez(1− e))2 = 0.
Since R is a generalized CN ring, either ez(1 − e)Rez(1 − e) = 0 or there
exists c ∈ R such that 0 ̸= ez(1 − e)cez(1 − e) ∈ Z(R). If there exists
c ∈ R such that 0 ̸= ez(1− e)cez(1− e) ∈ Z(R), then ez(1− e)cez(1− e) =
(ez(1 − e)cez(1 − e))(1 − e) = (1 − e)ez(1 − e)cez(1 − e) = 0, which is a
contradiction. Hence ez(1−e)Rez(1−e) = 0, which implies ez(1−e) ∈ J(R)
for any z ∈ R. Therefore e = Σk−1

i=1 ea
i(1−e)(xy)i ∈ J(R), this leads to e = 0

and (ax)q = 0, which shows that ax is right quasi-regular. Thus a ∈ J(R).

Theorem 2.15 If R is a generalized CN semiperiodic ring, then R/J(R)
is commutative.

Proof By [2, Theorem 4.3], R is either commutative or periodic, so we
may assume R is periodic. Since J(R) contains no nonzero idempotents,
J(R) is contained in N(R) and hence J(R) = N(R) by Lemma 2.14. Thus
R/J(R) = R/N(R) is reduced; and since R/N(R) is also semiperiodic, it is
commutative by [2, Theorem 4.4].

Theorem 2.16 Let R be a generalized CN semiperiodic ring. Then
(1) N(R) is an ideal of R.
(2) If J(R) ̸= N(R), then R is commutative.

Proof In the proof of Theorem 2.15, we obtain that if R is not commu-
tative, then J(R) = N(R). Hence (2) holds and (1) also holds for noncom-
mutative ring R. But also if R is commutaive, N(R) is an ideal; hence (1)
holds in any case.
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