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Abstract
In this paper, we deal with the following nonlinear singular m-point boundary value

problem with fractional q-differences

(Dα
q u)(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = (Dqu)(0) = 0, (Dqu)(1) =
m−2∑
i=1

βi(Dqu)(ξi),

where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 and 0 <
m−2∑
i=1

βiξ
α−2
i < 1, 0 < q < 1. f : (0, 1] ×

[0,+∞) → [0,+∞) with lim
t→0+

f(t, ·) = ∞, i.e., f is singular at t = 0. By using the fixed point

theorem in partially ordered sets, some new existence and uniqueness of positive solutions to
the above boundary value problem are established. As application, an example is presented
to illustrate the main results.

Keywords: Fractional q-difference equations; Partially ordered sets; Fixed-point theorem;
Positive solution
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1. Introduction

Recently, an increasing interest in studying the existence of solutions for boundary value
problems of fractional order functional differential equations has been observed [2–6, 9–12, 15–
17]. Fractional differential equations describe many phenomena in various fields of science
and engineering such as physics, mechanics, chemistry, control, engineering, etc. For an
extensive collection of such results, we refer the readers to the monographs by Samko et al
[18], Podlubny [19] and Kilbas et al [20].

On the other hand, the q-difference calculus or quantum calculus is an old subject that
was first developed by Jackson [21, 22]. It is rich in history and in applications as the reader
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can confirm in the paper [23].
The origin of the fractional q-difference calculus can be traced back to the works by Al-

Salam [24] and Agarwal [25]. More recently, maybe due to the explosion in research within
the fractional differential calculus setting, new developments in this theory of fractional q-
difference calculus were made, e.g., q-analogues of the integral and differential fractional
operators properties such as the q-Laplace transform, q-Taylor’s formula [26, 27], just to
mention some.

Recently, there are few works consider the existence of positive solutions for nonlinear q-
fractional boundary value problem (see [8, 28, 29, 13]). As is well-known, the aim of finding
positive solutions to boundary value problems is of main importance in various fields of
applied mathematics (see the book [30] and references therein). In addition, since q-calculus
has a tremendous potential for applications [23], we find it pertinent to investigate such a
demand.

El-Shahed and Hassan [7] studied the existence of positive solutions of the q-difference
boundary value problem

D2
qu(t) + a(t)f(u(t)) = 0, 0 ≤ t ≤ 1,

αu(0)− βDqu(0) = 0, γu(1) + δDqu(1) = 0.

where f : [0, 1]× [0,+∞) → [0,+∞) is continuous and D2
q is the standard Riemann-Liouville

q-derivative.
Liang and Zhang [14] considered the following nonlinear m-point fractional boundary

value problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = 0, u′(1) =
m−2∑
i=1

βiu
′(ξi),

where f : [0, 1]×[0,+∞) → [0,+∞) is continuous and Dα
0+ is the standard Riemann-Liouville

fractional derivative. The uniqueness of positive solutions is established by using the fixed-
point theorem in partially ordered sets.

Qiu and Bai [38] have proved the existence of a positive solution to boundary value
problems of the nonlinear fractional differential equations

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(1) = u′′(0) = 0,

where Dα
0+ denotes Caputo derivative, and f : (0, 1]× [0,+∞) → [0,+∞) with lim

t→0+

f(t, ·) =

∞ (i.e., f is singular at t = 0). Their analysis relies on Krasnoselskii’s fixed point theorem
and nonlinear alternative of Leray-Schauder type in a cone.

More recently, Caballero Mena et al [32] have proved the existence and uniqueness of
positive solutions for the singular fractional boundary value problem by using the fixed point
theorem in partially ordered sets.
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This work is motivated by the above references. In this paper, we deal with the following
nonlinear singular m-point boundary value problem with fractional q-differences

(Dα
q u)(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < α < 3, (1.1)

u(0) = (Dqu)(0) = 0, (Dqu)(1) =
m−2∑
i=1

βi(Dqu)(ξi), (1.2)

where f : (0, 1] × [0,+∞) → [0,+∞) with lim
t→0+

f(t, ·) = ∞ (i.e., f is singular at t = 0),

0 < ξ1 < ξ2 < · · · < ξm−2 < 1 and 0 <
m−2∑
i=1

βiξ
α−2
i < 1, 0 < q < 1.

From the above works, we can see a fact, although the fractional boundary value problem
have been investigated by some authors, the results dealing with the existence of positive
solutions of multi-point boundary value problem with q-differences are relatively scarce, es-
pecially for the existence and uniqueness of a positive solution to singular fractional boundary
value problem (1.1)-(1.2).

Motivated by the reasons above, in this paper we discuss singular fractional boundary
value problem (1.1) and (1.2). Using a new fixed point theorem in partially ordered sets due
to [1], we give some new existence and uniqueness criteria for singular boundary value prob-
lem (1.1) and (1.2). Finally, we present an example to demonstrate our results. Existence of
fixed point in partially ordered sets has been considered recently in [31, 33–36].

2. Preliminaries

Let q ∈ (0, 1) and define

[a]q =
1− qa

1− q
, a ∈ R.

The q-analogue of the power function (a− b)n with N0 is

(a− b)0 = 1, (a− b)n =
n−1∏
k=0

(a− bqk), n ∈ N, a, b ∈ R.

More generally, if α ∈ R, then

(a− b)(α) = aα
∞∏

n=0

a− bqn

a− bqα+n
.

Note that, if b = 0 then a(α) = aα. The q-gamma function is defined by

Γq(x) =
(1− q)(x−1)

(1− q)x−1
, x ∈ R \ {0,−1,−2, . . .},

and satisfies Γq(x + 1) = [x]qΓq(x).
The q-derivative of a function f is here defined by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
, (Dqf)(0) = lim

x→0
(Dqf)(x),
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and q-derivatives of higher order by

(D0
qf)(x) = f(x) and (Dn

q f)(x) = Dq(Dn−1
q f)(x), n ∈ N.

The q-integral of a function f defined in the interval [0, b] is given by

(Iqf)(x) =
∫ x

0
f(t)dqt = x(1− q)

∞∑
n=0

f(xqn)qn, x ∈ [0, b].

If a ∈ [0, b] and f is defined in the interval [0, b], its integral from a to b is defined by∫ b

a
f(t)dqt =

∫ b

0
f(t)dqt−

∫ a

0
f(t)dqt.

Similarly as done for derivatives, an operator In
q can be defined, namely,

(I0
q f)(x) = f(x) and (In

q f)(x) = Iq(In−1
q f)(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIqf)(x) = f(x),

and if f is continuous at x = 0, then

(IqDqf)(x) = f(x)− f(0).

Basic properties of the two operators can be found in the book [37]. We now point out three
formulas that will be used later (iDq denotes the derivative with respect to variable i)

[a(t− s)](α) = aα(t− s)(α), (2.1)

tDq(t− s)(α) = [α]q(t− s)(α−1), (2.2)(
xDq

∫ x

0
f(x, t)dqt

)
(x) =

∫ x

0
xDqf(x, t)dqt + f(qx, x). (2.3)

Remark 2.1. [28] We note that if α > 0 and a ≤ b ≤ t, then (t− a)(α) ≥ (t− b)(α).

The following definition was considered first in [25].

Definition 2.1. Let α ≥ 0 and f be a function defined on [0, 1]. The fractional q-integral of
the Riemann-Liouville type is (I0

q f)(x) = f(x) and

(Iα
q f)(x) =

1
Γq(α)

∫ x

0
(x− qt)(α−1)f(t)dqt, α > 0, x ∈ [0, 1].

Definition 2.2 ([26]). The fractional q-derivative of the Riemann-Liouville type of order
α ≥ 0 is defined by (D0

qf)(x) = f(x) and

(Dα
q f)(x) = (Dm

q Im−α
q f)(x), α > 0,

where m is the smallest integer greater than or equal to α.
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Next, we list some properties that are already known in the literature. Its proof can be
found in [25, 26]

Lemma 2.1. Let α, β ≥ 0 and f be a function defined on [0, 1]. Then the next formulas hold:
(1) (Iβ

q Iα
q f)(x) = (Iα+β

q f)(x),
(2) (Dα

q Iα
q f)(x) = f(x).

Lemma 2.2 ([28]). Let α > 0 and p be a positive integer. Then the following equality holds:

(Iα
q Dp

qf)(x) = (Dp
qI

α
q f)(x)−

p−1∑
k=0

xα−p+k

Γq(α + k − p + 1)
(Dk

q f)(0).

In the sequel, we present the fixed point theorem which we will use later. This result
appears in [1].

By Γ we denote the class of those functions χ : [0,+∞) → [0, 1) satisfying the following
condition

χ(tn) → 1 ⇒ tn → 0.

Theorem 2.1 ([1]). Let (E,≤) be a partially ordered set and suppose that there exists a
metric d in E such that (E, d) is a complete metric space. Let T : E → E be nondecreasing
mapping such that there exists an element x0 ∈ E with x0 ≤ Tx0. Suppose that there exists
χ ∈ Γ such that

d(Tx, Ty) ≤ χ(d(x, y)) · d(x, y), for x, y ∈ E, with x ≥ y,

Assume that either T is continuous or X is such that

if {xn} is a nondecreasing sequence in E such that xn → x, then xn ≤ x, ∀ n ∈ N.(2.4)

Besides, if

for each x, y ∈ E there exists z ∈ E which is comparable to x and y, (2.5)

then T has a unique fixed point.

3. Related lemmas

The basic space used in this paper is E = C[0, 1]. Then E is a real Banach space with
the norm ‖u‖ = max

0≤t≤1
|u(t)|. Note that this space can be equipped with a partial order given

by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t), t ∈ [0, 1].

In [34] it is proved that (C[0, 1],≤) with the classic metric given by

d(x, y) = sup
0≤t≤1

{|x(t)− y(t)|}

satisfied condition (2.4) of Theorem 2.1. Moreover, for x, y ∈ C[0, 1] as the function max{x, y} ∈
C[0, 1], (C[0, 1],≤) satisfies condition (2.5).
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Lemma 3.1. Let 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 and 0 <
m−2∑
i=1

βiξ
α−2
i < 1. If h ∈ C[0, 1], then

the boundary value problem

(Dα
q u)(t) + h(t) = 0, 0 < t < 1, 2 < α < 3, (3.1)

u(0) = (Dqu)(0) = 0, (Dqu)(1) =
m−2∑
i=1

βi(Dqu)(ξi) (3.2)

has a unique solution

u(t) =
∫ 1

0
G(t, qs)h(s)dqs +

tα−1
m−2∑
i=1

βiξ
α−2
i

[α− 1]q(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
H(ξi, qs)h(s)dqs, (3.3)

where

G(t, s) =
1

Γq(α)

 (1− s)(α−2)tα−1 − (t− s)(α−1), 0 ≤ s ≤ t ≤ 1,

(1− s)(α−2)tα−1, 0 ≤ t ≤ s ≤ 1,
(3.4)

H(t, s) = tDqG(s, t) =
[α− 1]q
Γq(α)

 (1− s)(α−2)tα−2 − (t− s)(α−2), 0 ≤ s ≤ t ≤ 1,

(1− s)(α−2)tα−2, 0 ≤ t ≤ s ≤ 1.
(3.5)

Proof. In this case p = 3. In view of Lemma 2.1 and Lemma 2.2, from (3.1) we see that

(Iα
q D3

qI
3−α
q u)(x) = −Iα

q f(t, u(t))

and

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 −

∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs. (3.6)

From (3.2), we know that c3 = 0. Let differentiating both sides of (3.7) one obtain, with the
help of (2.1) and (2.2)

(Dqu)(t) = [α− 1]qc1t
α−2 + [α− 2]qc2t

α−3 − [α− 1]q
Γq(α)

∫ t

0
(t− qs)(α−2)h(s)dqs.

Using the boundary condition (3.2), we have c2 = 0 and

c1 =
1

Γq(α)(1−
m−2∑
i=1

βiξ
α−2
i )

[∫ 1

0
(1− qs)(α−2)h(s)dqs−

m−2∑
i=1

βi

∫ ξi

0
(ξi − qs)(α−2)h(s)dqs

]
.
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Therefore, the unique solution of boundary value problem (3.1)-(3.2) is

u(t) = −
∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs

+
tα−1

Γq(α)(1−
m−2∑
i=1

βiξ
α−2
i )

[∫ 1

0
(1− qs)(α−2)h(s)dqs−

m−2∑
i=1

βi

∫ ξi

0
(ξi − qs)(α−2)h(s)dqs

]

= −
∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs−

tα−1

Γq(α)(1−
m−2∑
i=1

βiξ
α−2
i )

m−2∑
i=1

βi

∫ ξi

0
(ξi − qs)(α−2)h(s)dqs

+

 tα−1

Γq(α)
+

m−2∑
i=1

βiξ
α−2
i tα−1

Γq(α)(1−
m−2∑
i=1

βiξ
α−2
i )


∫ 1

0
(1− qs)(α−2)h(s)dqs

=
1

Γq(α)

∫ t

0
((1− qs)(α−2)tα−1 − (t− qs)(α−1))h(s)dqs

+
1

Γq(α)

∫ 1

t
(1− qs)(α−2)tα−1h(s)dqs +

m−2∑
i=1

βiξ
α−2
i tα−1

Γq(α)(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
(1− qs)(α−2)h(s)dqs

− tα−1

Γq(α)(1−
m−2∑
i=1

βiξ
α−2
i )

m−2∑
i=1

βi

∫ ξi

0
(ξi − qs)(α−2)h(s)dqs

=
∫ 1

0
G(t, qs)h(s)dqs +

tα−1
m−2∑
i=1

βiξ
α−2
i

[α− 1]q(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
H(ξi, qs)h(s)dqs.

The proof is complete.

Lemma 3.2 ([13]). (i) G(t, qs) is a continuous function on [0, 1] × [0, 1] and it satisfies
G(t, qs) > 0 for (t, s) ∈ (0, 1)× (0, 1);
(ii) G(t, qs) is strictly increasing in the first variable;
(iii) H(t, qs) > 0 for (t, s) ∈ (0, 1)× (0, 1).

Lemma 3.3. Let 0 < σ < 1, 2 < α ≤ 3 and F : (0, 1] → R is a continuous function with
lim

t→0+
F (t) = ∞. Suppose that tσF (t) is a continuous function on [0, 1]. Then the function

defined by

Z(t) =
∫ 1

0
G(t, qs)F (s)dqs

is continuous on [0, 1], where G(t, qs) is the Green function defined by (3.4).

Proof. We split the proof in three steps.
Step I. t0 = 0.
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It is easily checked that Z(0) = 0. Since tσF (t) is continuous on [0, 1], we can find a constant
M > 0 such that tσF (t) ≤ M for any t ∈ [0, 1]. Hence

|Z(t)− Z(0)| = |Z(t)| =
∣∣∣∣∫ 1

0
G(t, qs)F (s)dqs

∣∣∣∣
=

∣∣∣∣∫ 1

0
G(t, qs)s−σsσF (s)dqs

∣∣∣∣
=

∣∣∣∣ 1
Γq(α)

∫ t

0
(tα−1(1− qs)(α−2) − (t− qs)(α−1))s−σsσF (s)dqs

+
1

Γq(α)

∫ 1

t
tα−1(1− qs)(α−2)s−σsσF (s)dqs

∣∣∣∣
=

∣∣∣∣ 1
Γq(α)

∫ 1

0
tα−1(1− qs)(α−2)s−σsσF (s)dqs−

1
Γq(α)

∫ t

0
(t− qs)(α−1)s−σsσF (s)dqs

∣∣∣∣
≤

∣∣∣∣ 1
Γq(α)

∫ 1

0
tα−1(1− qs)(α−2)s−σsσF (s)dqs

∣∣∣∣+ ∣∣∣∣ 1
Γq(α)

∫ t

0
(t− qs)(α−1)s−σsσF (s)dqs

∣∣∣∣
≤ M

Γq(α)

∫ 1

0
tα−1(1− qs)(α−2)s−σdqs +

M

Γq(α)

∫ t

0
(t− qs)(α−1)s−σdqs

≤ Mtα−1

Γq(α)

∫ 1

0
(1− qs)(α−2)s−σdqs +

Mtα−1

Γq(α)

∫ t

0
(1− qs

t
)(α−1)s−σdqs. (3.7)

In the integral
∫ t
0 (1− qs

t )(α−1)s−σdqs we make the change of variables v = s
t , then we obtain∫ t

0
(1− qs

t
)(α−1)s−σdqs = t1−σ

∫ 1

0
(1− qv)(α−1)v−σdqv.

Taking into account (3.7), we have

|Z(t)| ≤ Mtα−1

Γq(α)

∫ 1

0
(1− qs)(α−2)s−σdqs +

Mtα−1

Γq(α)
t1−σ

∫ 1

0
(1− qv)(α−1)v−σdqv

=
Mtα−1

Γq(α)
Bq(1− σ, α− 1) +

Mtα−σ

Γq(α)
Bq(1− σ, α), (3.8)

where Bq denotes the Beta function defined by Bq(t, s) =
∫ 1

0
xt−1(1−qx)(s−1)dqs. Therefore,

by (3.8), we see that Z(t) → 0 when t → 0, this proves the continuity of Z at t0 = 0.
Step II. t0 ∈ (0, 1).

We take tn → t0 and we have to prove that Z(tn) → Z(t0). Without loss of generality we
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consider tn > t0 (the same argument works for tn < t0). In fact, we have

|Z(tn)− Z(t0)| =
1

Γq(α)

∣∣∣∣∫ tn

0
(tα−1

n (1− qs)(α−2) − (tn − qs)(α−1))s−σsσF (s)dqs

+
∫ 1

tn

tα−1
n (1− qs)(α−2)s−σsσF (s)dqs−

∫ 1

t0

tα−1
0 (1− qs)(α−2)s−σsσF (s)dqs

−
∫ t0

0
(tα−1

0 (1− qs)(α−2) − (t0 − qs)(α−1))s−σsσF (s)dqs

∣∣∣∣
=

1
Γq(α)

∣∣∣∣∫ 1

0
tα−1
n (1− qs)(α−2)s−σsσF (s)dqs−

∫ tn

0
(tn − qs)(α−1)s−σsσF (s)dqs

−
∫ 1

0
tα−1
0 (1− qs)(α−2)s−σsσF (s)dqs +

∫ t0

0
(t0 − qs)(α−1)s−σsσF (s)dqs

∣∣∣∣
=

1
Γq(α)

∣∣∣∣∫ 1

0
(tα−1

n − tα−1
0 )(1− qs)(α−2)s−σsσF (s)dqs

−
∫ t0

0
((tn − qs)(α−1) − (t0 − qs)(α−1))s−σsσF (s)dqs

−
∫ tn

t0

(tn − qs)(α−1)s−σsσF (s)dqs

∣∣∣∣
≤ M(tα−1

n − tα−1
0 )

Γq(α)

∫ 1

0
(1− qs)(α−2)s−σdqs

+
M

Γq(α)

∫ t0

0
((tn − qs)(α−1) − (t0 − qs)(α−1))s−σdqs

+
M

Γq(α)
+
∫ tn

t0

(tn − qs)(α−1)s−σdqs

=
M(tα−1

n − tα−1
0 )

Γq(α)
Bq(1− σ, α− 1) +

M

Γq(α)
J1

n +
M

Γq(α)
J2

n, (3.9)

where

J1
n =

∫ t0

0
((tn − qs)(α−1) − (t0 − qs)(α−1))s−σdqs,

J2
n =

∫ tn

t0

(tn − s)(α−1)s−σdqs.

We claim that J1
n → 0 when n → 0.

In fact, as tn → t0, then

((tn − qs)(α−1) − (t0 − qs)(α−1))s−σ → 0, when n →∞.

Moreover,

((tn − qs)(α−1) − (t0 − qs)(α−1))s−σ ≤ (|tn − qs|(α−1) + |t0 − qs|(α−1))s−σ ≤ 2s−σ

and as∫ 1

0
2s−σdqs =

2(1− q)
1− q1−σ

< ∞,

we have that the sequence ((tn − qs)(α−1) − (t0 − qs)(α−1))s−σ converges pointwise to the
zero function and |(tn − qs)(α−1) − (t0 − qs)(α−1)|s−σ is bounded by a function belonging to

9



L1[0, 1], then by the Lebesgue’s dominated convergence theorem, we have

J1
n → 0 when n →∞. (3.10)

This proves the claim.
Now, we prove that J2

n → 0, when n →∞.
In fact, as

J2
n =

∫ tn

t0

(tn − qs)(α−1)s−σdqs

≤
∫ tn

t0

s−σdqs =
1− q

1− q1−σ
(t1−σ

n − t1−σ
0 )

and taking into account that tn → t0, from the last expression we get

J2
n → 0 when n →∞. (3.11)

Finally, from (3.9), (3.10) and (3.11) we obtain

|Z(tn)− Z(t0)| → 0 when n →∞.

Step III. t0 = 1.
It is easily checked that H(1) = 0. Following the same lines that in the proof of Step I,

we can prove the continuity of Z at t0 = 1.

Lemma 3.4. Suppose that 0 < σ < 1. Then

sup
t∈[0,1]

∫ 1

0
G(t, qs)s−σdqs =

ρα−1Bq(1− σ, α− 1)− ρα−σBq(1− σ, α)
Γq(α)

,

where G(t, s) is the Green’s function appearing in of Lemma 3.1 and

ρ =
(

[α− 1]qBq(1− σ, α− 1)
[α− σ]qBq(1− σ, α)

) 1
1−σ

.

Proof. Since∫ 1

0
G(t, qs)s−σdqs =

1
Γq(α)

∫ 1

0
tα−1(1− qs)(α−2)s−σdqs−

1
Γq(α)

∫ t

0
(t− qs)(α−1)s−σdqs

=
tα−1

Γq(α)

∫ 1

0
(1− qs)(α−2)s−σdqs−

1
Γq(α)

∫ t

0
(t− qs)(α−1)s−σdqs

=
tα−1

Γq(α)
Bq(1− σ, α− 1)− tα−σ

Γq(α)
Bq(1− σ, α).

Now, using elemental calculus we can prove that the function

g(t) = tα−1Bq(1− σ, α− 1)− tα−σBq(1− σ, α)

has a maximum at the point t0 = ρ =
(

[α−1]qBq(1−σ,α−1)
[α−σ]qBq(1−σ,α)

) 1
1−σ . So we have

sup
t∈[0,1]

∫ 1

0
G(t, qs)s−σdqs =

ρα−1Bq(1− σ, α− 1)− ρα−σBq(1− σ, α)
Γq(α)

.

The proof is complete.
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Remark 3.1. Similar to the proof of Lemma 3.4, we have∫ 1

0
H(ξi, qs)s−σdqs =

[α− 1]q
Γq(α)

(∫ 1

0
ξα−2
i (1− s)(α−2)s−σdqs−

∫ ξi

0
(ξi − s)(α−2)s−σdqs

)
=

[α− 1]q
Γq(α)

(
ξα−2
i

∫ 1

0
(1− qs)(α−2)s−σdqs− ξα−σ−1

i

∫ 1

0
(1− qv)(α−2)v−σdqv

)
=

[α− 1]q
Γq(α)

Bq(1− σ, α− 1)
(
ξα−2
i − ξα−σ−1

i

)
.

Now, we introduce the following class of functions. By T we denote the class of functions
ϕ : [0,+∞) → [0,+∞) satisfying:
(i) ϕ is nondecreasing;
(ii) ϕ(x) < x, for any x > 0;
(iii) χ(x) = ϕ(x)

x ∈ Γ, where Γ is the class of functions appearing in Theorem 2.1.

Remark 3.2. It is easily checked that examples of functions belonging to T are ϕ(x) = x
1+x

and ϕ(x) = ln(1 + x) with x ∈ [0,+∞).

4. Main Result

The main result of this paper is the following.

Theorem 4.1. Let 0 < σ < 1, 2 < α ≤ 3. The boundary value problem (1.1)-(1.2) has a
unique positive and strictly increasing solution u(t) (this means that u(t) > 0) if the following
conditions are satisfied:

(i) f : (0, 1]× [0,+∞) → [0,+∞) is continuous and lim
t→0+

f(t, ·) = ∞, tσf(t, y) is a contin-

uous on [0, 1]× [0,+∞);

(ii) There exists 0 < λ < L−1 such that for u, v ∈ [0,+∞) with u ≥ v and t ∈ [0, 1],

0 ≤ tσ(f(t, u)− f(t, v)) ≤ λ · ϕ(u− v),

where ϕ ∈ T and

L =
ρα−1Bq(1− σ, α− 1)− ρα−σBq(1− σ, α)

Γq(α)
+

m−2∑
i=1

βi

(
ξα−2
i − ξα−σ−1

i

)
Γq(α)(1−

m−2∑
i=1

βiξ
α−2
i )

Bq(1−σ, α− 1),

ρ is the constant appearing in Lemma 3.3.

Proof. Consider the cone

K = {u ∈ C[0, 1] : u(t) ≥ 0} .

As K is a closed set of C[0, 1], K is a complete metric space with the distance given by
d(u, v) = sup

t∈[0,1]
|u(t) − v(t)|. It is easily checked that K satisfies condition (2.1) and (2.2) of

11



Theorem 2.1.
Now, we consider the operator T defined by

(Tu)(t) =
∫ 1

0
G(t, qs)f(s, u(s))dqs +

tα−1
m−2∑
i=1

βi

[α− 1]q(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
H(ξi, qs)f(s, u(s))dqs,

By Lemma 3.3, we have that Tu ∈ C[0, 1]. Moreover, in view of Lemma 3.2 and tσf(t, y),
for u ∈ K, we have Tu ∈ K. Hence, T (K) ⊂ K.

We now show that all the conditions of Theorem 2.1 are satisfied.
Firstly, by condition (ii), for u, v ∈ K and u ≥ v, we have

(Tu)(t) =
∫ 1

0
G(t, qs)s−σsσf(s, u(s))dqs

+
tα−1

m−2∑
i=1

βi

[α− 1]q(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
H(ξi, qs)s−σsσf(s, u(s))dqs

≥
∫ 1

0
G(t, qs)s−σsσf(s, v(s))dqs

+
tα−1

m−2∑
i=1

βi

[α− 1]q(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
H(ξi, qs)s−σsσf(s, v(s))dqs

= Tv(t).

This proves that T is a nondecreasing operator.
On the other hand, for u ≥ v and by condition (ii) we have

d(Tu, Tv) = sup
0≤t≤1

|(Tu)(t)− (Tv)(t)| = sup
0≤t≤1

((Tu)(t)− (Tv)(t))

≤ sup
0≤t≤1

∫ 1

0
G(t, qs)s−σsσ(f(s, u(s))− f(s, v(s)))dqs

+

m−2∑
i=1

βi

[α− 1]q(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
H(ξi, qs)s−σsσ(f(s, u(s))− f(s, v(s)))dqs

≤ sup
0≤t≤1

∫ 1

0
G(t, qs)s−σλ · ϕ(u(s)− v(s))dqs

+

m−2∑
i=1

βi

[α− 1]q(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
H(ξi, qs)s−σλ · ϕ(u(s)− v(s))dqs.
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Since the function ϕ(x) is nondecreasing, by Lemma 3.4 and Remark 3.1, we have

d(Tu, Tv) ≤ sup
0≤t≤1

∫ 1

0
G(t, s)s−σλ · ϕ(d(u− v))ds

+

m−2∑
i=1

βi

(α− 1)(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
H(ξi, s)s−σλ · ϕ(d(u− v))ds

= λ · ϕ(d(u− v))L.

Thus the fact that 0 < λ < L−1 give us

d(Tu, Tv) ≤ ϕ(d(u− v)) =
ϕ(d(u− v))

d(u− v)
· d(u− v) = χ(d(u− v)) · d(u− v).

Obviously, the last inequality is satisfied for u = v.
Now, taking into account that the zero function satisfies 0 ≤ T0, Theorem 2.1 says us

that the operator T has a unique fixed point in K, or, equivalently, problem (1.1)-(1.2) has
a unique nonnegative solution u(t) ∈ C[0, 1].

In the sequel, we will prove that u(t) is a positive solution.
In contrary case, there exists 0 < t∗ < 1 such that u(t∗) = 0. As the nonnegative solution

u(t) of problem (1.1)-(1.2) is fixed point of the operator T , this says us that

u(t) =
∫ 1

0
G(t, qs)f(s, u(s))dqs +

tα−1
m−2∑
i=1

βi

[α− 1]q(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
H(ξi, qs)f(s, u(s))dqs,

for t ∈ (0, 1), and particularly,

u(t∗) =
∫ 1

0
G(t∗, qs)f(s, u(s))dqs +

tα−1
∗

m−2∑
i=1

βi

[α− 1]q(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
H(ξi, qs)f(s, u(s))dqs = 0.

The nonnegative character of G(t, qs) and f(s, u) and the last relation give

G(t∗, qs)f(s, u(s)) = 0, a.e.(s). (4.1)

Taking into account that lim
t→0+

f(t, 0) = ∞, this means that for M > 0 we can find δ such

that for s ∈ [0, 1] ∩ (0, δ) we have f(s, 0) > M . Observe that [0, 1] ∩ (0, δ) ⊂ {s ∈ [0, 1] :
f(s, u(s)) > M} and µ([0, 1] ∩ (0, δ)) > 0, where µ is the Lebesgue measure on [0, 1]. This
and (4.1) give us that

G(t∗, qs) = 0, a.e.(s)

and this is a contradiction because G(t∗, qs) is a rational function in the variable s. Therefore
u(t) > 0 for t ∈ (0, 1).

Finally, we will prove that this solution u(t) is strictly increasing function.
As u(0) =

∫ 1
0 G(0, qs)f(s, u(s))ds and G(0, qs) = 0 we have u(0) = 0. Moreover, if we

take t1, t2 ∈ [0, 1] with t1 < t2, we can consider the following cases.
Case 1: t1 = 0, in this case, u(t1) = 0. On the other hand, by using the same reasoning as
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above, we have u(t2) > 0 = u(t1), for 0 = t1 < t2.
Case 2: 0 < t1. In this case, let us take t2 ∈ [0, 1] with t1 < t2, then

u(t2)− u(t1) = (Tu)(t2)− (Tu)(t1)

=
∫ 1

0
(G(t2, qs)−G(t1, qs))f(s, u(s))dqs

+
(tα−1

2 − tα−1
1 )

m−2∑
i=1

βi

[α− 1]q(1−
m−2∑
i=1

βiξ
α−2
i )

∫ 1

0
H(ξi, qs)f(s, u(s))dqs.

Taking into account Lemma 3.2 and the fact that f ≥ 0, we get u(t2)− u(t1) ≥ 0.
Suppose that u(t2) = u(t1) then∫ 1

0
(G(t2, qs)−G(t1, qs))f(s, u(s))dqs = 0

and this implies

(G(t2, qs)−G(t1, qs))f(s, u(s)) = 0 a.e.(s).

Again, the same reasoning as above gives us

f(s, u(s)) = 0 a.e.(s)

this contradicts condition Lemma 3.2. Thus u(t1) < u(t2). The proof is complete.

5. Example

Example 5.1. The fractional boundary value problem D
3
2
q u(t) + ( 1

10
t2+1) ln(2+u(t))√

t
= 0, 0 < t < 1,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = 1
4(Dqu)(1

4)
(5.1)

has a unique and strictly increasing solution.

Proof. In this case, α = 3
2 , σ = 1

2 . f(t, u) = ( 1
10

t2+1) ln(2+u(t))√
t

for (t, u) ∈ (0, 1]× [0,∞). Now,
we prove that f(t, u) satisfies assumptions of Theorem 4.1. Note that f : (0, 1]× [0,+∞) →
[0,+∞) is continuous and lim

t→0+
f(t, ·) = ∞, t

1
2 f(t, u) = ( 1

10 t2 + 1) ln(2 + u(t)) is a continuous

on [0, 1]× [0,+∞).
On the other hand, for u ≥ v and t ∈ [0, 1], we have

t
1
2 (f(t, u)− f(t, v)) = (

1
10

t2 + 1) ln(2 + u)− (t2 + 1) ln(2 + v)

= (
1
10

t2 + 1) ln
(

2 + u

2 + v

)
= (

1
10

t2 + 1) ln
(

2 + v + u− v

2 + v

)
= (

1
10

t2 + 1) ln
(

1 +
u− v

2 + v

)
≤ (

1
10

t2 + 1) ln (1 + (u− v)) ≤ 11
10

ln(1 + u− v).
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In this case, λ = 11
10 , ξ1 = 1

4 , β1 = 1
4 , α = 3

2 . Then by direct calculation we can obtain that

ρ =
(

[α− 1]qBq(1− σ, α− 1)
[α− σ]qBq(1− σ, α)

) 1
1−σ

=

(
[12 ]qBq(1

2 , 1
2)

[1]qBq(1
2 , 3

2)

)2

=
9(11− 6

√
2)

49

and

L =
9
√

2− 12
9− 4

√
2

+
Γq(1

2)

4−
√

2
<

10
11

=
1
λ

.

Here we use the relations

Bq(s, t) =
Γq(s)Γq(t)
Γq(s + t)

, [
1
2
]q = 2−

√
2, [

3
2
]q = 2−

√
2

2
, [2]q =

3
2
.

Thus Theorem 4.1 implies that boundary value problem (1.1)-(1.2) has a unique and strictly
increasing solution.
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[34] J.J. Nieto, R. Rodŕiguez-López, Contractive mapping theorems in partially ordered
sets and applications to ordinary differential equations, Order, 22 (2005) 223-239.
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